Supplementary Information

Figure S1. Isolation and purification scheme of 1 and 2 from the Hawaiian cyanobacteria.

Figure S2. HR-ESI-MS spectrum of 1.

Figure S3. HR-ESI-MS spectrum of 2.

Figure S4. Negative LC-MS/MS spectra data of 1.

Figure S5. Negative LC-MS/MS spectra data of 2.

Figure S6. ¹H-NMR spectrum of 1, in MeOD.

Figure S12. ¹H-NMR spectrum of 2, in MeOD.

Figure S20. The structure of 2 and its key 2D NMR correlations in MeOD.

Figure S21. ¹H-NMR spectrum of 1, in CDCl₃.

Figure S23. ¹H-NMR spectrum of 2, in CDCl₃.

Figure S26. Key ¹H-¹H NOESY NMR correlations in CDCl₃.

NOESY **<----**≯

Figure S27. CD spectra of lyngbyatoxin A.

The CD spectral data were recorded in methanol with the concentration of 320 μ mol/L, using a 2 mm path-length quartz cell. The measurements were performed at room temperature (25 °C).

NO.	1		2	
	¹³ C	¹ H, mult, <i>J</i> (Hz)	¹³ C	¹ H, mult, J (Hz)
1		7.71, 1H, s		7.73, 1H, s
2	178.8		179.3	
3	75.2		75.1	
3a	126.4		119.6	
4	149.3		144.0	
5	118.6	7.05, 1H, d, <i>J</i> = 8.6	116.1	6.69, 1H, d, <i>J</i> = 8.6
6	129.1	7.22, 1H, d, <i>J</i> = 8.6	128.7	7.10, 1H, d, <i>J</i> = 8.6
7	127.1		122.1	
7a	138.1		136.9	
8	42.8	2.19, 1H, d, <i>J</i> = 15.1	42.9	2.13, 1H, d, <i>J</i> = 15.6
		1.50, 1H, d, <i>J</i> = 15.1		1.59, 1H, dd, <i>J</i> = 9.3, 14.9
9	49.4	5.39, 1H, m	50.0	4.55, 1H, m
10		5.86, 1H, d, <i>J</i> = 11.1		6.25, 1H, d, <i>J</i> = 10.7
11	172.1		174.9	
12	77.1	3.81, 1H, d, <i>J</i> = 5.2	72.2	3.84, 1H, t, <i>J</i> = 10.4
13				4.22, 1H, d, <i>J</i> = 12.5
14	67.9	3.68, 2H, s	67.1	3.64, 1H, d, <i>J</i> = 10.5
				3.57, 1H, dd, <i>J</i> = 5.7, 10.5
15	28.9	2.37, 1H, m	31.7	2.02, 1H, m
16	22.0	1.18, 3H, d, <i>J</i> = 7.4	20.9	1.24, 3H, d, <i>J</i> = 6.5
17	18.8	1.18, 3H, d, <i>J</i> = 6.9	20.1	1.10, 3H, d, <i>J</i> = 6.5
18	42.7	2.62, 3H, s		
19	43.5		42.6	
20	24.3	1.35, 3H, s	24.4	1.32, 3H, s
21	146.2	6.02, 1H, dd, <i>J</i> = 10.7, 17.4	146.7	6.02, 1H, dd, <i>J</i> = 10.8, 17.7
22	114.2	5.30, 1H, d, <i>J</i> = 10.7	113.5	5.25, 1H, d, <i>J</i> = 10.8
		5.24, 1H, d, <i>J</i> = 17.7		5.20, 1H, d, <i>J</i> = 17.7
23	38.7	1.73, 2H, m	38.6	1.69, 2H, m
24	23.1	1.73, 1H, m	22.8	1.69, 1H, m
		1.92, 1H, m		1.88, 1H, m
25	124.0	5.05, 1H, m	123.8	5.03, 1H, m
26	132.2		131.9	
27	25.8	1.66, 3H, s	25.6	1.65, 3H, s
28	17.7	1.50, 3H, s	17.6	1.50, 3H, s
OH on 3		3.49, 1H, s		4.36, 1H, br s
OH on 14		2.46, 1H, br s		3.37, 1H, m

Table S1. ¹H and ¹³C NMR chemical shifts observed for 1 and 2 in CDCl₃.

s, singlet; d, doublet; t, triplet; m, multiplet.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).