Supplementary Materials

Identification and characterization of an anti-fibrotic benzopyran compound isolated from mangrove-derived *Streptomyces xiamenensis*

Min-Juan Xu^{1,†}, Xiao-Jin Liu^{2,3,†}, Yi-Lei Zhao⁴, Dong Liu⁵, Zhen-Hao Xu⁴, Xiao-Meng Lang⁵, Ping Ao¹, Wen-Han Lin⁵, Song-Lin Yang², Zhi-Gang Zhang^{3*}, Jun Xu^{4*}

- ¹ Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Key Laboratory of Systems Biomedicine, Shanghai, 200240, P. R. China
- ² Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- ³ State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
- ⁴ State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai JiaoTong University, Shanghai, 200240, P. R. China
- ⁵ State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
- [†] These authors contributed equally to this work.
- * Author to whom correspondence should be addressed: E-Mail: xujunn@sjtu.edu.cn (J. X.); Tel.:
 +86-021-34207208 (J. X.); Fax: +86-021-34207205 (J. X.). E-Mail: zzhang@shsci.org (Z.-G. Zh.);
 Tel.: +86-021-34206763 (Z.-G. Zh.); Fax: +86-021-34206763 (Z.-G. Zh.).

		2
	Table of contents	
		Page
•	Figure S1. HPLC seperation of Marfey's derivatives of hydrolysed compound 1 and	3
	L/D-Thr.	
•	Table S1. HPLC seperation of Marfey's derivatives of hydrolysed compound 1 and	3
	L/D-Thr.	
•	Figure S2. ¹ H NMR spectrum of compound 1 in DMSO- d_6 .	4
•	Figure S3. ¹³ C NMR spectrum of compound 1 in DMSO- d_6 .	4
•	Figure S4. HMQC spectrum of compound 1 in DMSO- d_6 .	5
•	Figure S5. HMBC spectrum of compound 1 in DMSO- d_6 .	5
•	Figure S6. COSY spectrum of compound 1 in DMSO- d_6 .	6
•	Figure S7. NOESY spectrum of compound 1 in DMSO- d_6 .	6
•	Figure S8. ¹ H NMR spectrum of compound 1 in $[D_4]$ methanol.	7
•	Figure S9. IR spectrum of compound 1.	7
•	Figure S10. UV spectrum of compound 1.	8
•	Figure S11. CD spectrum of compound 1.	8
•	Figure S12. HRMS spectra of compound 1 (positive mode).	9
•	Figure S13. HRMS spectra of compound 1 (negative mode).	10
•	Data comparison of 1 and the know compound [14]	11

General

Resolution of 2,4-dinitrophenyl-5-L-alanine amide (DNPA) amino acids: DNPA-L-Thr, DNPA-D-Thr, and DNPA-hydrolysed **1** was resolved by HPLC on a Welch XB-C18 column (4.6 mm \times 150 mm, 5 µm) with UV detection monitored at 340 nm. For mobile phase, 0.05% trifluoroacetic acid (TFA) and 1% methanol was used in both A and B solution. Mobile phase A and B consisted of 5% acetonitrile and 60% acetonitrile, respectively. Linear gradients started with 0% B and finished with 100% B in 45 min, plus 15 min equilibrium of system at the beginning.

Figure S1. HPLC separation of Marfey's derivatives of hydrolysed compound **1** and L/D-Thr. Note: Retention time of FDAA: 41.3 min.

Table S1. HPLC seperation of Marfey's derivatives of hydrolysed compound 1 and L/D-Thr.

Sample	Re	tention time of Marfey's derivatives (min)
	L	D
Thr	36.9	39.6
Hydrolysed compound 1	36.9	

Figure S3. ¹³C NMR spectrum of compound 1 in DMSO- d_6 .

Figure S2. ¹H NMR spectrum of compound **1** in DMSO- d_6 .

Figure S4. HMQC spectrum of compound 1in DMSO-d₆.

Figure S5. HMBC spectrum of compound 1 in DMSO-*d*₆.

Figure S6. COSY spectrum of compound 1 in DMSO-d₆.

Figure S7. NOESY spectrum of compound 1 in DMSO-*d*₆.

Figure S9. IR spectrum of compound 1.

Figure S10. UV spectrum of compound 1 (online detection by HPLC).

Figure S12. HRESIMS spectra of compound 1 (Positive mode).

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
392. 2069	392. 2073	-0.4	-1.0	7.5	27.0	1. 147	31.76	C21 H30 N 06
	392. 2226	-15.7	-40.0	11.5	28.0	2. 058	12.77	C25 H30 N 03
	392. 1862	20.7	52.8	12.5	27.3	1. 442	23.64	C24 H26 N 04
	392. 2437	-36.8	-93.8	6.5	27.0	1. 145	31.83	C22 H34 N 05

0-JS-1 11009_Y02 00-1	115UMS_ 273.1	_POS_3 4 523	34 (4.875) C	m (431:434)						1: TOF MS	S ES 7.22
100											
-											
-											
-											
4											
		392	2.2069								
(* C											
		074 1513									
		1.1010									
- 25	5.1338		393.2155		783	.4076					
			ſ								
						784.4136					
		275.1325	394.2080			785 4250					
199	9.0766	276.0619	415.202	7523.2021	782.548	3 840 3424	1174	1,625012	27.5333		
) 111 A194 A	hhhhh	200	400 50		multurth	HI	 	1.111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- m

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Forr	nula	
390.1886	390.1917 390.1858	-3.1 2.8	-7.9 7.2	8.5 17.5	37.5 38.3	0.373 1.167	68.86 31.14	C21 C28	H28 H24	N 06 N 0
/ 4, Hyper GOL XMJ_318-2_NEG 100- - -	.D C18 G_01 348 (7.838) (3	Cm (347:34 90.1886	19)					1:	: TOF	MS ES- 5.00e5
	346.1630	391.1939	9		781.390	08				
	328.1594 8.0317	392.2053	3 541.289	7587.3232	78 780.5634	2.3923 3.3979 933	2.4836	117	1172	2.5878

Figure S13. HRESIMS spectra of compound 1 (Negative mode).

m/z

Data comparison of 1 and the know compound [14]

1) IR data from reference 14 (KBr): 3866, 3383, 2976, 2932, 1730, 1640, 1611, 1578, 1539, 1491, 1422, 1379, 1321, 1265, 1200, 1157, 1113, 1082, 1016, 952, 897, 833, 767, 667 cm-1.

IR data of compound **1** (KBr): 3396, 2969, 2929, 1718, 1639, 1610, 1579, 1537, 1489, 1446, 1382, 1321, 1264, 1201, 1162, 1113, 1080, 1024, 954, 897, 830, 765, 665 cm⁻¹.

2) ¹³C-NMR data from reference 14 (CD₃OD): 178.3 s, 169.7 s, 157.9 s, 132.5 s, 130.8 d, 128.1 d, 126.8 d, 125.4 d, 121.4 s, 118.0 d, 80.5 s, 69.3 d, 68.3 d, 60.8 d, 38.9 t, 32.0 t, 25.9 q, 22.6 t, 20.1 q, 18.9 q, 17.7 q.

¹³C-NMR data of compound **1** (CD₃OD): 170.0 s, 157.9 s, 132.5 s, 130.7 d, 128.0 d, 126.9 d, 125.3 d, 121.5 s, 118.0 d, 80.7 s, 68.9 d, 68.3 d, 60.8 d, 38.9 t, 32.0 t, 25.8 q, 22.6 t, 20.6 q, 18.9 q, 17.6 q. (The carbon signal of C-6 can't be detected due to limited amount. Please find the full set of carbon signals of compound **1** in Table 1 or in Figure S3.)

¹H-NMR data from reference 14 (CD₃OD):7.67 (1H, s), 7.66 (1H, d), 6.83 (1H, d), 5.13 (1H, t), 4.63 (1H, d), 4.41 (1H, dq), 3.88 (1H, dd), 3.07 (1H, dd), 2.81 (1H, dd), 2.16 (2H, m), 1.66 (3H, s), 1.66 (2H, m), 1.60 (3H, s), 1.26 (3H, s), 1.21 (3H, d).

¹H -NMR data of compound **1** (CD₃OD): 7.67 (1H, s), 7.65 (1H, d), 6.83 (1H, d), 5.13 (1H, t), 4.60 (1H, d), 4.40 (1H, dq), 3.88 (1H, dd), 3.07 (1H, dd), 2.81 (1H, dd), 2.18 (2H, m), 1.67 (3H, s), 1.66 (2H, m), 1.60 (3H, s), 1.27 (3H, s), 1.23 (3H, d).

Reference 14: Kawamura, N.; Tsuji, E.; Watanabe, Y.; Tsuchihashi, K.; Takako, T. Benzopyran derivatives, their manufacture with *Streptomyces* species, and their use for treatment of asthma and rheumatoid arthritis. Daiichi Seiyaku Co., Ltd.; Mercian Corp.: Kyoto, Japan, 7 March 2000. Avaliable online:

http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=tru e&locale=en_EP&FT=D&date=20000307&CC=JP&NR=2000072766A&KC=A