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Abstract: Oxylipins are a large and diverse family of fatty acid derivatives exhibiting 

different levels of oxidation of the carbon chain. They are involved in many biological 

functions in mammals, plants and diatoms. In this last group of organisms, they are 

suggested to play a role in the reproductive failure of copepod predators, showing clear 

pro-apoptotic effects on newborn nauplii. In this work, these compounds were tested for 

the ability to induce mitotic arrest in sea urchin embryos. We show for the first time that 

oxylipins have an increased efficacy in their corresponding methylated form. Natural 

oxylipins were also used as an inspiration for the rational design and synthesis of stable 

chemical analogs with apoptotic activity against tumor cell lines. This approach led to the 

synthesis of the linear C15-ketol (22) that was shown to induce apoptosis in human 

leukemia U-937 cells. These results are proof of the concept of the use of  

eco-physiological considerations as a platform to guide the search for novel  

drug candidates. 
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Abbreviations 

DIBAL, diisobutylaluminum hydride; THF, tetrahydrofuran. 

1. Introduction 

Diatoms are a widespread group of marine microalgae that play a pivotal role in primary production 

and biogeochemical cycles in marine ecosystems. They produce a plethora of bioactive oxylipins, a 

large and diverse family of secondary metabolites derived from the oxidation of polyunsaturated fatty 

acids. Most of these compounds arise from oxidation of eicosapentaenoic acid and unsaturated C16 

fatty acids catalyzed by specific lipoxygenases (LOXs) with different regio- and stereo-selectivity [1,2]. 

The extreme variability of the downstream reactions adds great diversity to oxylipin structures that in 

diatoms include hydroxy-, keto-, epoxyhydroxy-acids and polyunsaturated aldehydes. 

Oxylipins are common bioactive secondary metabolites present in mammals as well as in plants, 

mosses, algae, bacteria and fungi. In mammals, members of the family, such as prostanoids, 

leukotrienes and thromboxanes, are involved in inflammation and in numerous homeostatic biological 

functions and also modulate the expression of genes involved in DNA transcription and lipid 

metabolism [3,4]. In plants, C18-derived oxylipins mainly serve as signal molecules regulating 

developmental processes and are involved in plant stress responses and innate immunity [5–7]. In 

diatoms, oxylipins have been correlated to the antiproliferative effect of diatoms on predator 

reproduction [8,9], whereas, with the exception of few studies [10,11], their physiological role as 

signaling molecules remains largely unexplored. However, while many studies have been reported on 

the effect of polyunsaturated short-chained aldehydes [12,13], the biological effect of non-volatile 

oxylipins has been scarcely explored [2,12]. For instance, Fontana and co-workers showed that 

copepod nauplii hatched from eggs treated with a pool of oxylipins were seriously damaged and had a 

large proportion of apoptotic tissue, as revealed by terminal deoxynucleotidyl transferase (TdT) dUTP 

Nick-End Labeling (TUNEL) staining [2]. In the present study, we investigated the activity of different 

types of natural oxylipins on developmental processes in sea urchin embryos. The structures of these 

compounds were also used as an inspiration to design and synthesize a series of analogs with  

pro-apoptotic activity against a human leukemia-derived cell line. 

2. Results and Discussion 

2.1. Inhibition of Cell Division by Natural Oxylipins 

15S-Hydroxyeicosapentaenoic acid (15(S)-HEPE) (1) is one of the most frequently encountered 

diatom oxylipins [13]. In agreement with previous studies on copepod nauplii reported in [12], this 

metabolite inhibited the cleavage in sea urchin Paracentrotus lividus embryos at concentrations higher 

than 70 µM and induced 100% blockage of cellular division at 94 µM (Figure 1a). Nevertheless, the 

methyl ester of 15(S)-HEPE (2) showed a noticeably higher activity (IC50 = 4.1 µM) and completely 
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arrested division of treated embryos at only 8 µM. At this concentration morphological alterations 

similar to those induced by 2E,4E-decadienal [14] were observed: embryos remained blocked at the 

zygote stage and after about 90 min some blebbing vesicles became visible (not shown). 

Figure 1. Percentage of first cleavage occurrence in sea urchin embryos treated with 

increasing concentrations of (a) 15S-hydroxyeicosapentaenoic acid (15(S)-HEPE) (#1), 

15(S)-HEPE methyl ester (#2), eicosapenataenoic acid (EPA) (#3) and EPA methyl  

ester (#4) and of (b) natural oxylipins #5a–#8a. Compound numbering is according to the 

structure reported in Scheme 1. Values (means ± S.D.; N = 600) are the results of three 

different experiments. 

 

Scheme 1. Structures of typical diatom oxylipins. 

 

The antimitotic effect was clearly dependent on the insertion of the oxygenated function, since 

eicosapenataenoic acid (EPA), as both free carboxylic acid (3) and methyl ester (4), had no significant 

activity on sea urchin cleavage progression. Differently from the response with 15(S)-HEPE, the 

methyl ester of EPA (4) was fully inactive up to 330 µM (Figure 1a) whereas the free fatty acid (3) 

started interfering with the development of sea urchin embryos only at concentrations above 165 µM. 

At even higher levels (330 µM), this compound also blocked cleavage, but the effect was clearly 

distinguishable from that induced by 2 since embryos treated with high concentrations of EPA (3) 
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became progressively diaphanous and after about 90 minutes started to swell and increased in volume 

with loss of cellular organization. 

The unexpectedly potent activity of 2 prompted us to investigate other classes of diatom oxylipins. 

Thus, compounds (5–8) were isolated from different diatom species [1,10] and tested on sea urchin 

embryos. In analogy with HEPE and EPA, methyl ester derivatives 5a–8a were also prepared from 

natural products by derivatization with diazomethane. 

No activity was found with free carboxylic acids 5–8 at concentrations up to 100 µM (not shown) 

but methylation of the carboxylic function determined a generalized increase of the inhibitory activity 

of these compounds on development of sea urchin embryos (Figure 1). In agreement with the effect 

previously described with 15(S)-HEPE (2), compounds 5a and 7a arrested mitotic divisions at 52 and 

75 µM (IC50 = 22.6 and 33.0 µM, respectively), whereas compounds 6a and 8a showed a stronger 

effect and inhibited 100% egg cleavage at 6 and 9 µM, respectively (IC50 = 4.2 and 6.9 µM). These 

results suggested that unsaturated hydroxy- or keto-groups are crucial to enhance the activity of these 

fatty acid derivatives. Interestingly, these compounds were as potent as decadienal, which is reported 

to fully block cleavage of sea urchin embryos at 5 µM [14,15]. Pohnert and colleagues discussed the 

effect of decadienal and other unsaturated-aldehydes produced by diatoms in relation to non-specific 

chemical reactivity towards nucleophilic biomolecules [16]. Following other studies on biologically 

active aldehydes, these authors suggested that the main reaction pathway was the Michael-addition of 

the unsaturated aldehyde with thiol or amino groups of proteins. These reactions are not specific and, 

consequently, the adduct formation induces adverse effects on a broad range of cell functions. Similar 

mechanism could be also suggested for compounds 6a and 8a. Conversely, the absence of activity in 

the analogs 6 and 8 could be due to kinetic factors including degradation processes or the inability to 

reach the potential targets. 

2.2. Synthesis of Oxylipin Analogues and Evaluation of Inhibitory Activity on Development of  

Sea-Urchin Embryos 

Considering the inherent chemical instability of the polyunsaturated chain and the biological effects 

of compounds 6a and 8a, we synthesized a number of analogs containing a rational combination of the 

oxygenated functions found in natural oxylipins. Preliminarily, using oleic acid as starting material, a 

synthetic strategy was designed in order to have access to different types of C18-compounds 

(Scheme 2). To this aim, allylic oxidation of oleic acid methyl ester by copper (I) iodide and t-butyl 

hydroperoxide [17] yielded the mixture of α,β-unsaturated keto regioisomers 11a and 11b. The 

following reduction by DIBAL in THF gave the regioisomers mixture 12 of enol derivatives that was 

further oxidized to the isomeric epoxy-alcohols 13 by 3-chloroperoxybenzoic acid (MCPBA). In 

another reaction, the isomeric enones 11a/11b were acetylated giving rise to the corresponding enols 

14 which were then oxidized at the allylic position by Oxone
®

 [18] obtaining the regioisomeric 

mixture 15 that was further purified giving compounds 15a and 15b. 
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Scheme 2. Synthetic strategy for preparation of C18-analogs of diatom oxylipins. 

 

All these products were assessed for their ability to interfere with the development of sea urchin 

embryos. In agreement with the results on natural compounds, the synthetic products containing the 

free carboxylic function were not active (data not shown). The α,β-unsatured keto-ester 11a gave the 

best results (IC50 = 28.0 µM) together with the corresponding ketols 15a/15b (IC50 = 46.0 µM) 

(Figure 2a). 
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Figure 2. Cleavage inhibition in sea urchin embryos treated with increasing concentrations 

of (a) C18-fatty acid synthetic derivatives and (b) synthetic C15-alkyl derivatives. 

Compound numbering is according to the structure reported in Schemes 2 and 3. Values 

(means ± S.D.; N = 600) are the results of three different experiments. 

 

Scheme 3. Synthetic scheme for preparation of compounds 18–25. 
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In agreement with the results obtained with natural oxylipins, the activity of these molecules 

suggested that the presence of the enone moiety (Michael acceptor) is directly related to the inhibition 

of development of sea urchin embryos. Introduction of the hydroxy group affected the electrophilicity 

of the enone, thus possibly explaining the difference in potency of 11a and the regioisomeric mixture 

15a/15b. Nevertheless, the significant difference between 11a and 11b activity after chromatographic 

purification, indicated that other structural features were also required to trigger the effect, thus 

corroborating the hypothesis that the mechanism of action of these molecules is due to interactions 

with specific cellular targets. 

To further simplify the molecular scaffold and to increase the lipophilicity of the molecule, we 

prepared a second series of products without the carboxy group by using a combinatory approach that 

relies on olefination of two synthons by Horner-Wadsworth-Emmons reaction. The strategy is very 

versatile and has been used to prepare a large number of compounds starting from commercial 

reagents. Because the C16-compound 8a was significantly more potent than the analogous C18-products 

11a/11b, we focused on the preparation of molecules with shorter alkyl chains. As reported in 

Scheme 3, stable C15-derivatives containing ketol and enone functions were easily obtained by 

coupling of C8-aldehydes and dimethyl 2-oxoheptylphosphonate (16) with 17. This way, the reaction 

of octanal led to the α,β-keto-unsaturated compound 18 that quantitatively gave the enol derivative 19 

by DIBAL reduction. This latter product could be easily transformed to the epoxyalcohol 20 by 

epoxydation with MCPBA. γ-Ketol 22 was obtained from 18 by acetylation and Oxone
®
 oxidation. 

Analogously, dienone 24 and dienol 25 were obtained starting from octenal (23). 

Activity of compounds 18–22 and 24–25 on sea urchin embryos is reported in Figure 2b. 

Surprisingly, compound 18 that showed the closest analogy with the methyl ester of the natural 

compound 8a (IC50 = 6 µM) was totally ineffective in inhibiting the development of the embryos. On 

the contrary, the epoxyalcohol 20 and the ketol 22 drastically reduced the percentage of dividing 

embryos. The latter compound showed an IC50 of 10 µM that was close to the value found with the 

natural compound 8a. 

2.3. Apoptotic Activity of Compound 22 

In analogy with the effect of exposure to high concentrations of natural oxylipins [2,14], sea urchin 

embryos treated with compound 22 revealed a dose-dependent increase in bleb formation. Because this 

effect had been previously associated with apoptosis [14], we studied the response of embryos to ketol 

22 by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay that is 

routinely used to detect extensive DNA degradation during the late stages of apoptosis. Confocal 

images of the sea urchin embryos treated with 22 at 10 µM clearly revealed that some of the nuclei 

were intensely fluorescent in agreement with the onset of the DNA degradation (Figure 3), as already 

reported with pro-apoptotic aldehydes produced by diatoms [14]. Other cells showed barely stained 

nuclei due to progression of DNA degradation with consequent reduction and diffusion of nuclear 

material. In addition, the occurrence of blebbing vesicles was clearly visible (Figure 3b, arrowhead). 
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Figure 3. Z-projections of confocal images of sea urchin eggs stained with TUNEL  

70 min after fertilization: (a) control and (b) eggs treated with 10 µM of 22. Arrows 

indicate positive nuclei that appear fluorescent and arrowhead indicates blebbing on  

egg surface. 

(a) (b) 

  

To determine whether compound 22 induced apoptosis in tumor cell lines, U-937 cells were 

incubated with increasing concentrations of the synthetic product. This cell line was selected on the 

basis of its resistance to apoptotic stimuli determined in previous studies [19]. As reported in Figure 4, 

the ketol 22 showed a dose-dependent cytotoxicity with an apparent EC50 of about 19 µM. 

Figure 4. Compound 22 is cytotoxic in U-937 cell line. Cells were treated with different 

doses of 22, as indicated. Cytotoxicity was measured by neutral red assay and reported as a 

percentage of DMSO treated control cells, as described in Methods. Data points represent 

the mean of three experiments (±S.E.). 

 
  



Mar. Drugs 2013, 11 4535 

 

 

To determine the mechanism leading to cell death and to discriminate between induction of necrotic 

or apoptotic processes, cells treated with 22 were stained with Annexin-V to detect Phosphatidylserine 

(PS) externalization, as a marker of an active apoptotic process. At 25 µM, 22 efficiently induced 

apoptosis as demonstrated by the coincidence between the population of Annexin-V positive cells and 

the total population of dead cells (Figure 5a). Nevertheless, at higher concentrations (above 35 µM) a 

prevalence of a necrotic process was observed, as indicated by the high positivity to propidium iodide 

staining with respect to Annexin-V (Figure 5b). 

Figure 5. Compound 22 induces apoptosis in U-937 cell line. (a) Cells were treated  

with 22 at the concentrations indicated for 24 h. Apoptosis was quantified by Annexin  

V-FITC staining, measured with flow cytometry, and normalized with respect to controls 

treated with DMSO. Bars A+ indicate positivity to Annexin V, while bars A+/P+ indicate 

positivity to Annexin V and propidium iodide. (b) Proteolytic activities of caspases-3 was 

measured after 6 and 24 h and reported as -fold increase with respect to DMSO-treated 

cells. In panel (b), bars represent the mean of three experiments (±S.E.). Symbols indicate 

significance: p < 0.01 (*) with respect to DMSO-treated samples; p < 0.001 (**). 

 

The same trend was confirmed by the determination of caspase-3 activity, a hallmark of apoptotic 

induction in several cellular models. Compound 22 induced about a 20-fold increase in caspase-3 

activity after only 6 h. After 24 h, although caspase-3 activity remained higher compared to controls, 

its enzymatic activity was significantly reduced in comparison with the beginning of the experiments, 

thus indicating the presence of secondary apoptotic events and/or necrotic cell death (Figure 5b). 

According to these data it is reasonable to suggest that ketol 22 induces apoptosis by activation of 

specific cell mechanisms (e.g., caspase-3 in leukemia–derived U-937 cells) at low concentrations, 

whereas it is responsible for general cytotoxicity at higher concentrations. Further studies are 

necessary to evaluate the pro-apoptotic activity of active diatom oxylipins that inspired the synthesis of 

compound 22. 

Inhibition of cell division, apoptotic and necrotic cell degradations by other Michael acceptors, such 

as the model short chain aldehyde 2E,4E-decadienal, have already been reported in experiments 

performed in vitro and in vivo [14,20–22]. On the contrary, studies on non-volatile oxylipin activity are 
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still scarce. In this context, the ketol 22 could be used as a model compound to unravel the molecular 

mechanisms of oxylipin action in different biological systems. 

3. Experimental Section 

1D- and 2D-NMR spectra were recorded on a Bruker Avance-400 (400.13 MHz) and on a Bruker 

DRX-600 equipped with a TXI CryoProbe in CDCl3 and C6D6 (δ values are referred to CHCl3 and 

C6HD5 at 7.26 and 7.16 ppm, respectively) and 
13

C NMR spectra were recorded on a Bruker DPX-300 

(75.47 MHz) (δ values are referred to CDCl3 and C6D6 at 77.0 and 128.0 ppm respectively).  

HRESI
+
-MS was measured on a Micromass Q-TOF micro. TLC plates (Kieselgel 60 F254) and silica 

gel powder (Kieselgel 60, 0.063–0.200 mm) were from Merck (Merck and Co., Darmstadt, Germany). 

All the reagents were purchased from Sigma-Aldrich (Milan, Italy) and used without any  

further purification. 

All the synthetic intermediates were characterized by MS and NMR analysis. 

3.1. Chemical Synthesis of Oxylipin Analogues 

Compounds 11a and 11b: Following the procedure of Salvador et al. [17] oleic acid methylester 

(10, 1g, 3.5 mmol) was dissolved in acetonitrile (18 mL) under argon; copper (I) iodide (6.8 mg,  

0.035 mmol) and t-butylhydroperoxide (4.16 mL, 23 mmol) were added; the reaction mixture was 

stirred at 50 °C for 20 h. Subsequently the solution was poured into sodium sulfite solution (10% aq.) 

and extracted with diethyl ether; the extract was washed with aq. saturated solution of NaHCO3, brine 

and water, dried (MgSO4), evaporated to dryness and was purified by silica-gel column using a 

gradient of petroleum ether and diethylether to give 11 as a mixture of regioisomers (140 mg,  

0.45 mmol, 13%); Rf (Petroleum ether/diethyl ether 7:3) = 0.53; 
1
H-NMR (400 MHz, C6D6):  

δ = 6.66 (dt, J = 15.7, 6.4 Hz, 1H), 6.01 (bd, J = 15.7 Hz, 1H), 3.38 (s, 3H; OCH3), 2.29 (t, J = 7.4, 

2H), 2.08 (t, J = 7.4 Hz, 2H; H22), 1.81 (m, 2H), 1.54 (m, 2H), 1.32-1.15 (m, 20H), 0.89 (t, J = 6.5, 

3H; H318); UV max (MeOH) 219 nm (ε = 4401); HRMS (ESI
+
): m/z calcd for C19H34O3Na: 333.2406; 

found: 333.2411; part of mixture 11 (10 mg) was purified on direct-phase HPLC (n-hexane/AcOEt 

92/8, flow rate 2 mL/min) to afford 11a (4 mg) and 11b (3 mg). The compounds were characterized by 

NMR, and in particular 2D-TOCSY, was diagnostic to distinguish two spin systems. 

Mixture 12: mixture 11 (70 mg, 0.23 mmol) was dissolved in fresh distilled THF (1.0 mL) and  

0.17 mL of diisobutylaluminium hydride solution in THF (1M) were drop-wise added at 0 °C and the 

mixture was stirred at room temperature for 1 h and after was partitioned between water and 

diethylether; the organic phase was purified by silica-gel column using a gradient of petroleum ether 

and diethylether to give 12 (22 mg, 0.074 mmol, 32%); Rf (Petroleum ether/diethyl ether 7:3) = 0.22; 
1
H-NMR (400 MHz, C6D6): δ = 5.50 (dd, J = 15.9, 6.0 Hz, 1H), 5.44 (dt, J = 15.9, 5.5 Hz, 1H),  

3.94 (m, 1H), 3.38 (s, 3H,OCH3), 2.10 (t, J = 7.1 Hz, 2H; H22), 1.95 (m, 2H), 1.69–1.25 (m, 22H),  

0.90 (t, J = 6.6, 3H; H318). HRMS (ESI
+
): m/z calculated for C19H36O3Na: 335.2512; found: 335.2517. 

Mixture 13: mixture 12 (20 mg, 0.067 mmol) was dissolved in anhydrous dichloromethane (5 mL) 

and 150 mg of 3-chloroperoxybenzoic acid (MCPBA, purity ≤ 77%) dissolved in 3 mL of anhydrous 

dichloromethane was added drop-wise at 0 °C; the mixture was stirred for 30 min and purified by  
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silica-gel column using a gradient of petroleum ether and diethylether to give 13 as a mixture of 

regioisomers (18 mg, 0.054 mmol, 80%); Rf (Petroleum ether/diethyl ether 6/4) = 0.1; 
1
H-NMR  

(400 MHz, C6D6): δ = 3.36 (s, 3H; OCH3), 3.29 (m, 1H), 2.73 (m, 1H), 2.54(m, 1H), 2.09 (t,  

J = 7.5 Hz, 2H; H22), 1.73–1.20 (m, 24H), 0.90 (t, J = 6.2, 3H; H318). HRMS (ESI
+
): m/z calcd for 

C19H36O4Na: 351.2512; found: 351.2507. 

Mixture of Compounds 15a and 15b: Mixture 11 (70 mg, 0.23 mmol), N,N-dimethylaminopyridine 

(3.1 mg, 0.025 mmol), triethylamine (0.051 g, 0.51 mmol) and acetic anhydride (0.126 g, 1.26 mmol) 

were stirred for 18 h at 70 °C; the mixture was partitioned between diethylether and ammonium 

bicarbonate (10%) and the organic phase was purified by silica-gel column using a gradient of 

petroleum ether/diethylether to obtain the acetate intermediate 14 [18], that was dissolved in methanol 

(0.5 mL) and sodium bicarbonate (saturated) buffer solution (0.5 mL) of Oxone
®
 (0.052 mmol); after 

stirring at 25 °C for 7 h, methanol (0.5 mL), water (0.5 mL) and oxone (0.052 mmol) were added and 

the mixture was kept under stirring overnight; after partition between water and chloroform, the 

organic phase was purified by silica-gel column using a gradient of petroleum ether and diethylether to 

give 15 as a mixture of regioisomers (9 mg, 0.0276 mmol, 12%); Rf (Petroleum ether/diethyl ether  

6/4) = 0.1; 
1
H-NMR (400 MHz, C6D6): δ = 6.64 (dd, J = 15.7, 4.5 Hz, 1H), 6.23 (dd, J = 15.7, 1.4 Hz, 

1H), 3.79 (m, 1H), 3.39 (s, 3H; OCH3), 2.28 (t, J = 7.2 Hz, 2H), 2.06 (t, J = 7.2 Hz, 2H; H2), 1.69 (m, 

2H), 1.51 (m, 2H), 1.30-1.11 (m, 16H), 0.89 (t, J = 6.2, 3H; H318); 
13

C-NMR (100MHz, C6D6):  

δ = 199.2 (C), 147.2 (CH), 128.0 (CH), 70.9 (CH), 51.0 (OCH3), 41.03 (CH2), 36.7 (CH2), 33.9 (CH2), 

32.1 (CH2), 30.3 (CH2), 29.8 (CH2), 29.6 (CH2), 29.1 (CH2), 25.1 (2 CH2), 24.4 (CH2), 23.0 (CH2), 

14.3 (CH3). UV max (MeOH) 219 nm (ε = 1570); HRMS (ESI
+
): m/z calcd for C19H34O4Na: 349.2355; 

found: 349.2359. Mixture 15 was purified on reverse-phase HPLC (methanol/water gradient 6/4 until 

9/1, flow rate 2.5 mL/min) to afford 15a (3 mg) and 15b (5 mg). 

Compound 18: Dimethyl 2-oxoheptylphosphonate (17, 2.67 g, 12 mmol), N,N-diisopropylethylamine 

(1.29 g, 10 mmol) and octanal (16, 1.28 g, 10 mmol) were added to a solution of lithium chloride  

(0.50 g, 12 mmol) in acetonitrile (120 mL) under argon; after stirring for 3 h the reaction mixture was 

evaporated and purified by silica-gel column using a gradient of petroleum ether/diethylether gradient 

to give 18 (2.01 g, 9.1 mmol, 91%) [23]: Rf (Petroleum ether/diethyl ether 95:5) = 0.52; 
1
H-NMR  

(400 MHz, C6D6): δ = 6.62 (dt, J = 15.7, 6.7 Hz, 1H; H6), 5.93 (bd, J = 15.7 Hz, 1H; H7), 2.29 (t,  

J = 7.4, 2H; H29), 1.99 (m, 2H; H25), 1.52 (m, 2H), 1.30–1.15 (m, 14H), 0.81 (t, J = 6.2, 6H; H31, 

H315 ); 
13

C-NMR (100MHz, C6D6): δ = 198.3 (C8, C), 145.9 (C6, CH), 130.8 (C7, CH), 40.1 (C9, 

CH2), 32.6 (CH2), 32.1 (2 CH2), 29.6 (2 CH2), 29.5 (CH2), 24.2 (CH2), 23.0 (2 CH2), 14.3 (2 CH3). 

HRMS (ESI
+
): m/z calcd for C15H28ONa: 247.2038; found: 247.2033. 

Compound 19: Ketone 18 (0.06 g, 0.25 mmol) was dissolved in fresh distilled tetrahydrofurane  

(1 mL) and 0.150 mL of diisobutylaluminium hydride solution in THF (1 M) were drop-wise added  

at −5 °C; after 1 h of stirring, other 0.015 mL of DIBAL solution in THF (1 M) were added; after 1 h 

the mixture was partitioned between water and diethylether; the organic phase was purified by  

silica-gel column using a gradient of petroleum ether and diethylether to give 19 (0.02 g, 0.08 mmol, 

33%); Rf (Petroleum ether/diethyl ether 95:5) = 0.12; 
1
H-NMR (400 MHz, C6D6): δ = 5.54 (dt,  

J = 15.5, 6.4 Hz, 1H; H8), 5.43 (dd, J = 15.5, 6.2 Hz, 1H; H7), 3.94 (m, 1H; H6), 1.99 (m, 2H; H29), 

1.55–1.20. (m, 18H), 0.89 (t, J = 6.4, 6H; H31, H315 ); 
13

C-NMR (100MHz, C6D6): δ = 134.2 (CH), 
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131.2 (CH), 73.0 (C6, CH) 37.9 (CH2), 32.6 (CH2), 32.3 (2 CH2), 30.0 (CH2), 29.8 (CH2), 29.5 (CH2), 

25.6 (CH2), 23.1 (2 CH2), 14.3 (2 CH3). 

UV max (MeOH) 220 nm (ε = 1295); HRMS (ESI): m/z calcd for C15H30ONa: 249.2195;  

found: 249.2199. 

Compound 20: Alcohol 19 (20 mg, 0.08 mmol) was dissolved in anhydrous dichloromethane  

(1.5 mL) and 3-chloroperoxybenzoic acid (50 mg) dissolved in 1 mL of anhydrous dichloromethane 

was added drop-wise at 0 °C; the mixture was stirred for 30 min and purified by silica-gel column 

using a gradient of petroleum ether and diethylether to give 20 (18 mg, 0.074 mmol, 92%);  

Rf (Petroleum ether/diethyl ether 8/2) = 0.25; 
1
H-NMR (400 MHz, C6D6): δ = 3.29 (m, 1H), 2.73 (m, 

1H), 2.54 (m, 1H), 1.62-1.20 (m, 20H), 0.88 (t, J = 6.7, 6H; H31, H315). HRMS (ESI
+
): m/z calcd for 

C15H30O2Na: 265.2144; found: 265.2141. 

Compound 22: Ketone 18 (0.97 g, 4.4 mmol), N,N-dimethylaminopyridine (58 mg, 0.48 mmol), 

triethylamine (0.98 g, 9.7 mmol) and acetic anhydride (2.4 g, 24 mmol) were stirred for 18 h at 70 °C; 

the mixture was partitioned between diethylether and ammonium bicarbonate (10%) and the organic 

phase was purified by silica-gel column using a gradient of petroleum ether/diethylether to obtain the 

acetate intermediate 21, (0.44 g, 1.654 mmol) that was dissolved in methanol (3 mL) and sodium 

bicarbonate (saturated) buffer solution (2 mL) of oxone (1 mmol); after stirring at 25 °C for 7 h, 

methanol (2 mL), water (2 mL) and oxone (1 mmol) were added and the mixture was kept under 

stirring overnight; after partition between water and chloroform, the organic phase was purified by 

silica-gel column using a gradient of petroleum ether and diethylether to give 22 (0.120 g, 0.5 mmol, 

10%) [18]. Rf (Petroleum ether/diethyl ether 95:5) = 0.1; 
1
H-NMR (400 MHz, C6D6): δ = 6.68  

(dd, J = 15.6, 5.3 Hz, 1H; H8), 6.25 (dd, J = 15.6, 1.2 Hz, 1H; H7), 3.86 (m, 1H; H9), 2.25 (t,  

J = 7.2 Hz, 2H; H25), 1.62 (m, 2H), 1.35-1.18 (m, 16H), 0.90 (t, J = 6.4, 6H; H31, H315 ); 
13

C-NMR 

(100MHz, C6D6): δ = 199.0 (C6, C), 147.6 (C8, CH), 128.4 (C7, CH), 71.1 (C9, CH) 40.9 (C5, CH2), 

37.0 (CH2), 32.0 (CH2), 31.7 (CH2), 29.5 (CH2), 25.5 (CH2), 24.0 (CH2), 22.9 (2 CH2), 14.2 (2 CH3). 

UV max (MeOH) 219 nm (ε = 12437); HRMS (ESI
+
): m/z calcd for C15H28O2Na: 263.1987;  

found: 263.1982. 

Compound 24: Starting from trans-2-octenal (23, 1 g, 8 mmol) and following the same procedure 

to get 18, compound 24 (1.60 g, 7.2 mmol, 91%) was obtained; Rf (Petroleum ether/diethyl ether 95:5) 

= 0.42; 
1
H-NMR (400 MHz, C6D6): δ = 7.10 (dd, J = 15.5, 10.6 Hz, 1H; H8), 5.99 (d, J = 15.5 Hz, 1H; 

H7), 5.96 (dd, J = 15.3, 10.6 Hz, 1H; H9), 5.82 (dt, J = 15.3, 6.9 Hz, 1H; H10), 2.31 (t, J = 7.2 Hz, 2H; 

H25), 1.94 (m, 2H; H211), 1.61 (m, 2H), 1.29–1.13 (m, 10H), 0.88 (t, J = 6.8 Hz, 6H; H315, H31);  
13

C-NMR (100MHz, C6D6): δ = 198.8 (C6, C), 144.6 (CH), 142.1 (CH), 129.5 (CH), 128.6 (CH),  

40.9 (CH2), 33.3 (CH2), 31.9 (CH2), 31.7 (CH2), 28.8 (CH2), 24.3 (CH2), 22.9 (CH2), 22.8 (CH2), 14.2 

(CH3), 14.2 (CH3). 

UV max (MeOH) 264 nm (ε = 1469); HRMS (ESI
+
): m/z calcd for C15H26ONa: 245.1881;  

found: 245.1883. 

Compound 25: Unsaturated ketone 24 (0.80 g, 3.6 mmol) was dissolved in fresh distilled THF  

(8.0 mL) and and 2.3 mL of diisobutylaluminium hydride solution in THF (1 M) were added drop-wise 

at −5 °C; the mixture was stirred at room temperature for 1 h and after was partitioned between water 
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and diethylether; the organic phase was purified by silica-gel column using a gradient of petroleum 

ether and diethylether to give 25 (0.39 g, 1.7 mmol, 47%); Rf (Petroleum ether/diethyl ether  

95:5) = 0.16; 
1
H-NMR (400 MHz, C6D6): δ = 6.23–6.00 (m, 2H), 5.69–5.00 (m, 2H), 3.95 (m, 1H; 

H6), 2.00 (m, 2H; H211), 1.56-1.22 (m, 14H), 0.87 (t, J = 6.8 Hz, 6H; H31, H315); 
13

C-NMR 

(100MHz, C6D6): δ = 134.8 (CH), 134.7 (CH), 130.8 (CH), 72.8 (C6, CH), 37.8 (CH2), 30.1 (CH2), 

32.4 (2 CH2), 29.8 (2 CH2), 23.2 (2 CH2), 14.3 (2 CH3). 

UV max (MeOH) 230 nm (ε = 9043); HRMS (ESI
+
): m/z calcd for C15H28ONa: 247.2038;  

found: 247.2032. 

3.2. Sea Urchin Gamete Collection 

Sea urchins Paracentrotus lividus (Lamarck) were collected during the breeding season by SCUBA 

diving in the Gulf of Naples and transported in an insulated box to the laboratory within one hour. 

Living organisms were injected with 0.2 mL of 0.2 M acetylcholine (Sigma-Aldrich, Milan, Italy) to 

induce gamete ejection. Eggs were obtained from at least four females collected separately in beakers 

containing 0.22 µm filtered sea water (FSW) in which they were allowed to settle. Egg suspensions 

were then washed three times and diluted with FSW to a final concentration of 3000 eggs mL
−1

. Sperm 

were collected dry as a mix from three males, stocked at 4 °C and diluted 1:10,000 just prior to 

fertilization. One hundred microliters of sperm suspension were added to 100 mL FSW containing egg 

suspension. Five minutes after sperm addition, the eggs were checked for successful fertilization and 

excess sperm were removed by washing the eggs with FSW. 

3.3. Antimitotic Assay on Sea Urchin Embryos 

Oxylipins were tested on sea urchin embryos assessing the effect on cell division (cleavage). 

Approximately 400 embryos were transferred soon after fertilization envelope elevation to tissue 

culture wells containing increasing concentrations of each oxylipin in 4 mL FSW. All concentrations 

were tested at least on three egg clutches collected from different females. Additional group of eggs 

from each female were used as controls. Embryos were kept at 20 °C in a controlled temperature 

chamber under 12:12 light:dark cycle. Effect of molecules on the first mitotic division was assessed 

circa 90 minutes after fertilization, when almost 100% of control embryos were at the two-blastomere 

stage. Cleavage inhibition was assessed by examining at least 200 embryos for each treatment under a 

light microscope (Axiovert 135TV, Carl Zeiss, Jena, Germany). Graphics from the experimental data 

and IC50 values were generated using the Prism software (GraphPad Software Inc., La Jolla, CA, USA). 

3.4. Tunel Fluorescence Labeling (TUNEL) 

Fertilization occurred in FSW with 1 mmol L
−1

 ATA (3-amino-1,2,4-triazole; Sigma-Aldrich, 

Milan, Italy) for immuno-fluorescence staining [14]. 

P. lividus embryos were fertilized in the presence of 1 mmol L
−1

 ATA (3-amino-1,2,4-triazole; 

Sigma-Aldrich, Milan, Italy) before incubation (see above) with 22 at 10 µM. After 90 min sea urchin 

embryos and controls were gently forced through a Pasteur pipette, to remove the fertilization envelop, 

rinsed three times in FSW, and fixed in paraformaldehyde 4% (Sigma-Aldrich, Milan, Italy) in sea 
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water for 2 h at room temperature. Fixed sea urchin embryos were washed several times in  

10 mM phosphate saline buffer at pH 7.4 (PBS) to remove paraformaldehyde and then incubated for 

30 min, at 4 °C, in a solution of 0.1% Triton X-100 and 0.1% sodium citrate. Apoptosis was assessed 

using TdT-mediated dUTP nick end labeling (TUNEL) (Roche Diagnostics, Milano, Italy) according 

to manufacturer’s instructions. After washing in PBS containing 1% bovine albumin serum (BSA, 

Sigma-Aldrich, Milano, Italy), treated samples were incubated at 37 °C for 90 min in TUNEL solution 

in a humidified chamber, in the dark. Control embryos were fixed and stained as described above.  

Whole-mount sea urchin embryos were observed with an inverted confocal laser scanning microscope 

(CLSM) Zeiss-510 equipped with a 25× water immersion objective. Each image was acquired with an 

Argon 488 nm wavelength (λ) laser to detect TUNEL fluorescence (green). 

3.5. Cell Culture and Cell Viability Assay 

The human myelomonocytic cell line U937 was cultured in Roswell Park Medium Institute (RPMI) 

medium supplemented with 10%, fetal bovine serum and 1% penicillin/streptomycin at 37 °C in a 

humidified atmosphere containing 5% CO2. Cell viability assay was performed using neutral  

red viability test as described in [24]. RPMI medium, L-glutamine 200 mM, penicillin  

5000 IU/mL/streptomycin 5000 µg/mL and PBS (phosphate buffer saline) tablets were purchased from 

Life Technologies (Monza, Italy); fetal bovine serum from Cambrex (Milano, Italy). Neutral red 

solution (0.33% v/v), trypan blue solution (0.4% v/v), propidium iodide were from Sigma-Aldrich  

(Milano, Italy). 

3.6. Annexin V Assay 

Phosphatidylserine (PS) exposure was measured using the binding of fluorescein-isothiocyanate-labeled 

(FITC) Annexin-V to PS, as indicated in the manufacturer’s protocol (Enzo Life Sciences; Vinci, 

Florence, Italy). Briefly, cells (2 × 10
6
 per mL) were incubated in the presence of the tested 

compounds for the indicated times. Cells were collected and centrifuged at 400× g for 5 min, washed 

in PBS and suspended in binding buffer (10 mM HEPES, pH 7.4; 140 mM NaCl; 2.5 mM CaCl2). 

Annexin V FITC (2 µL) and propidium iodide (25 µg/mL) were added for 10 min in the dark, at room 

temperature and analyzed with flow cytometer (FACS-Calibur; Becton Dickinson, Mountain View, 

CA, USA) equipped with argon laser (488 nm) and 530 and 585 nm filters for FITC and 

phycoerythrin, respectively. Low fluorescence debris and necrotic cells, permeable to propidium 

iodide, were gated out before analysis. Data were analyzed using CellQuest software (Becton 

Dickinson, Milano, Italy). 

3.7. Caspase Assay 

To determine caspase-3 enzymatic activity, 2 × 10
6
 cells were incubated in the presence of the 

tested compounds for 6 or 24 h. Cells were collected and centrifuged at 400× g for 5 min, washed 

twice in PBS and suspended in lysis buffer (10 mM HEPES, pH 7.4; 2 mM ethylenediaminetetracetic 

acid; 0.1% [3-(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate; 5 mM dithiothreitol; 1 mM 

phenylmethylsulfonyl fluoride; 10 µg/mL pepstatin-A; 10 µg/mL apronitin; 20 µg/mL leupeptin). Cell 
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extracts (10 µg) were added to reaction buffer containing the conjugated amino-4-trifluoromethyl 

coumarin (AFC) substrates: benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-AFC  

(ZDEVD-AFC). Samples were incubated at 37 °C for 30 min. Upon proteolytic cleavage of the 

caspase-3 substrate, the free fluorochrome AFC was detected by a spectrofluorometer multiplate reader 

(FL-500; Bio-Tek Instruments, Milano, Italy) with excitation 395 ± 20 nm and emission at  

530 ± 20 nm. To quantify enzymatic activity, we calculated an AFC standard curve. Caspase-3 specific 

activity was determined as nmol of AFC produced per min per µg proteins at 37 °C using saturating 

substrate concentrations (50 µM) [24]. Fold increase in caspase-3 was determined by direct 

comparison with the level of 0.1% DMSO-treated cells. 

4. Conclusions 

Biological organisms benefit from the ability to develop and use chemicals to communicate with 

each other, to defend themselves from predators and pathogens, to prey and to mate. Apart from their 

ecological and physiological role, these products have a promising potential as evolutionary 

preselected lead structures for biotechnological applications. It is therefore not surprising that in this 

work eco-physiological considerations on diatom oxylipins are demonstrated to be predictive for the 

synthesis of a novel compound with apoptotic activity against tumor cell lines. Although  

compound 22, as it is, is not sufficiently potent to suggest further evaluation for antitumor activity, its 

chemical structure is easy to modify in order to improve pharmacological and biological activity. In 

this sense, the present study supports the possibility of replacing expensive high-throughput screening 

platforms for drug discovery using chemical synthesis inspired by bioactive secondary metabolites. 
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