Supplementary Information

Table S1. Fatty acid composition of *Ostreococcus RCC809* (*O. RCC809*) and *F. cylindrus* cultures in stationary phase. Values are the average of three independent experiments (±standard deviation). ND—not detected.

Figure S1. Multiple sequence alignment of Ost809D6 with Δ 6-desaturases from *Mantoniella squamata* (*M.squaD6*, CAQ30479.1) [1], *Micromonas pusilla* (*M.pusD6*, XP_002502445.1) [2], *Ostreococcus lucimarinus* (*O.lucD6*, DAA34893.1) [3] and *Ostreococcus tauri* (*O.tauriD6*, XP_003082578.1) [4]. Conserved histidine boxes are shaded in grey. Conserved amino acid residues are indicated with an asterisk. The position of conserved cytochrome b_5 domain motif is marked with a solid line. The alignment was obtained using CLUSTAL W.

Figure S2. Multiple sequence alignment of Ost809D4 with Δ 4-desaturases from *Pavlova lutheri* (*P.lutD4*, AAQ98793.1) and *Pavlova salina* (*P.salD4*, AY926606.1) [4], *Isochrysis galbana* (*I.galD4*, AY630574) [5], *Ostreococcus lucimarinus* (*O.lucD4*, XM_001415706.1) [6], and *Emiliania huxleyi* (*E.huxD4*, [7]). Conserved histidine boxes are shaded in grey. Conserved amino acid residues are indicated with an asterisk. The position of conserved cytochrome b_5 domain motif is marked with a solid line. The alignment was obtained using CLUSTAL W. A related Δ 4-desaturase from *Thalassiosira pseudonana* (TpD4, AAX14506.1) [8] was omitted from this line-up on the basis of poor alignment.

Figure S3. Multiple sequence alignment of FcElo6 with Δ 6-elongasse from *Thalassiosira pseudonana* (TpElo6, AY591337.1) and *Ostreococcus tauri* (OtElo6, AY591335) [5]. Conserved amino acid residues are indicated with an asterisk, whereas conserved motifs are framed. The alignment was obtained using CLUSTAL W.

Figure S4. Codon-optimised nucleotide sequences. (A), Ost 809D6; (B), Ost809D4; (C) Fc ELO6.

	Composition (Molar %) ±SD		
Fatty Acid	O. RCC809	F. cylindrus	
16:0	20.12 ± 0.6	12.1 ± 0.2	
16:1 <i>n</i> -7	18.1 ± 0.3	24.5 ± 0.1	
16:4 <i>n</i> -3	$5.08\ \pm 0.4$	ND	
18:0	1.24 ± 0.5	2.4 ± 0.3	
18:1 <i>n-</i> 9	8.17 ± 0.2	ND	
18:1 <i>n</i> -7	8.03 ± 0.1	ND	
LA	9.12 ± 0.2	$0.7\ \pm 0.3$	
GLA	3.29 ± 0.3	1 ± 0.4	
ALA	3.98 ± 0.4	0.8 ± 0.3	
SDA	19.13 ± 0.6	5.7 ± 0.5	
20:2 <i>n</i> -6	$0.65\ \pm 0.4$	1 ± 0.2	
20:4 <i>n</i> -3	ND	7.4 ± 0.1	
EPA	1.26 ± 0.4	31.4 ± 0.3	
DHA	$1.83\ \pm 0.5$	2.5 ± 0.1	
24:0	ND	1.4 ± 0.2	

Table S1. Fatty acid composition of *Ostreococcus RCC809* (*O. RCC809*) and *F. cylindrus* cultures in stationary phase. Values are the average of three independent experiments (±standard deviation). ND—not detected.

Figure S1. Multiple sequence alignment of Ost809D6 with Δ 6-desaturases from *Mantoniella squamata* (*M.squaD6*, CAQ30479.1) [1], *Micromonas pusilla* (*M.pusD6*, XP_002502445.1) [2], *Ostreococcus lucimarinus* (*O.lucD6*, DAA34893.1) [3] and *Ostreococcus tauri* (*O.tauriD6*, XP_003082578.1) [4]. Conserved histidine boxes are shaded in grey. Conserved amino acid residues are indicated with an asterisk. The position of conserved cytochrome b_5 domain motif is marked with a solid line. The alignment was obtained using CLUSTAL W.

Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	MRVETEDDNVPTVTVGLSEESDGMKGARNPGARAWKSTLEP MCVETTEGTSRTMANERTSSSSSLSEGGTPTVTVGMGSE-DAGKKTRNASVTAWTKELEP MCVETENNDGIPTVEIAFDGERERAEANVKLSAEKMEP MCVETENNDGIPTVEIAFDGERERAEANVKLSAEKMEP MCVETENNDGIPTVEIAFDGERERAEANVKLSAEKMEP MCVETENNDGIPTVEIAFDGERERAEANVKLSAEKMEP
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	HAVAKSFDRRWVKVDGVEYDVTDFKHPGGSVIYYMLSNTGADATEAFKEFHYRSKKARKA HAIAKTFERRYVTIEGVEYDVTDFKHPGGSVIYYMLSNTGADATEAFKEFHYRSKKARKA AALAKTFARRYVVIEGVEYDVTDFKHPGGTVIFYALSNTGADATEAFKEFHHRSRKARKA HKLAQTFDTRWVRVGDVEYDVTNFKHPGGSVIFYMLSNTGADATEAFNEFHMRSPKAWKM HKLAQTFEQRWVRIDDVEYDVTNFKHPGGSVIFYMLSNTGADATEAFKEFHMRSPKAWKM :*::* *:* : .******:******
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	LAAL PQRE PEDASPVEDANMLKD FAKWRKDLEREG FFKPS PAHVAYRFAELAAMFALG LAALPHKPVDAATREP IEDEAMLKD FAQWRKELEREG FFKPS PAHVAYRFAELAAMFALG LAALPSRPAKTAKVDDAEMLQD FAKWRKELERDG FFKPS PAHVAYRFAELAAMFALG LKALPNRPAETPRSQ-DPDG PMLED FAKWRAQLEKEG FFKPS IAHVAYRIAELAAMFALG LKALPQRPAETPRSA-DPDA PMLQD FARWRAELEKEG FFEPSRLHLAYRCLELCATFALG * *** : . * **:*** :*** *:*** *:***
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	TALMYARWHATSVFVTACFFGARCGWVQHEGGHSSLTGSIWWDKRIQAFTAGFGLASSGDTALMHARWHVASVIVYSCFFGARCGWVQHEGGHNSLTGNIWWDKRIQAFAAGFGLASSGDTYLMYARYVVSSVLVYACFFGARCGWVQHEGGHSSLTGNIWWDKRIQAFTAGFGLAGSGDCYIMSLGYPVVASIVFGAFFGARCGWVQHEGGHNSLTGNIWLDKRIQAATCGFGLSTSGDTFLMYIGRPLLASIVYGAFFGARCGWVQHEGGHNSLTGSIWWDKRIQAATCGFGLSTSGD:* <td:< td=""></td:<>
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	MWNLMHNKHHAT PQKVRHDMDLDTT PAVAFFNTAVEENRPRKFSKLWLRVQAWT FVPVTS MWNNMHNKHHAT PQKVRHDMDLDTT PTVAFFNSAVEENRPRGFSKLWLRLQAWT FVPVTS MWNSMHNKHHAT PQKVRHDMDLDTT PAVAFFNTAVEDNRPRGFSKYWLRLQAWT FVPVTS MWNQMHNKHHAT PQKVRHDMDLDTT PAVAFFCTAVEDNRPRGFSRAWSRAQAWT FVPVTS MWNQMHNKHHAT PQKVRHDMDLDTT PAVAFFDTAVEDNRPRGFSKTWARAQAWT FVPITS *** *********************************
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	-GLVLLAWMYLLHPRHIARRKNYEEAAWIVAAHVIRTSVIKAVTGYSWITCYGLFLSTMW -GMVLFFWMFVLHPRNALRRKSFEEAAWMFSAHVIRTAVIKAVTGYSWIASYGLFAATMW -GLVLLFWMFFLHPSKALKGGKYEELVWMLAAHVIRTWTIKAVTGFTAMQSYGLFLATSW GLLVQMFWIYVLHPRQVARKKNYEEASWMILSHVLRTATIKYAGGYSWPVAYLWFSFGNW GVLVQMFWIYVLHPRQVLRKKNYEEASWMFLSHVVRTAVIKLALGCGTAEAYGWFWVGNW :* : *::.*** : : .:** *: :**:** .** .* .* .* *
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	VSGCYLFAHFSTSHTHLDVVPSDKHLSWVRYAVDHTIDIDPSKSVVNWLMGYLNCQVIHH ASGCYLFAHFSTSHTHLDVVPSDKHLSWVRYAVDHTIDINPNNSVVNWLMGYLNCQVIHH VSGCYLFAHFSTSHTHLDVVPADEHLSWVRYAVDHTIDIDPSQGWVNWLMGYLNCQVIHH IAYMYLFAHFSTSHTHLEVVPSDKHISWVNYAVDHTVDIDPSKGYVNWLMGYLNCQVIHH IAYMYLFAHFSTSHTHLDVVPSDKHISWVNYAVDHTVDINPRNSIVNWLMGYLNCQVIHH : *****************
Ost809D6 O.lucD6 O.tauriD6 M.squaD6 M.pusD6	LFPDMPQFRQPEVSRRFVSFAKKWNLNYKVMSYYGAWKATFGNLNEVGKHYYIQGSQITK LFPDMPQFRQPEVSRRFVPFAKKWNLNYKVLTYYGAWKATFGNLNDVGKHYVHGSQRVK LFPSMPQFRQPEVSRRFVAFAKKWNLNYKVMTYAGAWKATLGNLDNVGKHYVHGQHSGK LFPDMPQFRQPEVSRRFVAFAKKWNLNYKVLTYYGAWKATFTNLDTVGQHYKHGKAHAH LFPDMPQFRQPEVSRRFVAFAEKWNLNYKVLTYYGAWKATFSNLDRVGQHYVNGKAKAH

Figure S2. Multiple sequence alignment of Ost809D4 with Δ 4-desaturases from *Pavlova* lutheri (*P.lutD4*, AAQ98793.1) and *Pavlova salina* (*P.salD4*, AY926606.1) [4], *Isochrysis* galbana (*I.galD4*, AY630574) [5], Ostreococcus lucimarinus (O.lucD4, XM_001415706.1) [6] and Emiliania huxleyi (E.huxD4, [7]). Conserved histidine boxes are shaded in grey. Conserved amino acid residues are indicated with an asterisk. The position of conserved cytochrome b_5 domain motif is marked with a solid line. The alignment was obtained using CLUSTAL W. A related Δ 4-desaturase from *Thalassiosira* pseudonana (TpD4, AAX14506.1) [8] was omitted from this line-up on the basis of poor alignment.

Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	MPTTRSRARVTTPPRETPTRANTVAALDPERKYTRIRGVVYD <u>VTDF</u> ASRHPGGAQLL MPSAARSRASKRANATTDVATTAPEATLDPTRAYTRYRGVVYDVTEFQHRHPGGAQLL MPPSAASEGGVAELRAAEVASYTRKAVDERPDLTIVGDAVYDAKAFRDEHPGGAHFV MPPSAAKQMGASTGVHAGVTDSSAFTRKDVADRPDLTIVGDSVYDAKAFRSEHPGGAHFV MCNAAQVETQALRAKEAAKPTWTKIHGRTVDVETFRHPGGN-IL MGGAGASEAERPKWTTIHGRHVDVSKFRHPGGN-II * * * * * * **** ::
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	SLCVGRDATILVESHHLRPEVVQKYLKTLPVVEGAAGAFGPEETFPKPLDSDLYRKIQGR SLCVGRDATILIESHHLRPEVVRKYMKTLPVVEGAAGAFGKEETFPKPLDSAVYRAIQRR SLFGGRDATEAFMEYHRRAWPKARMSKFFVGSLDASEKPTQADSAYLRLCAEVNALLPKG SLFGGRDATEAFMEYHRRAWPKSRMSRFHVGSLASTEEPVAADEGYLQLCARIAKMVPSV DLFLGMDATTAFETFHGHHKGAWKMLKTLPEKEVAAADIPAQKEEHVAEMTRLMASWRER ELFYGMDSTSAFEQFHGHHKGAWKMLKALPTKEVDPADVPQQPQEHVAEMTRLMTSWRER .* * *:** : : : : : : : : : : : : :
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	VRKEIVEPLKMTRGREPHGRGWCVLDAGVVLAFFAFALGVYWKTPTVATGCLLGLAGYWS VRDEVVEPMKAKSGREAHGRGGCVVDAGVVVLTFVAAMVAYWRAPSALTGCALGLAGYWS SGGFAPPSYWLKAAALVVAAVSIEGYMLLRGKTLLLSVFLGLVFAWI SSGFAPASYWVKAGLILGSAIALEAYMLYAGKRLLPSIVLGWLFALI GLFKPRPVASSIYGLCVIFAIAASVACAPYAPVLAGIAVGTCWAQC GLFKPRPVASGIYGLAVVAAIVACIACAPHAPVLSGIGLGSCWAQC . : *
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	GTGLQHTANHGGLAKSGFWNQFWGWLGNDVAIGKSSVEWRYHHMVSHHSYCNDADLDQDV GTGLQHTANHGGLAKSGFWNQFWGWLGNDVAIGKSSVEWRYHHMVSHHSYCNDADLDQDV GLNIQHDANHGALSRHSVINYCLGYAQDWIGGNMVLWLQEHVVMHHLHTNDVDADPDQ GLNIQHDANHGALSKSASVNLALGLCQDWIGGSMILWLQEHVVMHHLHTNDVDKDPDQ G-FLQHMGGHREWGRTWSFAFQHLFEGLLKGGSASWWRNRHNKHHAKTNVLGEDGD- G-FLQHMGGHREWGVRYSFLLQHFFEGLLKGGSASWWRNRHNKHHAKTNVLGEDGD- * :*** . * . * . * . * * . * *
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	YTALPLLRLDPSQELKWFHRYQAFYAPLMWPMLWLAAQFGDAQNILVDKASPGVEYKGLM YTALPLLRLDPSQELKWFHRYQAFYAPLMWPFLWLAAQVGDAQNILIDRASPGVEYKGLM K-AHGVLRLKPTDGWMPWHALQQLYILPGEAMYAFKLLFLDALELLAWRWE-GEKISPLA K-AHGALRLKPTDAWSPMHWLQHLYLLPGETMYAFKLLFLDISELVMWRWE-GEPISKLA LRTTPFFAWDPTLAKKVPDWSLRTQAFTFLPALGAYVFVFAFTVRKYSVV ** * ::::::::::::::::::::::::::::::::
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	KLEVALYVLGKFLHFSLLLGVPAYLHGFANAIVPFIAYGAFGSFVLCWFFIVSHNLEALT KNEIALYLLGKVLHFGLLLGVPAYIHGLSNVIVPFLAYGAFGSFVLCWFFIVSHNLEALT RALFAPAVACKLGFWARFVALPLWLQPTVHTALCICATVCTGSFYLAFFFFISHNFDGVG GYLFMPSLLLKLTFWARFVALPLYLAPSVHTAVCIAATVMTGSFYLAFFFFISHNFEGVA KRLWHEVALMVAHYALFSWALSAAGASLSSGLTFYCTGYAWQGIYLGFFFGLSHFAVERV KKLWHELALMIAHYAMFYYALQLAGASLGSGLAFYCTGYAWQGIYLGFFFGLSHFAVERV : : : : : : : : : : : : : : : : : :
Ost809D4 O.lucD4 P.lutD4 P.salD4 I.galD4 EhuxD4	PINLSKSTKNDWGAWQIETSASWGNGFWSFFSGGLNLQIEHHLFPGCAHNLYP PMNLSKSTKNDWGAWQIETSASWGNSFWSFFSGGLNLQIEHHLFPGCAHNLYP SVGPKGSLPRSATFVQRQVETSSNVGGYWLGVLNGGLNFQIEHHLFPRLHHSYYA SVGPDGSITSMTRGASFLKRQAETSSNVGGPLLATLNGGLNYQIEHHLFPRVHHGFYP PSTATWLESTMMGTVDWGGSSAFCGYLSGFLNIQIEHHMAPQMPMENLR PSTATWLESSMIGTVDWGGSSAFCGYVSGFLNIQIEHHMAPQMPMENLR . * * * * ******

Figure S3. Multiple sequence alignment of FcElo6 with Δ 6-elongasse from *Thalassiosira pseudonana* (TpElo6, AY591337.1) and *Ostreococcus tauri* (OtElo6, AY591335) [5]. Conserved amino acid residues are indicated with an asterisk, whereas conserved motifs are framed. The alignment was obtained using CLUSTAL W.

FcElo6 TpElo6 OtElo6	MDEYKATLESVGDAIIQWADPESQFTGFTKGWFLTDFTS MDAYNAAMDKIGAAIIDWSDPDGKFRADREDWWLCDFRS MSGLRAPNFLHRFWTKWDYAISKVVFTCADSFQWDIGPVSSSTAHLPAIESPTPLVTSLL . : : * : * *
FcElo6 TpElo6 OtElo6	AFSIALVYVLFVIIGSQVMKVLPAIDPYPIKFFYNVSQIMLCAYMTIEACLLAYRNGYTI AITIALIYIAFVILGSAVMQSLPAMDPYPIKFLYNVSQIFLCAYMTVEAGFLAYRNGYTV FYLVTVFLWYGRLTRSSDKKIREPTWLRRFIICHNAFLIVLSLYMCLGCVAQAYQNGYTL :::: : * : : : : * : : : : * : : : : * :
FcElo6 TpElo6 OtElo6	MPCVGYNRDDPAIGNLLWLFYVSKVWDFWDTIFIVLGKKWRDLSFLHVYHHTTIFLFYWL MPCNHFNVNDPPVANLLWLFYISKVWDFWDTIFIVLGKKWRDLSFLHVYHHTTIFLFYWL WG-NEFKATETQLALYIYIFYVSKIYEFVDTYIMLLKNNLRDVSFLHIYHHSTISFIWWI :: :. :. :::**:**::* ** :::* :: **:********
FcElo6 TpElo6 OtElo6	NANVFYDGDIYLTIALNGFIHTVMYTYYFICMHTKDKKTGKSLPIWWKSSLTLLQLFQFI NANVLYDGDIFLTILLNGFIHTVMYTYYFICMHTKDSKTGKSLPIWWKSSLTAFQLLQFT IARRAPGGDAYFSAAL <u>NSWVHVCMYTYY</u> LLSTLIGKEDPKRSNYLWWGRHL <u>TOMOMLO</u> FF *** ::: **.::*. *****:::* :** ** :*::**
FcElo6 TpElo6 OtElo6	TMMSQGLYLIIFGCESLSIRVTATYVVYILSLFFLFAQFFVASYMQPKKSKTA-ELGTLI IMMSQATYLVFHGCDKVSLRITIVYFVSLLSLFFLFAQFFVQSYMAPKKKKSA FNVLQALYCASFSTYPKFLSKILLVYMMSLLGLFGHFYYSKHIAAAKLQKKQQ : * *

Figure S4. Codon-optimised nucleotide sequences. (A), Ost 809D6; (B), Ost809D4; (C) Fc ELO6.

-1		Α	
T	A'I'	CGTGTGGAAACCGAAGACGATAATGTGCCAACTGTTACTGTGGGATTGTCAGAGGAG	
	61 '	CCGATGGAATGAAGGGAGCAAGGAACCCCGGAGCACGTGCTTGGAAGTCGACGTTGGAG	
	121	CCGCACGCCGTGGCAAAGTCATTCGATCGTAGGTGGGTTAAGGTTGACGGAGTCGAATAC	
	181	GACGTAACTGATTTCAAGCATCCCGGAGGATCAGTTATCTACTATATGCTTTCTAACACC	
	241	GGAGCTGATGCCACTGAGGCTTTCAAGGAATTTCACTATCGTAGTAAGAAGGCCAGGAAG	
	301	GCACTTGCTGCCCTCCCACAACGTGAGCCTGAAGACGCTTCGCCAGTCGAGGATGCCAAT	
	361	ATGCTCAAGGACTTCGCAAAGTGGCGTAAGGATTTGGAGAGGGAAGGATTCTTTAAGCCA	
	421	AGTCCTGCTCACGTGGCCTACCGTTTCGCCGAACTCGCAGCTATGTTTGCTTTGGGAACT	
	481	GCCCTTATGTATGCACGTTGGCATGCTACGTCTGTCTTCGTAACAGCCTGTTTCTTTGGA	
	541	GCAAGGTGTGGATGGGTGCAACACGAGGGAGGACATTCTTCCTTGACCGGATCCATCTGG	
	601	IGGGATAAGCGTATTCAGGCATTCACTGCTGGATTTGGACTTGCCAGTTCGGGAGACATG	
	661	IGGAACCTCATGCACAATAAGCACCATGCAACGCCACAAAAAGTTAGGCATGATATGGAC	
	721	CTCGATACCACTCCTGCAGTGGCTTTCTTTAACACAGCTGTTGAGGAAAATCGTCCTAGG	
	781	AAGTTCTCTAAGTTGTGGCTTCGTGTCCAGGCCTGGACCTTTGTGCCCGTTACTTCCGGA	
	841	TTGGTACTCTTGGCATGGATGTACCTTCTCCACCCGCGTCATATCGCTCGTAGGAAGAAC	
	901	IATGAGGAAGCCGCATGGATTGTGGCTGCCCATGTTATCAGGACCTCCGTCATTAAGGCT	
	961	GTAACGGGATACAGTTGGATCACATGTTATGGACTCTTCTTGTCGACTATGTGGGTCTCA	
	102	GGATGCTACCTCTTCGCTCACTTTTCAACGTCTCACACACTTTGGACGTGGTTCCATC	г
	108	GATAAGCACCTTTCCTGGGTGCGTTACGCCGTTGATCATACCATCGACATTGATCCTTC	С
	114	AAGAGTGTCGTAAACTGGCTCATGGGATATTTGAACTGTCAGGTTATCCACCATTTGTT	С
	120	CCCGACATGCCGCAATTTCGTCAGCCCGAAGTCAGTCGTAGGTTCGTATCGTTTGCCAA	G
	126	AAGTGGAACCTTAATTACAAGGTCATGTCTTACTATGGAGCCTGGAAGGCAACCTTCGGA	A
	132	AATCTCAACGAAGTCGGAAAGCACTACTACATCCAAGGAAGTCAAATCACAAAGAAGAC	G
	138	GTTTAG	

6

Figure S4. Cont.

B

1 ATGCCAACTACTCGTTCTCGTGCTCGTGTTACTACTCCACCTCGTGAAACTCCTACTCGT 61 GCTAATACTGTTGCTGCTTTAGATCCAGAACGTAAATATACACGTATTCGAGGTGTTGTA 121 TATGATGTTACTGATTTTGCTAGTCGACATCCAGGTGGTGCACAATTATTATCTTTATGT 181 GTTGGTCGTGATGCTACAATTTTAGTAGAATCACATCATTTACGACCAGAAGTTGTACAA 241 AAATATTTAAAAACATTACCTGTTGTAGAAGGTGCTGCTGGTGCATTTGGTCCAGAAGAA 301 ACTTTTCCAAAACCTTTAGATAGTGATTTATATCGTAAAATTCAAGGTCGTGTTCGAAAA 421 GTTTTAGATGCTGGTGTTGTATTAGCTTTCTTTGCTTTTGCATTAGGTGTTTATTGGAAA 481 ACACCAACTGTAGCTACTGGTTGTTTATTAGGTTTAGCAGGTTATTGGTCTGGTACAGGT 541 TTACAACATACTGCTAATCATGGTGGTTTAGCAAAATCAGGTTTTTGGAATCAATTTTGG 601 GGTTGGTTAGGAAATGATGTTGCTATTGGTAAATCAAGTGTAGAATGGCGTTATCATCAT 661 ATGGTTTCACATCATAGTTATTGTAATGATGCTGATTTAGATCAAGATGTTTATACAGCA 721 TTACCATTATTACGTTTAGATCCTTCACAAGAATTAAAATGGTTTCATCGTTATCAAGCA 781 TTTTATGCACCTTTAATGTGGCCTATGTTATGGTTAGCTGCACAATTTGGTGATGCTCAA 841 AATATTTTAGTTGATAAAGCAAGTCCAGGTGTAGAATATAAAGGTTTAATGAAATTAGAA 901 GTTGCTTTATATGTATTAGGAAAATTTTTACATTTTTCTTTATTATTAGGTGTTCCTGCA 961 TATTTACATGGTTTTGCTAATGCAATTGTACCATTTATTGCTTATGGTGCATTTGGTTCA 1021 TTTGTTTTATGTTGGTTTTTCATTGTAAGTCATAATTTAGAAGCATTAACACCAATTAAT 1081 TTATCTAAATCAACTAAAAATGATTGGGGTGCTTGGCAAATTGAAACTAGTGCATCTTGG 1141 GGTAATGGTTTTTGGTCATTTTTCTCAGGTGGTTTAAATTTACAAATTGAACATCATTTA 1201 TTTCCTGGTTGTGCTCATAATTTATATCCAAAAATGGTTCCTATTATTAAAGAAGAATGT 1261 GAAAAAGCAGGTGTTACATATACTGGTTATGGTGGTTATTTGGTTTATTACCAATTACT 1321 CGTGATATGTTTGCTTATTTATATAAAATGGGTCGTCAATCTAAAAAATCTGCTTAA

7

Figure S4. Cont.

С

ATGGATGAGTACAAGGCCACTTTGGAGTCAGTAGGAGACGCTATTATTCAATGGGCAGAC
CCCGAGTCACAGTTCACCGGATTCACTAAGGGATGGTTCCTCACCGATTTTACTTCAGCT
TTCTCTATCGCCCTCGTCTACGTATTGTTCGTGATCATTGGATCCCAAGTGATGAAGGTT
CTCCCTGCTATCGACCCATACCCTATCAAGTTCTTTTATAACGTTAGTCAGATCATGTTG
TGTGCCTATATGACCATTGAGGCATGCCTCTTGGCTTACCGTAATGGATATACTATCATG
CCCTGTGTCGGATACAACAGGGATGACCCGGCAATTGGAAATCTTCTCTGGCTTTTCTAT
GTCTCGAAAGTATGGGATTTTTGGGACACGATCTTCATTGTGTTGGGAAAGAAGTGGCGT
CAATTGTCATTTCTTCACGTTTACCACCATACCACTATCTTCCTCTTCTACTGGCTCAAC
GCCAATGTCTTCTACGATGGAGACATCTATTTGACCATTGCACTTAACGGATTTATCCAC
ACGGTAATGTACACATACTACTTCATCTGTATGCATACCAAGGATAAGAAGACTGGAAAG
AGTCTCCCAATCTGGTGGAAGTCTTCCCTCACGTTGCTTCAATTGTTCCAGTTCATCACA
AGGACCACATACGTGGTTTATATTCTTTCTCTCTTTTTTGTTCGCCCAGTTTTTCGTC
ACGGCCACATACGTGGTTTATATTCTTTCTCTCTTTTTTTGTTCGCCCAGTTTTTCGTC

References

- Hoffmann, M.; Wagner, M.; Abbadi, A.; Fulda, M.; Feussner, I. Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J. Biol. Chem. 2008, 283, 22352–22362.
- Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Liu, Q.; Singh, S.P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Delta6-desaturase with omega-3 preference from the marine microalga *Micromonas pusilla*. *Metab. Eng.* 2010, *12*, 233–240.
- Petrie, J.R.; Liu, Q.; Mackenzie, A.; Shrestha, P.; Mansour, M.P.; Robert, S.S.; Frampton, D.F.; Blackburn, S.I.; Nichols, P.D.; Singh, S.P. Isolation and characterization of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. *Mar. Biotechnol.* 2010, *12*, 430–438.
- 4. Domergue, F.; Abbadi, A.; Zähringer, U.; Moreau, H.; Heinz, E. *In vivo* characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga *Ostreococcus tauri. Biochem. J.* **2005**, *389*, 483–490.
- Meyer, A.; Kirsch, H.; Domergue, F.; Abbadi, A.; Sperling, P.; Bauer, J.; Cirpus, P.; Zank, T.K.; Moreau, H.; Roscoe, T.J.; *et al.* Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. *J. Lipid Res.* 2004, 45, 1899–1909.
- Ahman, K.; Heilmann, M.; Feussner, I. Identification of a Δ4-desaturase from microalga Ostreococcus lucimarinus. Eur. J. Lipid Sci. Technol. 2011, 113, 832–840.

- Sayanova, O.; Haslam, R.; Venegas-Calerón, M.; Ruiz-Lopez, N.; Worthy, C.; Rooks, P.; Allen, M.J.; Napier, J.A. Identification and functional characterization of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore *Emiliania huxleyi*. *Phytochemistry* 2011, 72, 594–600.
- Tonon, T.; Sayanova, O.; Michaelson, L.V.; Qing, R.; Harvey, D.; Larson, T.R.; Li, Y.; Napier, J.A.; Graham, I.A. Fatty acid desaturases from the microalga *Thalassiosira pseudonana*. *FEBS J*. 2005, 272, 3401–3412.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).