Supplementary Information | Figure S1. ¹ H-NMR of compound helicusin A (1) in MeOD-d ₄ . | 2 | |---|----| | Figure S2. ¹ H-NMR of compound deacetylsclerotiorin (2) in CDCl ₃ . | 2 | | Figure S3. HPLC-CD of compound deacetylsclerotiorin (2). | 3 | | Figure S4. ¹ H-NMR of compound deacetylsclerotiorin (2) in CDCl3 | | | showing traces of the Z isomer. | 3 | | Figure S5. ¹ H-NMR of compound helicusin E (3) in MeOD- <i>d</i> ₄ . | 4 | | Figure S6. 1 H-NMR of compound isochromophilone X (4) in MeOD- d_4 . | 4 | | Figure S7. 13 C-NMR of compound isochromophilone X (4) in MeOD- d_4 . | 5 | | Figure S8. COSY of compound isochromophilone X (4) in MeOD- d_4 . | 5 | | Figure S9. HSQC of compound isochromophilone X (4) in MeOD- d_4 . | 6 | | Figure S10. HMBC of compound isochromophilone X (4) in MeOD- d_4 . | 6 | | Figure S11. NOESY of compound isochromophilone X (4) in MeOD- d_4 . | 7 | | Figure S12. HPLC-CD of compound isochromophilone X (4). | 8 | | Figure S13. ¹ H-NMR of compound isochromophilone XI (5) in MeOD- <i>d</i> ₄ . | 9 | | Figure S14. 1 H-NMR of compound bartanolide (6) in MeOD- d_4 . | 9 | | Figure S15. COSY of compound bartanolide (6) in MeOD- d_4 . | 10 | | Figure S16. ¹³ C-NMR of compound bartanolide (6) in MeOD- <i>d</i> ₄ . | 10 | | Figure S17. 135-DEPT of compound bartanolide (6) in MeOD- d_4 . | 11 | | Figure S18. HSQC of compound bartanolide (6) in MeOD- d_4 . | 11 | | Figure S19. HMBC of compound bartanolide (6) in MeOD- d_4 . | 12 | | Figure S20. Minimum Conformers of $S,R,R-6$ and $R,R,R-6$. | 12 | | Figure S21. NOESY of compound bartanolide (6) in MeOD- d_4 . | 13 | Figure S2. ¹H-NMR of compound deacetylsclerotiorin (2) in CDCl₃. **Figure S4.** ¹H-NMR of compound deacetylsclerotiorin (2) in CDCl3 showing traces of the *Z* isomer. **Figure S6.** 1 H-NMR of compound isochromophilone X (**4**) in MeOD- d_{4} . **Figure S7.** 13 C-NMR of compound isochromophilone X (**4**) in MeOD- d_4 . **Figure S8.** COSY of compound isochromophilone X (4) in MeOD- d_4 . **Figure S9.** HSQC of compound isochromophilone X (4) in MeOD- d_4 . **Figure S10.** HMBC of compound isochromophilone X (4) in MeOD- d_4 . **Figure S11.** NOESY of compound isochromophilone X (4) in MeOD- d_4 . **Figure S12.** HPLC-CD of compound isochromophilone X (4). **Figure S13.** 1 H-NMR of compound isochromophilone XI (**5**) in MeOD- d_4 . **Figure S14.** ¹H-NMR of compound bartanolide (**6**) in MeOD-*d*₄. **Figure S16.** 13 C-NMR of compound bartanolide (6) in MeOD- d_4 . **Figure S18.** HSQC of compound bartanolide (6) in MeOD- d_4 . **Figure S19.** HMBC of compound bartanolide (6) in MeOD- d_4 . **Figure S20.** Minimum Conformers of *S*,*R*,*R*-6 and *R*,*R*,*R*-6. The found weak NOE between H-9 and H-5a and between H-9 and H-3' as well as the NOE between H-3' and H-5a were possible in the S,R,R- and the R,R,R-configurations (and in their enantiomers) of **6**. Conformational analyses with the B97D/TZVP method gave the minimum energy conformers shown above. Using the Karplus equation and NMR calculations (B3LYP/6-31G**//B97D/TZVP, CPCM, solvent = methanol) of the 3J coupling between H-5a and H-4 it became clear that only the S,R,R configuration and its enantiomer fit to the experimental results. Figure S21. Cont.