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Abstract: Peptide toxins typically bind to their target ion channels or receptors with high 

potency and selectivity, making them attractive leads for therapeutic development. In some 

cases the native peptide as it is found in the venom from which it originates can be used 

directly, but in many instances it is desirable to truncate and/or stabilize the peptide to 

improve its therapeutic properties. A complementary strategy is to display the key residues 

that make up the pharmacophore of the peptide toxin on a non-peptidic scaffold, thereby 

creating a peptidomimetic. This review exemplifies these approaches with peptide toxins 

from marine organisms, with a particular focus on conotoxins. 
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1. Introduction 

The marine environment has proven to be a valuable source of interesting and unusual natural 

products with a diverse range of biological activities. Of particular interest are marine snails belonging 

to the genus Conus, which contains an estimated 700 species, each possessing a unique cocktail of 

pharmacologically active peptides within its venom [1–3]. These marine snails have evolved into 

efficient predators, using their venom to hunt and paralyze worms, molluscs or fish. Conotoxins, 

isolated from the venom ducts of cone snails, constitute a large family of small, disulfide-rich peptides 

that have evolved to target a range of ion channels and receptors throughout the nervous system, 

usually with high potency and selectivity [4–7]. As such, many of these conotoxins have been  
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used to gain further information about their target at the pharmacological, physiological or structural 

level [8–11]. They are relatively small peptides, typically eight to thirty amino acid residues in length 

that have been divided into different structural and pharmacological classes. A nomenclature for the 

conotoxins classifies the peptides according to the source, cysteine framework and biological 

target [12]. The more recent availability of nucleic acid sequences from cDNA and transcriptomics 

analyses is enabling systematic classification into superfamilies on the basis of pre- and pro-peptide  

sequences [13,14]. 

Conotoxins serve not only as valuable pharmacological tools but potential drug candidates. While 

several conotoxins have advanced to clinical trials [15–17], ω-conotoxin MVIIA (ziconotide) was the 

first to be approved by the FDA for therapeutic use in humans [18]. Marketed as Prialt
®
, it possesses 

potent and selective N-type calcium channel activity and is used to treat patients suffering from severe 

chronic pain [19]. Although Prialt
®
 represents a major milestone for conotoxins, its use is limited to 

intrathecal administration. Nonetheless, it highlights the potential of neurotoxic peptides as starting 

points for the development of therapeutics. Despite their desirable biological activities, peptides 

generally have several limitations that have restricted their progression as drug candidates, amongst 

which are short circulating half-life, poor proteolytic stability, and low oral bioavailability [20,21]. The 

challenge remains to capture the favorable bioactive properties of peptide toxins within drug-like 

molecules that can be administered in the clinic. This review summarizes current strategies for the 

development of conotoxins and their mimetics as leads for novel therapeutics. 

2. Peptidomimetics 

One approach to developing bioactive small molecules is the rational design of organic scaffolds 

that topographically mimic the key binding elements (pharmacophore) of the native peptide. By 

utilizing a non-peptidic scaffold, peptidomimetics can potentially circumvent the inherent limitations 

of peptides, notably stability and bioavailability [22]. The design of peptidomimetics can be classified 

into three distinct classes [23]: Type I involves replacement of amide bond with isosteres that 

reproduce the peptide conformation. Type II mimetics are defined as small molecules that bind to a 

protein but do not structurally mimic the native interaction. Type III mimetics are non-peptidic 

molecules designed to mimic the spatial arrangement of key amino acid side chains in the peptide. In 

each case, there are many examples of successful design of peptidomimetics that have retained 

biological activity and significantly improved pharmacokinetic properties [24–26]. Key to designing 

such peptidomimetics is a knowledge of both the peptide pharmacophore and the peptide structure. 

The peptidomimetic strategy has been applied to several members of the conotoxin family. The  

ω-conotoxins, which block N-type voltage-gated calcium channels (CaV2.2), have been investigated 

extensively because of their promising analgesic activity [27,28]. Menzler et al. [29] have described 

peptidomimetics of ω-conotoxin MVIIA, a 25-residue peptide with potent and selective N-type 

calcium channel-blocking activity [30,31]. The peptidomimetics were based on a “dendroid” approach, 

where three amino acid side chains were incorporated into a central aromatic core 1 [32,33]. Based on 

the solution structure of ω-MVIIA, the functionalized side chains attached to the dendroid core 

displayed appropriate spatial mimicry of the Tyr13, Leu11 and Arg10 residues. The designed mimetic 
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displayed weak N-type calcium channel activity, although further analogues of 1 were designed and 

found to have improved voltage-gated calcium channel (VGCC) activity (Figure 1). 

Figure 1. The dendroid scaffold 1 designed to mimic Arg10, Leu11 and Tyr13 in  

ω-conotoxin MVIIA, and subsequent analogues 2 and 3, which further explored Leu11 and 

Try13 side chain mimics [33]. 

 

Type III peptidomimetics of ω-conotoxin GVIA have been conceived via an interactive de novo 

design. ω-GVIA, a 27-residue peptide produced by Conus geographus, has been shown to potently 

block the neuronal voltage-gated N-type calcium channel [34,35]. In the de novo design approach, 

novel scaffolds are interactively designed in silico to overlay with the Cα–Cβ bond vectors of important 

amino acid residues. Guided by previous structure-function studies [36,37], the bond vectors of Arg17, 

Try13 and Lys2 were mimicked with two different scaffolds; a benzothiazole 4 and an anthranilimide 5 

(Figure 2) [38]. The benzothiazole 4 was found to block rat VGCC (CaV2.2) with an IC50 of 98 μM, 

measured as a response to sympathetic nerve-mediated contraction of rat vas deferens [37]. This level 

of activity could be considered moderate, yet such a result allowed for potential optimization of the 

interactions of 4 with the channel, given that analogues could be readily synthesized. 

Figure 2. Type III peptidomimetics of ω-GVIA using the in silico de novo design 

methodology. A benzothiazole 4 and an anthranilamide 5 scaffold were designed to mimic 

the Lys7, Try13 and Arg17 side chains in the native peptide [38]. 
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To this end, Baell and co-workers investigated the relevant contribution of the three side chain 

mimics to binding affinity by way of competitive radioligand binding assay, where the affinity of each 

compound for the N-type channel was determined by displacement of 
125

I-labelled ω-GVIA from rat 

brain membrane [39]. In this assay, the designed mimetic 4, displayed an IC50 of 1.9 μM. The  

des-hydroxy analogue 6 was found to be two-fold less potent than 4. Importantly, however, this 

analogue displayed selectivity for N-type (CaV2.2) vs. P/Q-type (CaV2.1) channels. A primary amino 

group in place of the guanidine moiety also resulted in a two-fold loss in activity (Figure 3,  

Compound 7). Replacement of the alkylamine side chain, designed to mimic Lys2, was the most 

notable deletion in Analogue 8, essentially abrogating activity. This suggests that the alkyl amino 

moiety is a substantial contributor to VGCC, highlighting the importance of mimicking the  

Lys2 residue. 

Figure 3. Modifications of the benzothiazole scaffold exploring the relative contributions 

of the side chain functionalities to binding [39].  

 

Further studies into the potential of 6 as a VGCC blocker were carried out by Duggan and  

co-workers, who explored truncated analogues rationalized by conformation around the N-benzyl 

moiety [40]. These authors hypothesized that rotation around the N-benzyl bond could result in two 

conformations, whereby the Arg17 mimic could orientate above or below the plane of the benzothiazole 

core. Excising the N-benzyl motif, leading to the two amino acid residue mimic 9, resulted in a loss of 

binding in a radioligand-binding displacement assay (Figure 4). Guanidinylation of the terminal amine 

in the truncated Analogue 10 salvaged activity (EC50 33 μM), yet its activity was still 10-fold less than 

the original Compound 4. Truncation at the amide bond produced the Tyr13 and Arg17 mimetic 12, 

which was, surprisingly, equipotent with the original Compound 4, having an EC50 of 5.8 μM. 

Removal of the guanidine functionality in 12 led to a loss in VGCC activity, highlighting the 

importance of the strongly basic functionality (Figure 4, Compound 11). Whilst this study did not 

produce a substantial breakthrough compound in terms of bioactivity, its significance lies in the fact 
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that the truncated Analogue 12 retains affinity yet represents a significant reduction in molecular 

weight (193 g/mol) relative to the original mimetic. It remains to be seen whether these truncated 

analogues display useful activity in a functional assay. Nonetheless, such truncated molecules could be 

more readily accessed synthetically and could serve as templates for medicinal chemistry optimization 

and ultimately discovery of more potent VGCC blockers. 

Figure 4. Truncated analogues of the benzothiazole-based ω-GVIA mimetic 6 [40]. In 

either approach, removal of the guanidine functionality proved detrimental to activity. 

Compound 12 displayed activity comparable to 6, highlighting the importance of mimicking 

the Arg17 side chain and a preferred conformation of the N-benzyl moiety. 

 

Similar success was achieved using the anthranilamide 5 as a ω-GVIA peptidomimetic (Figure 5). 

The functionalized molecule bearing the Try13, Arg17 and Lys2 side chain mimics blocked CaV2.2 

with micromolar affinity in a functional assay (68 μM) [41]. Further structure-activity relationship 

(SAR) studies surrounding the mimetic focused on the nature of the alkyl side chains and the use of 

both amino and guanidine groups [42,43]. Variation of the side chain lengths of both the Lys and Arg 

mimics did not generate any convincing SAR, although varying the terminal functionality on the Lys 

and Arg side chains did significantly affect activity. The use of amino groups at both of these positions 

resulted in weak VGCC activity, regardless of the chain length. On the other hand guanidines at both 

these positions proved to be more active. Furthermore, introduction of a fluoro atom into the tyrosine 

mimic afforded the most active compound in the study, with an EC50 of 2.6 μM for Cav2.2 (Figure 5). 

It should be noted, however, that calcium channel activity was evaluated via a radioligand-binding 

displacement assay, in contrast to the functional assay used for Compound 5, and thus a meaningful 

comparison is difficult. Unlike the benzothiazole 4, no further deletion or truncated analogues have 

been reported.  
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Figure 5. Using the anthranalimide peptidomimetic scaffold 5 as a platform for medicinal 

chemistry exploration. Replacement of the phenol with a fluorine atom along the 

introduction of alkyl guanidine’s afforded Compound 13, possessing an EC50 for Cav2.2 of 

2.6 μM [41]. 

 

In a recent study, Tranberg et al. [44] designed and synthesized a “hybrid” molecule based on the 

anthranilimide 10 and a diphenylmethylpiperazine, a common moiety found in calcium channel blockers 

developed by Neuromed and Abbott laboratories (Figure 6) [45–48]. The diphenylmethylpiperazine 

analogues 14 and 15, which were analogous with the parent anthranilimide, displayed low micromolar 

EC50’s in a 
125

I-ω-GVIA displacement assay. However, both molecules could block functional ion 

channels in a whole-cell patch clamp assay. Whilst this level of functional activity has not been 

observed previously with this series of mimetics, the most potent Compound 15 displayed an IC50 of 

156 μM, which is still several orders of magnitude weaker than ω-GVIA. 

Figure 6. The calcium channel blocker developed by Neuromed, NP-180809 [47],  

and incorporation of the diphenylmethylpiperazine motif within the anthranilamide 

peptidomimetic [44]. 

 

The de novo design strategy has also been applied to μ-conotoxin peptidomimetics. Isolated from 

Conus kinoshitai, μ-KIIIA is a 16-residue peptide that blocks neuronal voltage-gated sodium channels 

(VGSC) and displays potent analgesic activity when administered in mice [49]. As such, μ-KIIIA 

could serve as a template for the development of novel analgesics. In keeping with other μ-conotoxins, 
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μ-KIIIA acts by blocking the ion conduction pore of the sodium channel, in contrast to μO-conotoxins 

such as MrVIA and MrVIB, which inhibit sodium channels by acting as gating modifiers but are also 

analgesic in a variety of animal models of pain [50]. Structure-activity studies with μ-KIIIA identified 

that five amino acid residues are important for sodium channel activity [51] and selectivity [52]. 

Furthermore, the solution structure reveals that four of the key residues are located on an α-helical 

region of the peptide [53,54]. With this important structure-function information, non-peptidic scaffolds 

were designed to mimic key amino acid side chains. In the first instance, a diketopiperazine (DKP) 

carboxamide 16 was designed to mimic the Cα–Cβ bond vectors of Lys7, Trp8 and His12 (Figure 7) [55]. 

Figure 7. (A) In silico de novo designed μ-KIIIA peptidomimetic based on a diketopiperazine 

carboxamide scaffold. (B) The functionalized molecule incorporating Lys7, Trp8 and 

His12 mimetics. 

 

Key elements in the scaffold design included appending a carboxamide to the DKP core, thereby 

stabilizing an internal hydrogen bond. According to in silico modeling, this conformation would be 

required in order to correctly mimic the His12 side chain. The presence of the hydrogen bond was 

evidenced by the downfield NMR resonance of the carboxamide NH (~10 ppm) in deuterated DMSO, 

suggesting that this essential conformation should be adopted under assay conditions [56]. The  

μ-KIIIA mimetic 16 was evaluated in a patch-clamp assay and found to weakly block NaV1.7 (20% at 

100 μM). An important consideration for this molecule is the orientation of the Trp side chain mimic. 

It has been well established that aromatic side chains attached to a DKP will favor an orientation in 

which the ring is folded over the DKP ring, stabilized by π-stacking interactions [57,58]. The energy 

difference of ~3 kcal/mol between a folded conformation and one in which the ring is extended away 

from the core, potentially translates to a 100-fold loss in activity [59]. This could explain the weak 

activity if the indole ring needs to be extended to mimic μ-KIIIA, and indeed this is a focus of  

further optimization. 



Mar. Drugs 2013, 11 2300 

 

 

A second peptidomimetic scaffold, 17, was designed to probe the importance of the arginine side 

chains in μ-KIIIA [60]. A relatively simple benzamide mimicked the Cα–Cβ bond vectors of Arg10 and 

Arg14. The mimetic 17 (Figure 8) was found to weakly block NaV1.7 in patch clamp assays (20% at 

100 μM). Although the activity of 17 is weak, it potentially represents a useful platform for medicinal 

chemistry optimization owing to its favorable molecular weight (335 g/mol) and synthetic tractability. 

Figure 8. (A) In silico de novo designed μ-KIIIA peptidomimetic. A benzamide scaffold 

was designed to reproduce the Cα–Cβ bond vectors of the Arg14 and Arg10 residues.  

(B) The functionalized molecule 17 incorporating the terminal guanidine moieties. 

 

The current landscape with respect to mimicking the conotoxins with small organic molecules 

clearly highlights the challenges associated with this approach. In the examples reviewed here, the 

peptidomimetics are substantially less potent than the parent peptide. In each case, the authors were no 

longer guided by the initial design and the assumptions of mimicking the three residues. However, 

such compounds can be regarded as “hits”, where medicinal chemistry optimization may be expected 

to lead to improved potency. This serves as a notable advantage over the endogenous peptide, where 

generating SAR through analogues is not as efficient, and potentially allows one to bridge the gap in 

activity between the peptide and the mimetic, but in a more drug-like small molecule. 

3. Modified Peptides 

3.1. Truncated Conotoxins 

An alternative to the peptidomimetic approach is to alter the peptide to enhance its drug-like 

properties and maintain biological activity. For many of the conotoxins, biological activity can be 

attributed to a relatively small fraction of the total number of amino acid residues, suggesting that the 

native peptide may be truncated without perturbing activity. Such analogues present a more drug-like 

and economical starting point for advancing towards novel therapeutics. In a study by Jin et al., 

insights into the structure-function relationships of α-conotoxin PnIA were revealed through 
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systematic truncation of the two disulfide loops [61]. The α-conotoxins inhibit nicotinic acetylcholine 

receptors (nAChR) by binding at the subunit interfaces of the extracellular domains of these 

pentameric ion channels [5,62]. Structurally, α-PnIA is characterized by two loops containing four and 

seven residues in the first and second loop, respectively (4/7 framework) [63]. Excising one to three 

amino acids from the second loop resulted in gradual loss of secondary structure and stability, yet the 

peptide retained potent affinity for the α7 nicotinic acetylcholine receptor (α7 nAChR). Truncation of 

four amino acids from the second loop, however, adversely affected both stability and activity. 

Since truncated peptides are typically unstructured, the introduction of lactam bridges is an effective 

tool to stabilize α-helical conformations [64–69]. Truncated analogues of μ-KIIIA stabilized with 

lactam bridges were explored by Khoo et al. [70]. Their strategy involved removal of disulfide bridges 

along with residues at both the N- and C-termini of the native peptide, affording a smaller and thus 

more readily optimisable peptide. The α-helix was stabilized by incorporating an i to i + 4 lactam 

bridge between Lys and Asp residues across three positions in μ-KIIIA: Residues 5–9, 7–11 and 9–13. 

It was found that the position of the lactam bridge did not affect the helical propensity of the truncated 

analogues but it was important for VGSC activity. In particular, the lactam bridge between Residues 7 

and 11 significantly reduced the peptide’s ability to block VGSCs. This was consistent with previous 

studies, which had shown that Lys7 and Asp11 were essential for activity [71]. The most active 

analogue was achieved by linking Residues 9 and 13, yielding an IC50 of 13.3 μM against NaV1.2; this 

is, however, still significantly less potent than the native peptide (IC50 0.061 μM). 

Stevens and co-workers utilized the previously reported structure-function characteristics of the  

μ-conotoxins KIIIA and BuIIIC [72] to design novel truncated analogues [73]. The initial truncated 

analogue comprised a first intercysteine loop based on μ-KIIIA and a second loop emulating that in  

μ-BuIIIC. The third loop between Cys1 and Cys9 was removed. The resultant 13-residue derivative 

displayed moderate block of VGSCs and was selective for the NaV1.2 isoform (63% at 20 μM). Ser4 

was removed and an Ala residue was introduced into the truncated peptide at the position initially 

occupied by Cys9. The authors reasoned that this addition would restore the appropriate spacing 

required for the peptide to adopt an α-helix. Although a helical conformation was not observed for this 

analogue, it was found to be a potent blocker of NaV1.2 (IC50 78 nM). Its potency was further 

improved by substituting His10 with an Arg residue, resulting in an IC50 for NaV1.2 of 34 nM. 

3.2. Disulfide Isosteres 

An intrinsic feature of the conotoxins is the presence of disulfide bonds, which are thought to be 

critical for structure and function [74]. However, these disulfides are also a potential metabolic liability 

as it has been shown that they are susceptible to reduction in certain extracellular environments such as 

the blood [75]. An attractive strategy to overcome this limitation is their replacement with more stable 

alternatives. To this end diseleno [76], dicarba [77] and thioether [78–80] linkers have been 

incorporated in place of native cysteine bonds in a number of disulfide-containing bioactive peptides 

(Figure 9). The dicarba approach in particular has emerged as an effective and widely used tool due in 

large part to the development of Grubbs olefin metathesis [81–87]. 
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Figure 9. Strategies used to replace the disulfide linkage in conotoxins with stable 

isosteres. Diselenide, dicarba and cystathionine bridges have proven most effective. In 

addition, the dicarba bridge can also be reduced to a methylene or oxidized to an alkyne bridge. 

 

Compared with the sulfur-sulfur bond in disulfide bridges (2.02 Å), selenium-selenium bond 

lengths in diselenium bridges are slightly longer (ca 2.05 Å), while the carbon-carbon bond lengths in 

dicarba bridges are shorter (ca. 1.34 Å) [88]. Although these atomic distances do result in 

stereochemical variations proximal to the introduced bridge, this has not been shown to significantly 

affect the overall structure, as evidenced by several examples where biological function has been 

maintained [89,90]. A further advantage of disulfide isosteres is their increased stability, resulting in 

improved pharmacokinetic properties [91,92]. The cystathionine thioether, where one of the sulfur 

atoms of a disulfide bond is substituted with a methylene group, should more closely approximate the 

geometry of cystine than dicarba or lanthionine analogues and is therefore expected to cause minimal 

structural perturbations [93]. 

The strategy of incorporating disulfide isosteres has been applied to several conotoxins. α-ImI, a 

selective nAChR antagonist, is of considerable interest as a biological tool and as a lead for potentially 

developing novel therapeutics [5,23]. α-ImI is a 12-residue peptide with two disulfide bridges linking 

Residues 2 and 8 and 3 and 12, respectively [94]. Diselenide linkages were incorporated into α-ImI in 

work reported by Armishaw et al. [76]. These bridges were incorporated systematically; the first 

analogue contained a bridge only between Residues 2 and 8, the second contained a bridge only 

between Residues 3 and 12, and in the third both disulfides were replaced with diselenide bridges. 

Importantly, the conformations of the three selenocysteine-containing isomers were in good agreement 

with that of the native structure as determined by NMR and CD spectroscopy. Furthermore, all three 

isomers possessed similar bioactivity (IC50 ~50 nM) at the α7 nAChR, comparable to the native 

peptide (IC50 69 nM). When exposed to glutathione and human mercaptalbumin, no scrambling of the 

selenocysteine framework was observed, in contrast to native α-ImI, which was completely scrambled 

under these conditions.  

The dicarba approach to replacing the disulfide bonds was also applied to α-ImI by MacRaild et al. [95] 

Analogues containing single carbon-carbon bonds in place of either the 2 to 8 (isomer 1) or 3 to 12 

(isomer 2) disulfide bridges had solution conformations similar to that of native α-ImI. The ability of 

the isomers to antagonize α7 nAChR was determined by catechol release after nicotine stimulation of 

cultures of bovine adrenal chromaffin cells. Both Isomers 1 and 2 were found to inhibit adrenaline 

release with similar potency, with IC50 values of 10 and 15 μM, respectively. Additionally, the effect 
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of the dicarba analogues on ACh-evoked ion currents in frog oocytes expressing α7 nAChR was 

determined. At 2.5 μM, Isomer 1 inhibited response by 60% in the presence of ACh (300 μM), which 

was comparable to α-ImI (68%). On the other hand, Isomer 2 was inactive at 2.5 μM. The stability of 

the dicarba-ImI isomers in plasma was enhanced significantly [96]. Very recently, dicarba bridges 

have also been introduced into Vc1.1, producing some interesting changes in target specificity; the  

2,8-dicarba Vc1.1 isomer retained activity at GABAB receptors, whereas the isomeric  

3,16-dicarba Vc1.1 peptide retained activity at the α9α10 nAChR [97]. 

A study by Dekan et al., exemplifies the use of cystathionine as a replacement for the disulfide 

bond in α-ImI [98]. The strategy involved regioselective formation of cystathionine bonds in the first 

and second intercysteine loops as well as a dual cystathionine analogue. Structurally all three 

analogues were identical to α-ImI, as determined by two-dimensional 
1
H NMR. However, only the 

second loop thioether analogue retained significant activity against α7 nAChR, being equipotent with 

α-ImI (Figure 10, pIC50 6.41). 

Figure 10. α-conotoxin ImI has two disulfide bridges linking Residues 2–8 and 3–12, 

respectively [98]. Replacement of the disulfide bond in the second intercysteine loop of  

α-ImI with a cystathionine, resulted in retention of structure and against α7 nAChR. 

 

3.3. Cyclization Strategies  

Since conformation is known to play a critical role in bioactivity and bioavailability, cyclization can 

be used to stabilize the conformation of the peptide [99–101]. Such modifications can induce stability 

and more favorable pharmacokinetic properties as evidenced by the number of cyclic peptides in  

pre-clinical evaluation or that have advanced to use in humans [102–105]. The N-C terminal 

cyclization strategy has been applied successfully to several conotoxins, as reviewed by Clark et al. [106]. 

A pertinent example is the application of a backbone macrocyclization strategy to Vc1.1 [107]. A 

member of the α-conotoxin family, Vc1.1 is a 16-residue peptide with a short internal α-helix and two 

disulfide bridges [108]. It is a potent analgesic [109] that binds to α9,α10 nACh receptors [110,111] 

but can also interact with GABAB receptors [112]; indeed, the latter may be the key target for its 

analgesic activity as it has been shown that Vc1.1 can inhibit high voltage-activated calcium channel 

currents in dorsal root ganglion (DRG) neurons via GABAB receptor-mediated inhibition of N-type 

(CaV2.2) calcium channels [107,113,114]. The design of the cyclic α-conotoxin was based on the 

three-dimensional structure of Vc1.1 [108]. A six-residue linker composed of Gly and Ala was used to 

span the 12 Å distance between the N- and C-termini. This cyclic analogue was more potent than linear 
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Vc1.1 as a GABAB-mediated calcium channel blocker and displayed improved stability relative to 

linear Vc1.1. When exposed to simulated intestinal fluid and human serum, only minor disulfide 

rearrangement was observed; by contrast, linear Vc1.1 was found to undergo significant disulfide 

rearrangement (42% in simulated intestinal fluid and 46% in human serum) to inactive isomers. 

Importantly, cyclic Vc1.1 showed dose-dependent relief of neuropathic pain in rats when administered 

orally. Its activity at 1.3 mg/kg was comparable to that of gabapentin, a commonly prescribed oral 

analgesic, at 30 µg/kg, highlighting the potency and bioavailability of the cyclic conotoxin [107]. 

3.4. Backbone Prosthesis 

In an approach termed “backbone prosthesis” [115], μ-conotoxin analogues were designed in which 

nonessential peptidic regions were replaced by non-peptidic spacers. Referred to as “polytides” [115], 

these analogues can display improved pharmacological properties, and in many cases retained or even 

improved biological activity. Typical spacers that have been used for improving the therapeutic 

properties of peptides and proteins include polyethylene glycol (PEG) [116], 6-aminohexanoic acid [117] 

and amino-3-oxapentanoic acid [118,119]. 

The concept of backbone prosthesis was first applied to μ-SIIIA [120], a potent blocker of VGSCs, 

by Bulaj and co-workers [115]. Previously described structure-activity relationships suggested that 

neither the length of the first cysteine loop nor the N-terminal residue was critical for blocking  

VGSCs [49]. Thus, the “nonessential” N-terminal residue and the two Gly residues in the first loop 

were replaced with non-peptide spacers. Two commonly used backbone spacers were employed; in the 

first analogue, both the N-terminus and the Gly-Gly-fragment were replaced with amino-3-oxapentanoic 

acid (PEG-SIIIA). In the second, 6-aminohexanoic acid (AHX-SIIIA) was used in place of  

amino-3-oxapentanoic acid. Whilst there was some structural variation between μ-SIIIA and the 

prosthesis-containing analogues, the region C-terminal to the backbone replacement displayed a 

similar conformation to native μ-SIIIA. Importantly, the residues critical to activity, Lys11, Trp12, and 

His16, adopted the same spatial arrangement in all three structures. The polytides displayed impressive 

sodium channel activity: After 20 min of exposure to 5 μM concentrations the polytides were able to 

block ~45%–55% of the sodium channel current, greater than the 20% block exhibited by μ-SIIIA. 

Increasing the concentration to 25 μM resulted in 65% inhibition for μ-SIIIA and 80% inhibition for 

the polytides. In addition, both polytides were shown to possess analgesic activity in the inflammatory 

pain assay in mice [121], with PEG-μ-SIIIA being even more potent than the endogenous peptide. All 

three peptides were analgesic at doses of 10 nmol per animal, although both polytides were more 

active in the Phase II response than μ-SIIIA. At doses of 10 nmol per animal, PEG-μ-SIIIA exhibited 

more pronounced and longer-lasting analgesic activity in the inflammatory phases. 

The backbone prosthesis approach has been extended to μ-KIIIA, where 5-amino-3-oxapentanoic 

acid (Aopn), was used to replace two nonessential Ser residues in disulfide-deficient μ-KIIIA 

analogues [122]. Key to their approach was to identify which of the three disulfide loops in μ-KIIIA 

could be removed without compromising biological activity. The authors observed that removal of the 

first Cys1–Cys9 disulfide bridge had minimal effect on binding to NaV1.2, with this analogue being 

almost equipotent with μ-KIIIA [53,54]. The Cys2A–Cys15A deletion analogue was less potent, with 

a Kd for NaV1.2 of 170 nM. On the other hand, the analogue devoid of the Cys4–Cys16 bridge was 
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essentially inactive. The Aopn spacer was then used to replace two adjacent Ser residues (Ser5–Ser6) 

in the disulfide deletion analogue since alanine scanning had shown that these residues had little effect 

on binding. Furthermore, the authors reasoned that Ala1 in the Cys1–Cys9 analogue seemed unlikely 

to play a major role in the interactions with the sodium channels, and thus removed this residue from 

the Aopn containing peptoid. This minimized analogue was able to block NaV1.2 with a Kd of 46 nM 

and was analgesic in the inflammatory pain assay in mice. 

4. Conclusions 

Conotoxins have been shown to be potent inhibitors of a broad range of ion channels and receptors, 

many of which have been identified as drug targets. As such, the conotoxins have great potential to 

serve as leads for the next generation of drugs to treat conditions where there are clearly unmet clinical 

needs. The challenge remains to translate the bioactivity of the conotoxins into therapeutically relevant 

molecules. The last decade has seen a number of novel strategies applied to overcoming the inherent 

limitation of peptides as drugs. To date, the peptidomimetic strategy has proved challenging, with 

attempts at mimicking the conotoxins with non-peptide molecules generally resulting in significant 

losses in potency. A potential advantage of the mimetic approach is that the molecules generated lend 

themselves to medicinal chemistry optimization. On the other hand, strategies to directly modify the 

peptide toxins have proven to be quite effective. In particular, the dicarba and cyclization approaches 

have produced potent and more stable analogues of the native peptides and these approaches could see 

more conotoxins progress towards the clinic. 
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