Supplementary Information

Figure S1. ¹H NMR (600 MHz, CDCl₃) of **1**.

Figure S2. ¹³C NMR (125 MHz, CDCl₃) of **1**.

Figure S3. gCOSY (600 MHz, CDCl₃) of 1.

Figure S4. gHSQC (600 MHz, CDCl₃) of 1.

Figure S5. gHMBC (600 MHz, CDCl₃) of 1.

Figure S6. ¹³C NMR (125 MHz, $CDCl_3$) of ¹³C-labeled **1**.

Figure S7. ¹³C-¹³C COSY (125 MHz, CDCl₃) of ¹³C-labeled **1**.

Figure S8. HRMS of 1.

Figure S9. ¹H NMR (600 MHz, CDCl₃) of **2**.

Figure S10. ¹³C NMR (125 MHz, CDCl₃) of **2**.

Figure S11. gCOSY (600 MHz, CDCl₃) of 2.

Figure S12. gHSQC (600 MHz, CDCl₃) of 2.

Figure S13. gHMBC (600 MHz, CDCl₃) of 2.

Figure S14. ¹³C NMR (125 MHz, CDCl₃) of ¹³C-labeled **2**.

Figure S15. ¹³C-¹³C COSY (125 MHz, CDCl₃) of ¹³C-labeled **2**.

Figure S16. HRMS of 2.

Figure S17. ¹³C-¹³C gCOSY calculations.

- 1. During t_l , each new fid increments t_l by a dwell time of $dwl = \frac{1}{swl}$ (always true for each complex pair of FIDs, independent of type of acquisition, such as States or TPPI, etc.). For a ¹³C–¹³C cosy, $sw = swl \le 220$ ppm, which = 125Hz/ppm×220ppm = 27.5kHz. Thus, dwl = 1/27.5kHz = 36.4µs.
- 2. For J_{CC} ranging 30 to 60 Hz, maximum polarization transfer (largest crosspeak formation) will occur at 1/2J = 33 to 17 ms, respectively.
- 3. For an absolute-value cosy, where a sinebell or sinebell-squared apodization is applied, maximum crosspeaks (100% of the size of the ¹H 1D peak) will occur with a total acquisition time in the indirect dimension, at1 = 1/J, because sinebell-type functions are maximum at $\frac{1}{2}$ the FID. So for maximum crosspeaks, the t_1 evolution would be at at1 = 66 to 33 ms, for $J_{CC} = 30$ to 60 Hz.
- 4. The total acquisition time in the indirect dimension equals the number of increments times the time per increment, or: $at1 = ni \times dw1$ Thus: $ni \equiv TD1 = \frac{at1}{dw1} = \frac{sw1}{J_{CC}} = 917$ to 458. Even smaller values (e.g., 256) can be used without much loss in sensitivity, since the crosspeaks intensities will follow something close to sinusoidal behavior close to 90 °.
- 5. Resolution: If $ni \equiv TD1 = 400$, then sw1/ni = 27500/400 = 69 Hz = 0.55 ppm @ 500 MHz.

Mar. Drugs 2014, 12

Figure S18. ¹³C-¹³C COSY pulse program (Bruker).

;cosygpqf - modified to have proton decoupling 2June2010	p16:gp1			
;avance-version (07/04/05)	d16			
;2D homonuclear shift correlation	4u BLKGRAD			
;using gradient pulses for selection	go=2 ph31			
;	30m do:f2 pl12:f2 mc #0 to 2 F1QF(id0)			
;\$CLASS=HighRes	exit			
;\$DIM=2D				
;\$TYPE=	ph1=0 2			
;\$SUBTYPE=	ph2=0 0 2 2			
;\$COMMENT=	ph31=0 2			
<pre>#include <avance.incl></avance.incl></pre>	;pl1 : f1 channel - power level for pulse (default)			
#include <grad.incl></grad.incl>	;p0 : f1 channel - 20 to 90 degree high power pulse			
	;p1 : f1 channel - 90 degree high power pulse			
"d13=4u"	;p16: homospoil/gradient pulse			
	;d0 : incremented delay (2D) [3 usec]			
"d11=30m"	;d1 : relaxation delay; 1-5 * T1			
	;d13: short delay [4 usec]			
"in0=inf1"	;d16: delay for homospoil/gradient recovery			
	; $inf1: 1/SW = 2 * DW$			
"d0=3u"	;in0: $1/(1 * SW) = 2 * DW$			
	;nd0: 1			
1 ze	;NS: 1 * n			
d11 pl12:f2	;DS: 16			
2 30m do:f2	;td1: number of experiments			
d1 cpd2:f2	;FnMODE: QF			
3 pl ph1				
d0	;use gradient ratio: gp 1			
50u UNBLKGRAD	; 10			
n16:9n1	;for z-only gradients:			
d16	;gpz1: 10%			
p0 ph2	;use gradient files:			
r • r	;gpnam1: SINE.100			
	;\$Id: cosygpqf,v 1.5 2007/04/11 13:34:29 ber Exp \$			

Figure S19. ¹³C-¹³C COSY for Varian.

To set up a ¹³C-¹³C gCOSY on a Varian spectrometer with VNMR software, complete the following steps:

- 1. Set up (and acquire) a 1D ¹³C spectrum with the desired parameters (sweep width, *etc.*) for your particular compound.
- 2. In the same experiment, set up a gCOSY (type gCOSY)
- 3. Your transmitter nucleus (tn) should be C13, and decoupler nucleus (dn) should be H1.
- 4. Type **dm** = **'nny'**

Set number of transients and increments (nt, ni) as necessary for your compound

To set up a ¹³C-¹³C gCOSY on a Varian spectrometer with VNMRJ software, complete the following steps:

- 1. Set up (and acquire) a 1D ¹³C spectrum with the desired parameters (sweep width, *etc.*) for your particular compound.
- 2. In a different experiment, set up a gCOSY (type Gcosy)
- 3. Change transmitter nucleus (tn) to C13, and decoupler nucleus (dn) should be H1.
- 4. Type **dm** = **'nny'**
- 5. Change sweep width (sw) and sw1 to sweep width from 1D 13 C spectrum.
- 6. Set number of transients and increments (nt, ni) as necessary for your compound.

Set remaining parameters as the following:

								-
ACQUISITION		TRANSMITTER		GRADIENTS		PROCESSING		
seqfil	gC0SY	tn	C13	gzlvl1	. 4237	sb	-0.065	
sw	31446.5	sfrq	125.698	gt1	0.001000	sbs	not used	
at	0.130	tof	1883.3	gstab	0.000500	fn	8192	
np	8192	tpwr	63	hsglvl	4237	ZD P	ROCESSING	
ss	8	pw	11.800	hsgt	0.005000	sb1	-0.003	
d1	4.000	DE	COUPLER		FLAGS	sbs1	not used	
nt	90	dn	H1	hs	nn	proc1	lp	
ct	0	dm	nny	sspul	n	fn1	8192	
2D ACC	QUISITION	S	PECIAL		SAMPLE			
sw1	31446.5	temp	25.0	date	0ct 29 2012			
ni	140	spin	0	solver	t CD30D			
PRESAT	FURATION	gain	60	sample				
satmode	n							

(A)

C1-C2

C2-C3

C8-C9

C9-C10

C11-C12

C12-C13

C12-C14

C14-C15

C17-C18

C15-C16 **

C16-C17 **

C3-C4 *

1

2

C1-C2

C2-C3

C3-C4

C8-C9

C9-C10 ***

C11-C12

C12-C13

C12-C14

C14-C15

C17-C18

132

128

130

126

134

Figure S20. (A) List of ${}^{13}C$ - ${}^{13}C$ correlations for 1 and 2 and (B) ${}^{13}C$ - ${}^{13}C$ COSY (125 MHz, CDCl₃) of 2 (aromatic region).

138

136

* Weak correlation. Confirmed by additional NMR data. ** C15 and C17 overlap. Additional NMR confirmed connectivity. *** C10 and C16 had similar chemical shifts. Additional NMR confirmed connectivity. **** Signal partially overlapped. Additional NMR confirmed connectivity.

9

124 F2 [ppm]

Figure S21. (A) ¹³C-¹³C COSY (125 MHz, CDCl₃) and (B) ¹H NMR (500 MHz, CDCl₃) of ¹³C-labeled extract from CHCl₃ partition.

Figure S22. ¹H NMR (600 MHz, CDCl₃) of **3**.

Figure S23. ¹³C NMR (125 MHz, CDCl₃) of **3**.

Figure S24. HRMS of 3.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).