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Abstract: Sudden cardiac death (SCD) is a significant global health issue that affects individuals with
and without a history of heart disease. Early identification of SCD risk factors is crucial in reducing
mortality rates. This study aims to utilize electrocardiogram (ECG) tools, specifically focusing on
heart rate variability (HRV), to detect early SCD risk factors. In this study, we expand the comparison
group dataset to include five groups: Normal Sinus Rhythm (NSR), coronary artery disease (CAD),
Congestive Heart Failure (CHF), Ventricular Tachycardia (VT), and SCD. ECG signals were recorded
for 30 min and segmented into 5 min intervals, following the recommended HRV feature analysis
guidelines. We introduce an innovative approach to HRV signal analysis by utilizing Convolutional
Neural Networks (CNN). The CNN model was optimized by tuning hyperparameters such as the
number of layers, learning rate, and batch size, significantly impacting the prediction accuracy. The
findings demonstrate that the HRV approach, in conjunction with linear features and the DL method,
achieved a higher accuracy rate, averaging 99.30%, reaching 97% sensitivity, 99.60% specificity, and
97.87% precision. Future research should focus on further exploring and refining DL methods in the
context of HRV analysis to improve SCD prediction.

Keywords: sudden cardiac death; heart rate variability; Convolutional Neural Network

1. Introduction

Sudden cardiac death (SCD) is a cardiovascular condition that is the primary cause
of mortality among adults, affecting both individuals with a history of heart disease and
those without [1]. SCD can strike people suddenly regardless of age and gender and is
estimated to occur in 3 to 4.5 million people worldwide [2]. Therefore, the WHO considers
SCD a critical issue in clinical cardiology that needs to be promptly addressed by every
country [3].

Many factors contribute to the early identification of SCD. These factors include age,
gender, race, genetic variables related to arrhythmia, coronary heart disease factors, and
other structural factors of heart disease [4]. Electrocardiogram (ECG) tools can also be
utilized to identify other factors associated with SCD [5]. ECG is a non-invasive device
that measures and records the heart’s electrical activity, providing information on P waves,
QRS complexes, and T waves [6]. It is a valuable tool in detecting heart abnormalities,
diagnosing patient health, and assisting doctors in providing appropriate treatment [7].
The examination of ECG waveforms is utilized to identify different cardiac irregularities.
The shape of the QRS complex is a critical aspect of analyzing ECG signals as it signifies
ventricular depolarization [8]. Therefore, this study uses ECG analysis focusing on complex
QRS waves and measuring R-R intervals indicative of heart rate variability (HRV). The
predictive potential of the variability of consecutive R-R intervals appears highly promis-
ing [9,10]. As a result, researchers have expressed keen interest in detecting R-peaks from
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ECG signals and utilizing R-R variability or HRV for in-depth analysis [11,12]. The primary
objective is to identify early SCD risk and mitigate global mortality rates associated with
this condition.

Previous studies have explored using HRV to predict SCD across periods ranging
from 1 to 60 min. While some studies achieved a maximum prediction accuracy of 91.67%,
they were limited by their analysis, primarily due to the utilization of a restricted com-
parison group dataset. For instance, Ebrahimzadeh et al. (2019) [2], Devi et al. (2019) [3],
Ebrahimzadeh et al. (2018) [13], and A. Parsi et al. (2020) [14] employed only a single com-
parison group in their investigation. In contrast, a recent study by Rohila et al. (2020) [15]
incorporated a broader range of comparison group data, including normal subjects (NSR)
and individuals with cardiovascular diseases such as congestive heart failure (CHF) and
coronary artery disease (CAD).

In Ref. [15], the authors focused on identifying SCD using HRV and involved four
comparison groups. In our study, we extended this research by expanding the number
of comparison groups to five, which included individuals diagnosed with Ventricular
Tachycardia (VT). VT is a cardiovascular condition with a high probability of SCD [13,16].
VT has been used in predicting SCD risk with 90.2% accuracy [14]. Therefore, this study
has five comparison groups: NSR, CAD, CHF, VT, and SCD.

This study presents an innovative approach to analyzing HRV signals using deep
learning (DL) methods. DL methods were employed to analyze HRV features to improve
the early detection of lethal cardiac arrhythmia. Previous studies have utilized various Ma-
chine Learning (ML) algorithms such as multilayer perceptron (MLP), k-Nearest Neighbor
(KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) to pre-
dict the risk of SCD. However, DL techniques, particularly Convolutional Neural Networks
(CNN), have gained popularity in medical diagnosis due to their superior performance and
effectiveness compared to traditional ML algorithms [17]. CNN have exhibited promising
outcomes in conducting ECG classification among numerous deep-learning algorithms.
The CNN model showcased remarkable overall performance, from 93.53% to 99% [18–20].
CNN is renowned for its proficiency in pattern recognition, combining feature extraction,
dimensionality reduction, and classification techniques. The CNN method consists of three
main layers: input, hidden, and output, with deeper layers enhancing the detection and
classification of heart disease data [21]. In this study, the CNN method was optimized by
tuning hyperparameters, including the number of layers, learning rate, and batch size, as
these parameters significantly influence the model’s prediction accuracy.

This research makes the following contributions:

• The development of a 1D-CNN model to predict the risk of SCD based on HRV
Features.

• The expansion of the number of comparison subjects in predicting SCD, that is, CAD,
VT, CHF, and NSR.

2. Materials and Methods

This research employs a methodology utilized by multiple previous researchers in
predicting risk SCD, i.e., using ECG patterns. A previous study utilizing a similar method
was conducted [2,3,15]. The research steps undertaken in this study are outlined as follows:

2.1. Database

This study included five subject groups, namely NSR, CAD, CHF, VT, and SCD, with
115 subjects comprising 18 NSR, 51 CAD, 15 CHF, 11 VT, and 20 SCD cases. The ECG
signals for these groups were obtained from the PhysioNet database [22]. We have chosen
CHF, CAD, and VT as comparison groups due to their relevance to cardiac disease and their
association with SCD. Including these groups provides a valuable context for evaluating
the predictive capabilities of our model. In addition, the dataset on CHF and CAD has also
been utilized by Rohila et al. in their study on SCD prediction.
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For the SCD group, the duration of the ECG signal used was 30 min preceding the
onset of VF. The primary objectives of this study were to identify individuals at risk of
SCD and differentiate subject groups with non-SCD conditions (NSR, CAD, CHF, and VT).
Non-SCD subjects were confirmed to be free from VF. While each group may have had
more than two channels, this study focused on analyzing the first channel as it provided
more reliable output signals [23]. The comparison data included signal durations from
all five groups, each spanning 30 min. Specifically, the ECG signal of the SCD group was
obtained 30 min before the onset of VF. The choice of a 30 min ECG duration was motivated
by the maximum period of VT, which is 30 min or 1800 s [24].The 30 min ECG duration was
segmented into 5 min intervals to facilitate analysis, resulting in six segments per subject.
Using 5 min segments aligns with the recommended practice for HRV feature analysis [11].

2.2. Preprocessing

The 30 min ECG signal duration was divided into segments with a period of 5 min,
resulting in six segments for each subject. A series of steps were followed to extract
the R-R interval from the 5 min ECG signal. Firstly, noise and baseline wandering were
eliminated using the Discrete Wavelet Transform (DWT) method, which involves passing
the signal through low- and high-pass filters. This study employed the sym5 wavelet
family for DWT [25]. Secondly, the ECG was normalized using two techniques: Normalized
Absolute Deviation (NADev) and Normalized Absolute Difference (NADiff) [26]. Lastly,
R-peaks were detected using the Hamilton–Tompkins algorithm [27]. This preprocessing
methodology has been widely adopted by other researchers [28,29]. Figure 1 shows a
comparison of ECG Signals before and after preprocessing in first segments for the five
subject groups.
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waveform representing ventricular depolarization, the next step is calculating the time 
intervals between successive R-peaks to obtain the RR intervals. Subsequently, various 
statistical measures are applied to the RR interval series to extract meaningful features. In 
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Figure 1. (a) ECG Signal with noise; (b) ECG Signal after preprocessing with R-Peaks are highlighted
with a yellow "x" label.

Figure 2 presents enlarged sample images with one minute of segmentation for SCD
subjects. In panel (a) of the figure, ECG segment images are shown before preprocessing,
showing the raw input data with noise. Panel (b) shows the ECG segment images after
preprocessing, specifically with the identification and marking of the R peak.
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2.3. Feature Extraction

After identifying the R-peaks, which correspond to the highest points in the ECG
waveform representing ventricular depolarization, the next step is calculating the time
intervals between successive R-peaks to obtain the RR intervals. Subsequently, various
statistical measures are applied to the RR interval series to extract meaningful features. In
HRV analysis, the following commonly computed features are considered:

The mean value of the RR interval (MeanRR).

MRR =
1
N∑ RRi (1)
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The square root of the mean of the squared differences between adjacent RR inter-
vals (RMSDD).

RMSSD =

√
1
N

N−1

∑
i=1

(RRi+1 − RRi)
2 (2)

The percentage of adjacent RR intervals differs by more than 50 ms (PNN50).

PNN50 =
num(RR > 50)

num(RR)
(3)

The standard deviation of all RR intervals (SDRR).

SDRR =

√
1
N∑(RRi − RRm)2 (4)

The coefficient of variation of RR intervals (CVRR).

CVRR =
SDRR

MeanRR
(5)

The number of consecutive RR interval pairs that differ by more than 50 ms (NN50).

Num(abs(RRn+1 − RRn)) ≥ 50 ms (6)

where N = Number of RR intervals; RRi = RR interval after; and RRi + 1 = RR interval before.
In addition to the six features mentioned above, this study includes two other features,

namely the minimum RR interval and the maximum RR interval.
The results of this feature extraction process are documented in detail in Table 1. The

table provides a comprehensive overview of the extracted HRV features, allowing for easy
comparison and analysis across the different groups. The HRV features captured essential
information relating to heart rate variability and served as valuable indicators for assessing
autonomic nervous system activity and cardiac health.

Table 1. HRV features five subjects.

Class Patient
Time-Domain Features

MRR SDRR RMSSD PNN50 CVRR NN50 Min_RR Max_RR

CAD 20031 0.977 0.722 0.897 0.009 0.739 0.951 0.007 4.687
HF Chf01 0.787 0.425 0.581 0.009 0.540 0.928 0.007 2.617
NSR nsr001 0.769 0.315 0.442 0.005 0.409 0.586 0.412 2.078
SCD 30 0.736 0.482 0.632 0.009 0.655 0.919 0.007 3.578
VT 106 0.906 0.684 1.035 0.009 0.754 0.955 0.007 3.960

2.4. Classification

This study employs a 1D-CNN architecture for analysis. CNN, or Convolutional
Neural Network, is a deep neural network model with multiple stacked layers designed
to mimic the activity of neurons in the human brain [30]. The CNN extraction process
involves several hidden layers, including convolutional layers, ReLU activation functions,
and pooling layers [31]. The CNN classification process includes a fully connected layer
and an activation function (sigmoid or softmax) that produces the classification output [32].

Considering the part of the CNN method that can classify features extraction from
HRV, this study proposes a Wavenet model. This model was proposed by Yue Meng
et al. (2022) [33] and has successfully classified diseases with good performance accuracy.
Wavenet is a generative model consisting of residual blocks with gated activation. With
regard to the equation form of the Wavenet model [34], it can be seen in the following
equation.

z = tanh(Wf, k ∗ x)� σ(Wg, k ∗ x) (7)
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where z represents the unit of gated activation, * is the operator of convolution, � multipli-
cation function operator, σ(.) the sigmoid function, k is the number of layers, f is the filter,
g is the gate, W is the learnable convolution filter, and x is the waveform [34,35].

Our proposed model’s HRV feature input sample depends on the previous output
sample. The feedback from each predicted sample helps the network predict the following
sample. Dilated convolutional layers are employed in the network to enable large skips
of input data, increasing the receptive field for better results. Only a few layers enhance
the receptive fields to maintain input resolution and ensure output data consistency on
a larger time scale [34]. The distribution of each HRV feature sample is achieved using
softmax. The residual and parameterized skip connections accelerate convergence and
facilitate intense model training. Our proposed Wavenet model is illustrated in Figure 3.
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Description of our proposed method is as follows:

• Input layer: The input to the network is a sequence of the length 9.
• Reshape layer: reshapes the input sequence to have a shape of (9, 1), converting it into

a 1D Signal.
• Conv1D layers: There are several hidden layers in Conv1D layers, each with different

dilation rates. The dilation rate determines the spacing between the values in the
kernel. Higher dilation rates allow the network to capture larger patterns while
retaining fewer parameters. The Conv1D layers have 64 filters each and a kernel size
of 2. They use the “causal” padding, which ensures that the output at each time step
only depends on the current and past inputs. The dilation rates for these layers are
based on the values in the dilatation_rates list, which are powers of 2 ranging from 1
to 64. The activation function used in these Conv1D layers is ReLU.



Medicina 2023, 59, 1394 7 of 16

• Multiplication and activation layers: Following each Conv1D layer, two activation
functions are applied independently: tanh and sigmoid. The outputs of these activation
functions are then element-wise multiplied together.

• TimeDistributed Dense layer: Each output from the multiplication and activation
layers is passed through a TimeDistributed Dense layer with 64 units and ReLU
activation. The TimeDistributed layer applies the same Dense layer to each time step
of the sequence.

• Skip Connections: The outputs from the TimeDistributed Dense layers are appended
to a list called skips. These skip connections allow information from earlier layers to
be propagated and combined with later layers.

• Add and Activation layers: The elements in the skips list are summed using an Add
layer. Then, the ReLU activation function is applied to the summed output. After the
Conv1D layers, the code continues with other layers, such as Flatten, Dropout, Dense,
and the final output layer. This model uses the 1D-CNN Wavenet architecture with a
total of 11 layers (Table 2).

Table 2. The number of layers from our proposed method.

No. Layer Number of Layers

1 Input 1
2 Reshape 1
3 TimeDistribute Dense (Loop) hidden layers
4 Conv1D (Loop) hidden layers
5 Multiply 1
6 TimeDistribute Dense 1
7 Add (Loop) hidden layers
8 Flatten 1
9 Dropout 2
10 Dense 2
11 Output 1

This model has been optimized because this process is crucial to ensure that the test
results do not suffer from overfitting. The optimized hyperparameters are the hidden
layers, learning rate, and batch size (Table 3). The grid search process was conducted com-
prehensively through predefined subclasses of model hyperparameter combinations [36].

Table 3. Optimized hyperparameters.

Hyperparameters List of Values

Number of hidden layers 3, 5, 7, 9
Learning rate 0.1, 0.01, 0.001, 0.0001

Batch Size 32, 64, 128, 256

The hyperparameters were trained and evaluated using the first 5 min segments. The
model with the lowest loss and highest accuracy was selected as the best-performing model.
Once the best model was determined, it was tested on five other segments from each subject
group. Each segment was compared to obtain performance predictions for each class group.
The first 5 min before the occurrence of SCD were compared with the first 5 min of the other
classes, and this process was repeated for the remaining segments. The average accuracy
performance was calculated using a confusion matrix. There were 115 subjects, with a
training distribution of 80% and a testing distribution of 20%.

The performance of the classification model is evaluated using a confusion matrix [37].
Each matrix column displays the class prediction results, while each row shows the classi-
fied class results. Accuracy, sensitivity, specificity, and precision are used to evaluate the
performance of the proposed model.
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The experiment runs on a computer platform with specifications including intel Core
i7-8750H Ram 16Gb NVIDIA GTX 1080 with 4GB GDDR5 graphics memory and operating
system Windows 10. DL structure developed using Python Programming with computation
utilizing TensorFlow-GPU with Keras Neural Network Library.

3. Results

This study involved six segments extracted in HRV for each subject. The technique
for extracting HRV features from the ECG signal is described in the pre-processing stage
and feature extraction. This research hyperparameter tuning was conducted using the grid
search method for each hidden layer (3, 5, 7, 9), utilizing a list of learning rate and batch
size values (Table 3). Based on these four hidden layers, the study resulted in four models.
Figure 4; Figure 5 show the loss and accuracy for four models using 140 epochs.
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Figure 4. Loss train dan test for four models.

Figure 4 presents the loss values for four models, showcasing their performance during
the training and testing phases. The loss serves as a measure of dissimilarity between the
predicted and actual outputs of the models. Regarding training loss, Model 1 initiates with
a value of 0.0346 and consistently decreases over the epochs. Model 2 starts with a higher
training loss of 0.0693 but follows a similar descending trend. Model 3 exhibits a higher
initial training loss of 0.513 but undergoes rapid reduction as the training progresses. Model
4 begins with a low training loss of 0.0248 and steadily declines. Shifting attention to the
testing loss, Model 1 begins at 0.041 and maintains a relatively stable pattern throughout
the evaluation. Model 2 starts with a higher testing loss of 0.0625 but follows a similar
trend to Model 1. Model 3 commences with a testing loss of 0.052, remaining consistently
low. Lastly, Model 4 demonstrates a testing loss of 0.060, which remains stable across
the epochs. The graph visually captures the trajectory of loss values during training and
testing, providing valuable insights into the models’ learning progress and their ability to
generalize to the test data.
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Figure 5 showcases the accuracy values for four different models, illustrating their
performance in terms of training and testing. Accuracy represents the percentage of correct
predictions made by the models. Regarding training accuracy, both Model 1 and Model 2
start at a high accuracy of 98.91%. These models maintain consistent accuracy throughout
training, suggesting stable and effective learning from the training data. Model 3 and
Model 4, on the other hand, start with perfect accuracies of 100%. These models exhibit no
misclassifications during training, indicating their ability to learn the training data perfectly.
Moving on to the testing accuracy, Model 1 begins with an accuracy of 99.42%, maintaining
a high level throughout the evaluation. Model 2 starts slightly lower with an accuracy of
99.13% but demonstrates strong performance on the test data. Model 3 maintains a perfect
accuracy of 100% during testing, indicating its ability to generalize well beyond the training
data. Similarly to Model 3, Model 4 also achieves a perfect accuracy of 100%, showcasing
excellent performance on the test data.

Model 3 is the best model due to its perfect accuracy, low training loss, and low testing
loss. Its ability to generalize and consistently make accurate predictions on the training and
testing datasets makes it a reliable choice for the given task. The best-performing model
had seven hidden layers, a learning rate of 0.001, and a batch size of 128. This model was
trained and tested using the first segment at a five-minute interval. This resulted in four
models, as shown in Table 4.

Table 4. Performance of CNN Wavenet with best hyperparameter for 5 min on test data.

Model Number of
Hidden Layers

Learning
Rate

Batch
Size Epoch Loss Acc. (%) Sens.

(%)
Spec.
(%)

Pres.
(%)

1 3 0.001 32 140 0.041 99.42 96.67 100 98.46
2 5 0.0001 32 140 0.060 99.13 95.83 99.49 96.58
3 7 0.001 128 140 0.052 100 100 100 100
4 9 0.0001 32 140 0.060 100 100 100 100

Table 4 presents the performance of a grid search to determine the optimal hyperpa-
rameters for CNN, including the range of hidden layers, learning rate and batch size. The
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number of hidden layers plays a crucial role in the network’s capacity to learn complex
patterns and relationships in the data. However, too many layers may lead to overfitting,
while too few may result in underfitting. Each combination is trained and evaluated us-
ing a predefined metric, such as accuracy or loss. The model that achieves the highest
performance on the validation set is then selected as the best-performing model.

The best hyperparameters mentioned above are optimal based on evaluating multiple
models with different hyperparameter combinations. Through this iterative process, the
grid search identifies the hyperparameters that yield the best performance on the testing set.

The 1D-CNN Wavenet architecture of the best model (model 3), including the number
of layers, layer parameters, and output shape, is presented in Table 5. This table provides
a comprehensive overview of the model’s structural components, allowing for a detailed
understanding of its configuration and architecture.

Table 5. 1D-CNN Wavenet architecture with best hyperparameter.

No. Layer Layer Parameter Outpshape

1 Input shape = (9,) (None, 9)
2 Reshape target_shape = (9, 1) (None, 9, 1)
3 TimeDistributed (Dense) units = 64, activation = ‘relu’ (None, 9, 64)
4 Conv1D filters = 64, kernel_size = 2 (None, 9, 64)
5 Conv1D filters = 64, kernel_size = 2 (None, 9, 64)
6 Activation activation = ‘tanh’ (None, 9, 64)
7 Activation activation = ‘sigmoid’ (None, 9, 64)
8 TimeDistributed (Dense) units = 64, activation = ‘relu’ (None, 9, 64)
9 . . . (repeated dilations) - -
10 Add - (None, 9, 64)
11 Activation activation = ‘relu’ (None, 9, 64)
12 Flatten - (None, 576)
13 Dropout rate = 0.5 (None, 576)
14 Dense units = 512, activation = ‘relu’ (None, 512)
15 Dropout rate = 0.5 (None, 512)
16 Dense units = 512, activation = ‘relu’ (None, 512)
17 Dense units = 512, activation = ‘relu’ (None, 5)

Note: The None dimension represents the batch size.

Figure 6 shows the performance of a selected model in training and testing. The
left-hand side of the figure shows the training and testing loss for 140 epochs. The right-
hand side of the figure shows the training and testing accuracy for 140 epochs. The graph
demonstrates that training and testing loss exhibit significant reduction and stabilization
after several epochs, ultimately reaching a value of approximately 0.0052. The training and
testing accuracy of the model comes to 100% after 140 epochs, implying that the model
can precisely classify the input data into their respective categories. This high accuracy
suggests that the model performs effectively and can be applied for predictive purposes.

Following the careful selection of Model 3, our study proceeds by leveraging this
chosen model to analyze the 2nd and 6th segments. Table 6 and Figure 7 present the
performance evaluation of a classification model that effectively predicts SCD using six
segments for all subjects. In the first segment, the model incorrectly classified SCD as
VT. Similarly, in the third segment, the model misclassified VT as SCD. The prediction
errors in these cases may have occurred due to the similarity in morphology between these
types of rhythms. Overall, the model performed well, with only two incorrect predictions.
However, it accurately predicted all instances in the other four segments. The performance
evaluation was based on commonly used metrics such as accuracy, sensitivity, specificity,
and precision, which are important for assessing the performance of classification models.
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Table 6. Performance of classification using 1D-CNN Wavenet model (each segment).

Segments
Average for All Subject

Acc. (%) Sens.
(%)

Spec.
(%)

Pres.
(%)

1st 98.26 95 99.05 93.33
2nd 100 100 100 100
3rd 98.26 90.00 98.95 96.00
4th 100 100 100 100
5th 100 100 100 100
6th 100 100 100 100

The confusion matrix (Figure 7) represents the performance of the classification model
in predicting SCD for each of the six segments. The confusion matrix also reflects the two
wrong predictions mentioned in the table (Table 6).

From Figure 7, the model’s average accuracy in predicting SCD risk was 99.30%. This
indicates that the model achieved high overall correctness in its predictions. However, it
is worth noting that more than accuracy is needed to provide a complete picture of the
model’s performance, and other metrics should also be considered. The model’s sensitivity
was calculated to be 97%, representing the proportion of correctly identified individuals
at risk of SCD out of all the actual cases. This shows that the model had a high ability to
detect individuals at risk of SCD. The specificity of the model was found to be 99.60%. This
metric measures the proportion of correctly identified individuals without the risk of SCD
out of all the non-SCD cases. The high specificity indicates that the model performed well
in correctly classifying individuals who were not at risk of SCD. The precision of the model
was determined to be 97.87%. Precision represents the proportion of correctly identified
individuals at risk of SCD out of all the predicted positive cases. This indicates that the
model had a high level of accuracy in correctly identifying individuals who were truly at
risk of SCD among the predicted positive cases.

Overall, these results demonstrate that the optimized CNN model, utilizing HRV anal-
ysis, achieved a high accuracy and performance in the early prediction of SCD. The model
showed strong sensitivity, specificity, and precision, indicating its potential usefulness
in identifying individuals at risk of SCD. Performance for each class subject is shown in
Table 7.
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Table 7. Performance of classification using 1D-CNN Wavenet model (each class).

Subject Acc. (%) Sens.
(%)

Spec.
(%)

Pres.
(%)

CAD 100 100 100 100
HF 100 100 100 100

SNR 100 100 100 100
SCD 99.28 95 99.05 99.33
VT 99.28 90 98.95 96.00

average 99.30 97 99.60 97.87

4. Discussion

Furthermore, we introduced eight linear features for HRV analysis, which were used
to analyze quality ECG signals. This research is the first to use CNN to extract HRV features
for predicting SCD risk in five comparison groups with six segments.
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Our study has effectively employed Model 3 to analyze multiple segments and predict
SCD. However, we have observed misclassifications in certain segments, likely due to
the similarity in morphology between SCD and VT rhythms. These findings highlight
the challenges associated with classifying ECG signals based solely on morphology and
emphasize the need for further research to explore alternative approaches that can enhance
rhythm classification accuracy with additional HRV features.

This study offers a novel approach to detecting the risk of SCD. The studies analyzing
the risk of SCD have been summarized (Table 8). Our study emphasizes the analysis of HRV
signals’ short duration to predict SCD; the HRV duration of 30 min before VF onset was
analyzed by dividing it into short-term segments. The use of HRV segments with a period
of 5 min from the ECG signal is necessary to detect and reduce bias due to the selection of
data with a length of 30 min duration. Overall, our findings highlight the potential of CNN
in extracting HRV features to predict SCD risk in a diverse population accurately.

Table 8. Comparison of results with state-of-the-art studies.

Authors (Year) Signal Length
Prediction Period

No. of
Subject Features Method

Performance Result (%)

Acc. Sens. Spec. Pres.

Ebrahimzadeh et al.
(2018) [13]

12 min before
1 min interval

35 NSR
35 SCD

HRV
Time-Domain,
Frequency-Domain,
Time-Frequency,
Non-Linear

MLP 83.87 82.66 85.09 84.72

Ebrahimzadeh et al.
(2019) [2]

13 min before
1 min interval

30 NSR
35 SCD

HRV
Time-Domain,
Frequency-Domain,
Time-Frequency,
Non-Linear

MLP 84.28 85.71 82.85 83.33

Devi et al. (2019) [3] 10 min before
5 min interval

18 NSR
15 HF
18 SCD

HRV
Classical, non-linear,
and CWT features

KNN 83.33 75 87.5 75

Ashish Rohila et al.
(2020) [15]

1 hour before
5 min interval

18 NSR
23 CAD
15 HF
20 SCD

HRV
Entropy, Poincare
plot, S-transform

SVM and
DT 91.67 83.33 94.64 84.75

A. Parsi et al.
(2020) [14]

5 min before
5 min interval

106 VT
29 VF

HRV
Time-Domain

SVM
KNN
RF

90.2 88.8 94.2 -

Our Work 30 min before
5 min interval

18 NSR
51 CAD
15 HF
11 VT
20 SCD

HRV
Time-Domain

1D-CNN
Wavenet
model

99.30 97.00 99.60 97.87

Our study represents a novel approach by utilizing CNN to extract HRV features for
predicting SCD risk. While previous studies have investigated various methods of ML for
SCD risk prediction, the application of CNN specifically for extracting HRV features in this
context has been explored. By leveraging the power of CNN, we aim to capture complex
patterns and relationships within the HRV data, potentially leading to improved predictive
performance. To highlight the potential superiority of our method, a thorough comparison
with previous studies is essential. We extensively review the existing literature on SCD
risk prediction and discuss the methodologies, features, and performance metrics used in
those studies (Table 8); by comparing our approach to these established methods, we can
demonstrate the advantages and strengths of utilizing CNN for HRV feature extraction by
optimizing the model with hyperparameter tuning.
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The proposed model uses a 1D-CNN Wavenet model. In optimizing the model to
separate individuals at risk of SCD, this study has conducted hyperparameters tuning, and
the selected parameters use seven hidden layers, a 0.001 learning rate, and a batch size of
128. This model strengthens our findings in classifying SCD risk with an average accuracy
of 99.30%, achieving 97% sensitivity, 99.60% specificity, and 97.87% precision.

Additionally, one aspect that sets our research apart is utilizing a larger dataset. By
incorporating a substantial amount of data, we can increase the robustness and generaliz-
ability of our findings. This larger dataset provides an opportunity to train the CNN model,
potentially enhancing its ability to learn and extract meaningful HRV features for accurate
SCD risk prediction.

The performance of the proposed method analyzed with the test data appears promis-
ing for identifying SCD risk. However, some limitations need to be discussed. First, our
study used limited patient information and possibly a very heterogeneous group, but the
SCD subject data provide important pathogenic details on sudden death. Second, although
the results for SCD risk classification seem promising, our study only used linear fea-
tures. In contrast, HRV features provide two other features: time-frequency and non-linear
features. In the future, the challenge is to use more available HRV features and add a
comparison group to predict SCD risk.

5. Conclusions

This study employed a 1D-CNN Wavenet model and utilized a larger comparison
group dataset than that of previous studies on SCD prediction. Through hyperparameter
tuning, the model achieved high accuracy, sensitivity, specificity, and precision in classifying
SCD risk. While the performance of the proposed method in identifying SCD risk appears
promising based on the test data, there are limitations to consider. The study relied on
linear HRV features, and future research should explore including time-frequency and
non-linear features to improve prediction accuracy. Additionally, the study emphasized the
need for more comprehensive patient information and the incorporation of a comparison
group to enhance SCD risk prediction. Overall, the findings demonstrate the potential
of using CNN-based models and HRV analysis to accurately predict SCD risk, offering a
novel approach for identifying individuals at risk of SCD in diverse populations.

The proposed model’s CNN has the capability to perform real-time classification of
ECG signals, indicating its potential for implementation in clinical settings. Moreover, our
algorithm offers the advantage of being cost effective.
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