Supplementary Information

Figure S1. ¹ H-NMR of compound helicusin A (1) in MeOD-d ₄ .	2
Figure S2. ¹ H-NMR of compound deacetylsclerotiorin (2) in CDCl ₃ .	2
Figure S3. HPLC-CD of compound deacetylsclerotiorin (2).	3
Figure S4. ¹ H-NMR of compound deacetylsclerotiorin (2) in CDCl3	
showing traces of the Z isomer.	3
Figure S5. ¹ H-NMR of compound helicusin E (3) in MeOD- <i>d</i> ₄ .	4
Figure S6. 1 H-NMR of compound isochromophilone X (4) in MeOD- d_4 .	4
Figure S7. 13 C-NMR of compound isochromophilone X (4) in MeOD- d_4 .	5
Figure S8. COSY of compound isochromophilone X (4) in MeOD- d_4 .	5
Figure S9. HSQC of compound isochromophilone X (4) in MeOD- d_4 .	6
Figure S10. HMBC of compound isochromophilone X (4) in MeOD- d_4 .	6
Figure S11. NOESY of compound isochromophilone X (4) in MeOD- d_4 .	7
Figure S12. HPLC-CD of compound isochromophilone X (4).	8
Figure S13. ¹ H-NMR of compound isochromophilone XI (5) in MeOD- <i>d</i> ₄ .	9
Figure S14. 1 H-NMR of compound bartanolide (6) in MeOD- d_4 .	9
Figure S15. COSY of compound bartanolide (6) in MeOD- d_4 .	10
Figure S16. ¹³ C-NMR of compound bartanolide (6) in MeOD- <i>d</i> ₄ .	10
Figure S17. 135-DEPT of compound bartanolide (6) in MeOD- d_4 .	11
Figure S18. HSQC of compound bartanolide (6) in MeOD- d_4 .	11
Figure S19. HMBC of compound bartanolide (6) in MeOD- d_4 .	12
Figure S20. Minimum Conformers of $S,R,R-6$ and $R,R,R-6$.	12
Figure S21. NOESY of compound bartanolide (6) in MeOD- d_4 .	13

Figure S2. ¹H-NMR of compound deacetylsclerotiorin (2) in CDCl₃.

Figure S4. ¹H-NMR of compound deacetylsclerotiorin (2) in CDCl3 showing traces of the *Z* isomer.

Figure S6. 1 H-NMR of compound isochromophilone X (**4**) in MeOD- d_{4} .

Figure S7. 13 C-NMR of compound isochromophilone X (**4**) in MeOD- d_4 .

Figure S8. COSY of compound isochromophilone X (4) in MeOD- d_4 .

Figure S9. HSQC of compound isochromophilone X (4) in MeOD- d_4 .

Figure S10. HMBC of compound isochromophilone X (4) in MeOD- d_4 .

Figure S11. NOESY of compound isochromophilone X (4) in MeOD- d_4 .

Figure S12. HPLC-CD of compound isochromophilone X (4).

Figure S13. 1 H-NMR of compound isochromophilone XI (**5**) in MeOD- d_4 .

Figure S14. ¹H-NMR of compound bartanolide (**6**) in MeOD-*d*₄.

Figure S16. 13 C-NMR of compound bartanolide (6) in MeOD- d_4 .

Figure S18. HSQC of compound bartanolide (6) in MeOD- d_4 .

Figure S19. HMBC of compound bartanolide (6) in MeOD- d_4 .

Figure S20. Minimum Conformers of *S*,*R*,*R*-6 and *R*,*R*,*R*-6.

The found weak NOE between H-9 and H-5a and between H-9 and H-3' as well as the NOE between H-3' and H-5a were possible in the S,R,R- and the R,R,R-configurations (and in their enantiomers) of **6**. Conformational analyses with the B97D/TZVP method gave the minimum energy conformers shown above. Using the Karplus equation and NMR calculations (B3LYP/6-31G**//B97D/TZVP, CPCM, solvent = methanol) of the 3J coupling between H-5a and H-4 it became clear that only the S,R,R configuration and its enantiomer fit to the experimental results.

Figure S21. Cont.

