

Article

# Eunicellin-Based Diterpenoids, Hirsutalins N-R, from the Formosan Soft Coral *Cladiella hirsuta*

Tzu-Zin Huang <sup>1,†</sup>, Bo-Wei Chen <sup>1,†</sup>, Chiung-Yao Huang <sup>1</sup>, Tsong-Long Hwang <sup>2</sup>, Chang-Feng Dai <sup>3</sup> and Jyh-Horng Sheu <sup>1,4,5,6,7,\*</sup>

- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan; E-Mails: slime112229@gmail.com (T.-Z.H.); a6152761@yahoo.com.tw (B.-W.C.); betty8575@yahoo.com.tw (C.-Y.H.)
- <sup>2</sup> Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; E-Mail: htl@mail.cgu.edu.tw
- Institute of Oceanography, National Taiwan University, Taipei 112, Taiwan; E-Mail: corallab@ntu.edu.tw
- <sup>4</sup> Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- <sup>5</sup> Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- <sup>6</sup> Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- <sup>7</sup> Asia Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- <sup>†</sup> These authors contributed equally to this work.
- \* Author to whom correspondence should be addressed; E-Mail: sheu@mail.nsysu.edu.tw; Tel.: +886-75-252-000 (ext. 5030); Fax: +886-75-255-020.

Received: 13 February 2014; in revised form: 24 March 2014 / Accepted: 31 March 2014 / Published: 30 April 2014

**Abstract:** New eunicellin-type hirsutalins N–R (1–5), along with two known eunicellins, (6 and 7) were isolated from the soft coral *Cladiella hirsuta*. The structures of the metabolites were determined by extensive spectroscopic analysis. Cytotoxic activity of compounds 1–7 against the proliferation of a limited panel of cancer cell lines was measured. The *in vitro* anti-inflammatory activity of compounds 1–7 was evaluated by measuring their ability in suppressing superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils.

**Keywords:** soft coral; *Cladiella hirsuta*; eunicellins: cytotoxic activity; anti-inflammatory activity

## 1. Introduction

The chemical investigations on soft corals of the genus *Cladiella* and *Klyxum* [1–30] have afforded several eunicellin-based diterpenoids, of which many have been shown to exhibit interesting bioactivities [8,10–30]. Our recent chemical study of a Taiwanese soft coral *Cladiella hirsuta* has led to the discovery of 13 eunicellin-based diterpenoids hirsutalins A–M [29,30] and seven steroids hirsutosterols A–G [31] some of which have been found to possess cytotoxic [29] and anti-inflammatory activities [29,30]. In this paper we further report the isolation of five new eunicellin-based compounds, hirsutalins N–R (Chart 1), along with two known compounds, (1R\*,2R\*,3R\*,6S\*,7S\*,9R\*,10R\*,14R\*)-3-butanoyloxycladiell-11(17)-en-6,7-diol (6) [6], and hirsutalin E (7) [29] from *C. hirsuta* (Chart 2). The structures of new compounds were determined by extensive spectroscopic analysis. Cytotoxicity of 1–7 against a limited panel of cancer cell lines and their anti-inflammatory activity, determined by their ability to inhibit the generation of super oxide anion and elastase release in *N*-formyl-methionyl-leucylphenylalanine/cytochalasin B(fMLP/CB)-induced human neutrophiles, were studied in order to discover bioactive compounds for future new drug development.

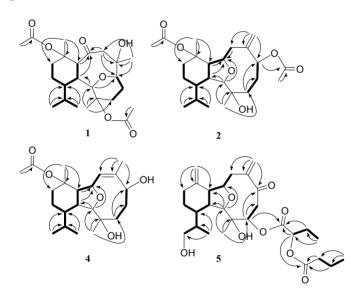
Chart 1. Structures of metabolites 1–5.

Chart 2. Structures of metabolites 6 and 7.

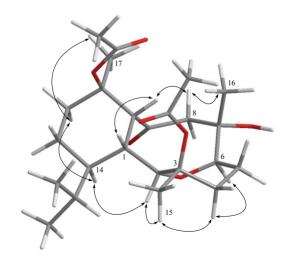
## 2. Results and Discussion

Hirsutalin N (1) was isolated as a colorless oil. The HRESIMS (m/z 461.2518) of 1 established a molecular formula of  $C_{24}H_{38}O_7$ . The IR spectrum of 1 showed the presence of hydroxy and carbonyl groups from absorptions at 3451 and 1733 cm<sup>-1</sup>, respectively. The <sup>13</sup>C NMR of 1 exhibited 24 carbon signals as expected which were found to be similar to these of a known metabolite hirsutalin I (8, Chart 3) [30], the difference being that the hydroxymethyl group attached at C-18 in hirsutalin I was replaced by a methyl group in 1. This was confirmed by <sup>1</sup>H NMR spectrum of 1 which shows the presence of two isopropyl methyls at  $\delta$  0.73 (d, J = 7.2 Hz) and 0.97 (d, J = 7.2 Hz) (Table 1). Also, NMR data revealed that the n-butanoyloxy group at C-3 in 8 was replaced by an acetoxy group in 1. Key HMBC correlations from H-2 to C-6; H-1, H<sub>2</sub>-8, and H-10 to C-9; H<sub>3</sub>-15 to C-2, C-3 and C-4; H<sub>3</sub>-16 to C-6, C-7 and C-8; H<sub>3</sub>-17 to C-10, C-11 and C-12; and both H<sub>3</sub>-19 and H<sub>3</sub>-20 to C-14 and C-18, permitted the assembly of the carbon skeleton of 1. Based on above results and HMBC correlations (Figure 1), the planar structure of 1 was established. Further, comparison of the NOE correlations of 1 (Figure 2) with those of hirsutalin I, the relative configuration of 1 was thus determined to be the same.

**Table 1.** NMR spectroscopic data for hirsutalins N–P (1–3).

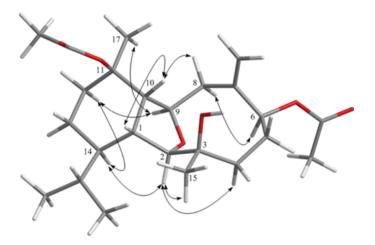

| 1        |                                       |                                          | 2                                       | 3                                     |                                       |                                            |
|----------|---------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------|
| Position | $\delta_{\rm C}$ , mult. $^{\rm a,b}$ | $\delta_{\rm H}$ ( $J$ in Hz) $^{\rm c}$ | $\delta_{\rm C}$ , mult. <sup>a,b</sup> | δ <sub>H</sub> (J in Hz) <sup>c</sup> | $\delta_{\rm C}$ , mult. $^{\rm a,b}$ | $\delta_{\rm H} (J \text{ in Hz})^{\rm c}$ |
| 1        | 49.6, CH                              | 2.55, dd<br>(12.0, 4.4)                  | 41.4, CH                                | 2.25, m                               | 41.9, CH                              | 2.18, m                                    |
| 2        | 78.0, CH                              | 3.80, s                                  | 91.3, CH                                | 3.56, s                               | 90.8, CH                              | 3.56, s                                    |
| 3        | 81.3, C                               | -                                        | 74.0, C                                 | -                                     | 74.7, C                               | -                                          |
|          | 27.7, CH <sub>2</sub>                 | 1.36, m                                  | 34.9, CH <sub>2</sub>                   | 1.75, m                               | 41.0, CH <sub>2</sub>                 | 1.83, m                                    |
| 4        | -                                     | 2.92, dd<br>(11.8, 4.4)                  | -                                       | -                                     | -                                     | -                                          |
| 5        | 20.6, CH <sub>2</sub>                 | 1.34, m                                  | 32.0, CH <sub>2</sub>                   | 1.99, m                               | 25.7, CH <sub>2</sub>                 | 1.98, m                                    |
| 6        | 80.4, CH                              | 1.66, m<br>3.82, dd<br>(11.4, 6.0)       | 76.4, CH                                | 5.19, dd (12.0, 6.0)                  | 90.8, CH                              | 4.07, m                                    |
| 7        | 85.4, C                               | -                                        | 149.0, C                                | -                                     | 76.6, C                               | -                                          |
|          | 49.5, CH <sub>2</sub>                 | 2.00, d (12.0)                           | 41.4, CH <sub>2</sub>                   | 3.12, dd (13.6, 6.0)                  | 47.0, CH <sub>2</sub>                 | 1.73, m                                    |
| 8        | -                                     | 2.78, d (12.0)                           | -                                       | 2.47, d (13.6)                        | -                                     | 2.30, dd (12.8, 11.6)                      |
| 9        | 211.4, C                              | -                                        | 78.3, CH                                | 4.09, dd (11.2, 6.0)                  | 75.6, CH                              | 4.07, m                                    |
| 10       | 55.2, CH                              | 4.14, dd<br>(4.4, 2.0)                   | 46.4, CH                                | 2.95, dd (11.2, 7.2)                  | 54.4, CH                              | 2.82, t (7.6)                              |
| 11       | 83.3, C                               | -                                        | 82.3, C                                 | -                                     | 82.9, C                               | -                                          |
| 10       | 31.4, CH <sub>2</sub>                 | 2.10, m                                  | 32.5, CH <sub>2</sub>                   | 1.43, m                               | 30.5, CH <sub>2</sub>                 | 1.38, m                                    |
| 12       | -                                     | 2.24, m                                  | -                                       | 2.24, m                               | -                                     | 2.40, m                                    |
| 12       | 19.3, CH <sub>2</sub>                 | 1.61, m                                  | 18.2, CH <sub>2</sub>                   | 1.34, m                               | 17.7, CH <sub>2</sub>                 | 1.20, m                                    |
| 13       | -                                     | 1.25, m                                  | -                                       | 1.45, m                               | -                                     | 1.40, m                                    |
| 14       | 36.5, CH                              | 1.98, m                                  | 42.8, CH                                | 1.20, m                               | 42.6, CH                              | 1.22, m                                    |
| 15       | 23.6, CH <sub>3</sub>                 | 1.53, s                                  | 27.4, CH <sub>3</sub>                   | 1.19, s                               | 30.3, CH <sub>3</sub>                 | 1.16, s                                    |

|     | 1 |   | 4 | $\sim$ |  |
|-----|---|---|---|--------|--|
| ല   | h | Δ |   | Cont.  |  |
| - 4 |   |   |   | COULT. |  |


| 16      | 22.9, CH <sub>3</sub> | 1.13, s       | 118.3, CH <sub>2</sub> | 5.29, s       | 23.8, CH <sub>3</sub> | 1.16, s       |
|---------|-----------------------|---------------|------------------------|---------------|-----------------------|---------------|
| 10      | -                     | -             | -                      | 5.53, s       | -                     | -             |
| 17      | 24.3, CH <sub>3</sub> | 1.45, s       | 25.5, CH <sub>3</sub>  | 1.52, s       | 24.5, CH <sub>3</sub> | 1.46, s       |
| 18      | 27.2, CH              | 1.87, m       | 27.9, CH               | 1.80, m       | 29.1, CH              | 1.71, m       |
| 19      | 14.5, CH <sub>3</sub> | 0.73, d (7.2) | 15.0, CH <sub>3</sub>  | 0.78, d (6.8) | 15.0, CH <sub>3</sub> | 0.78, d (6.8) |
| 20      | 21.7, CH <sub>3</sub> | 0.97, d (7.2) | 21.8, CH <sub>3</sub>  | 0.94, d (6.8) | 21.8, CH <sub>3</sub> | 0.94, d (6.8) |
| 2.04.   | 22.4, CH <sub>3</sub> | 2.00, s       | -                      | -             | -                     | -             |
| 3-OAc   | 169.7, C              | -             | -                      | -             | -                     | -             |
| 11.04.  | 22.3, CH <sub>3</sub> | 2.19, s       | 22.6, CH <sub>3</sub>  | 2.00, s       | 22.6, CH <sub>3</sub> | 2.00, s       |
| 11-OAc  | 170.1, C              | -             | 170.3, C               | -             | 170.2, C              | -             |
| ( O A - | -                     | -             | 21.4, CH <sub>3</sub>  | 1.99, s       | -                     | -             |
| 6-OAc   | -                     | -             | 170.5, C               | -             | -                     | -             |
| 6-OMe   | -                     | -             | -                      | -             | 57.1, CH <sub>3</sub> | 3.37, s       |

<sup>&</sup>lt;sup>a</sup> Spectra recorded at 100 MHz in CDCl<sub>3</sub>; <sup>b</sup> multiplicity deduced from DEPT; <sup>c</sup> spectra recorded at 400 MHz in CDCl<sub>3</sub>.

Figure 1. COSY and HMBC correlations for 1, 2, 4 and 5.




**Figure 2.** Key NOESY correlations for 1.



Hirsutalin O (2) was also afforded as a colorless oil. Compound 2 has a molecular formula  $C_{24}H_{38}O_6$ , as determined by HRESIMS. In comparing NMR data of 2 with those of the known compound simplexin A (9, Chart 3) [11], it was found that the *n*-butanoyloxy group at C-3 and the hydroxy group at C-6 in simplexin A (9) were replaced by a hydroxy group and acetoxy group in 2, respectively, as confirmed by the downfield shift of C-3 ( $\delta_C$  81.3) of 1, relative to that of 2 ( $\delta_C$  74.0), and the HMBC connectivity from H-6 ( $\delta$  5.19) to the carbonyl carbon resonating at  $\delta$  170.5 (C) (Table 1). The relative configuration of 2 was confirmed to be the same as that of 9 by analysis of NOE correlations (Figure 3).

Figure 3. Key NOESY correlations for 2.



The new eunicellin, hirsutalin P (3), has a molecular formula  $C_{23}H_{40}O_6$  as determined by HRESIMS. The spectroscopic data (IR,  $^1H$  NMR, and  $^{13}C$  NMR) of 3 were similar to those of a known one, klysimplex G (10, Chart 3) [12], except that the acetoxy group at C-3 and the hydroxy group at C-6 in 10 were replaced by a hydroxy group and methoxy group, respectively, in 3. The similar  $^1H$  NMR data and the analysis of NOE correlations of 3 further revealed the same relative configuration of both compounds. Thus, the structure of 3 was established.

Chart 3. Structures of known compounds 8–11.

Hirsutalin Q (4) was obtained as a colorless oil and exhibited a molecular formula  $C_{22}H_{36}O_5$ . IR absorptions of 4 showed the presence of hydroxy and carbonyl groups at 3421 and 1724 cm<sup>-1</sup>, respectively. The NMR spectroscopic data revealed the presence of a trisubstituted double bond ( $\delta_H$  5.28, s, 1H;  $\delta_C$  128.4, CH and 139.4, C) (Table 2). One ester carbonyl ( $\delta_C$  170.2) was assigned from the <sup>13</sup>C NMR spectrum and was HMBC correlated with an acetate methyl ( $\delta_H$  1.99 s). The

chemical shift of  $H_3$ -15 at  $\delta$  1.18 indicated the presence of a hydroxy group substitution at C-3, the same as that in compounds **2** and **3**. The presence of an acetoxy group at C-11 could be seen from the more downfield shift of  $H_3$ -17 ( $\delta$  1.53), in comparison with that of  $H_3$ -15 ( $\delta$  1.18). The planar structure of metabolite **1** was elucidated by analysis of COSY and HMBC correlations (Figure 1). The *Z* geometry of the double bond at C-7 and C-8 was evidenced by the presence of NOE correlation between H-8 and  $H_3$ -16. In the NOESY spectrum of **4**, observation of the NOE correlation between H-1 with H-10 suggested that H-1 and H-10 are  $\beta$ -oriented. Also, correlations between H-2 with both H-14 and  $H_3$ -15; H-9 with both H-14 and  $H_3$ -17; and H-6 with  $H_3$ -15 suggested that all of H-2, H-6, H-9, H-14,  $H_3$ -15 and  $H_3$ -17 are  $\alpha$ -oriented. Thus, the structure of diterpenoid **4** was established.

A structurally-related metabolite, hirsutalin R (**5**), was also isolated as a colorless oil with a molecular formula of  $C_{28}H_{42}O_7$ . Two ester carbonyl carbons ( $\delta_C$  169.0 and 173.5) were correlated in the HMBC spectrum with the methine proton (H-2',  $\delta_H$  4.76 t, J=6.8 Hz) of a 2-butyryloxybutanoate unit. Moreover, the <sup>13</sup>C NMR spectroscopic data (Table 2) of **5** showed the presence of two 1, 1-disubstituted carbon–carbon double bonds ( $\delta_C$  147.7 (C) and 118.4 (CH<sub>2</sub>); 145.2 (C) and 111.6 (CH<sub>2</sub>)). Comparison of the NMR data of **5** with those of hirsutalin C (**11**, Chart 3) [29] revealed that the only difference between both compounds is the replacement of the hydroxy group in hirsutalin C by a ketone ( $\delta_C$  206.5) at C-6 in **5**. The absolute configuration of hirsutalin A [29] and hirsutalin J [30] have been completely assigned based on NOE correlations and Mosher's method. Compounds **1–5** are likely in the same enantiomeric series as hirsutalin A and hirsutalin J, based on a shared biosynthetic pathway. Thus, these compounds are suggested to possess the absolute configurations as shown in formula **1–5**.

**Table 2.** NMR spectroscopic data for hirsutalins Q and R (4 and 5).

|          | 4                                     |                                          |                                       | 5                                  |
|----------|---------------------------------------|------------------------------------------|---------------------------------------|------------------------------------|
| Position | $\delta_{\rm C}$ , mult. $^{\rm a,b}$ | $\delta_{\rm H}$ ( $J$ in Hz) $^{\rm c}$ | $\delta_{\rm C}$ , mult. $^{\rm a,b}$ | $\delta_{\rm H}$ ( $J$ in Hz) $^c$ |
| 1        | 40.9, CH                              | 2.35, m                                  | 45.0, CH                              | 2.25, m                            |
| 2        | 90.8, CH                              | 3.57, s                                  | 90.8, CH                              | 3.69, s                            |
| 3        | 74.7, C                               | -                                        | 86.0, C                               | -                                  |
| 4        | $37.2, CH_2$                          | 1.83, m;                                 | 32.2, CH <sub>2</sub>                 | 2.12, m                            |
| 5        | 25.7, CH <sub>2</sub>                 | 1.81, m                                  | 36.4, CH <sub>2</sub>                 | 2.68, m                            |
| 3        | -                                     | 1.90, m                                  | -                                     | 2.28, m                            |
| 6        | 70.6, CH                              | 5.48, d (8.8) <sup>d</sup>               | 206.5, CH                             | -                                  |
| 7        | 139.4, C                              | -                                        | 147.7, C                              | -                                  |
| 0        | 128.4, CH                             | 5.28, s                                  | 37.3, CH <sub>2</sub>                 | 3.22, dd (13.2, 5.6)               |
| 8        | -                                     | -                                        | -                                     | 2.34, m                            |
| 9        | 78.6, CH                              | 4.47, d (6.0)                            | 78.4, CH                              | 4.08, m                            |
| 10       | 54.9, CH                              | 2.70, t (7.2)                            | 48.8, CH                              | 3.08, dd (9.6, 7.6)                |
| 11       | 83.0, C                               | -                                        | 145.2, C                              | -                                  |
| 12       | 30.4, CH <sub>2</sub>                 | 1.32, m                                  | 31.2, CH <sub>2</sub>                 | 2.08, m                            |
| 12       | -                                     | 1.52, m                                  | -                                     | 2.27, m                            |
| 12       | 18.4, CH <sub>2</sub>                 | 1.35, m                                  | 25.9, CH <sub>2</sub>                 | 1.10, m                            |
| 13       | -                                     | 1.45, m                                  | -                                     | 1.65, m                            |
| 14       | 42.1, CH                              | 1.26, m                                  | 37.5, CH                              | 1.66, m                            |

| Table 2. Con | nt |
|--------------|----|

| 15                     | 27.7, CH <sub>3</sub> | 1.18, s       | 22.7, CH <sub>3</sub>  | 1.48, s       |
|------------------------|-----------------------|---------------|------------------------|---------------|
| 1.6                    | 17.9, CH <sub>3</sub> | 1.79, s       | 118.4, CH <sub>2</sub> | 5.27, s       |
| 16                     | -                     | -             | -                      | 5.62, s       |
| 17                     | 23.7, CH <sub>3</sub> | 1.53, s       | 111.6, CH <sub>2</sub> | 4.72, s       |
| 17                     | -                     | -             | -                      | 4.85, s       |
| 18                     | 29.2, CH              | 1.72, m       | 36.4, CH               | 1.78, m       |
| 19                     | 16.5, CH <sub>3</sub> | 0.83, d (7.2) | 16.3, CH <sub>3</sub>  | 0.79, d (7.2) |
| 20                     | 21.9, CH <sub>3</sub> | 0.96, d (7.2) | 66.4, CH <sub>2</sub>  | 3.52, d (7.2) |
| 11.04 -                | 22.6, CH <sub>3</sub> | 1.99, s       | -                      | -             |
| 11-OAc                 | 170.2, C              | -             | -                      | -             |
| 2-butanoyloxybutanoate | -                     | -             | -                      | -             |
| 1′                     | -                     | -             | 169.0, C               | -             |
| 2'                     | -                     | -             | 73.6, CH               | 4.76, t (6.8) |
| 3'                     | -                     | -             | 24.5, CH <sub>2</sub>  | 1.83, m       |
| 4′                     | -                     | -             | 9.7, CH <sub>3</sub>   | 1.03, t (7.2) |
| 1"                     | -                     | -             | 173.5, C               | -             |
| 2"                     | -                     | -             | 35.8, CH <sub>2</sub>  | 2.40, m       |
| 3"                     | -                     | -             | 18.3, CH <sub>2</sub>  | 1.66, m       |
| 4''                    | -                     | -             | 13.6, CH <sub>3</sub>  | 0.98, t (7.2) |

<sup>&</sup>lt;sup>a</sup> Spectra recorded at 100 MHz in CDCl<sub>3</sub>; <sup>b</sup> Multiplicity deduced from DEPT; <sup>c</sup> Spectra recorded at 400 MHz in CDCl<sub>3</sub>.

Cytotoxicity of compounds 1–7 against the proliferation of a limited panel of cancer cell lines, including P388 (murine leukemia), K562 (human erythro myeloblastoid leukemia), A549 (human lung adenocarcinoma), and HT-29 (human colon adenocarcinoma), was evaluated. Compound 5 was found to exhibit cytotoxicity toward P388 and K562 cell lines with IC<sub>50</sub> values of 13.8 and 36.3  $\mu$ M (Table 3). Compound 7 displayed cytotoxicity toward A549 cell line with IC<sub>50</sub> value of 37.2  $\mu$ M. Other metabolites were found to be inactive against the four cancer cells. The neutrophil pro-inflammatory responses to compounds 1–7 were evaluated by suppressing *N*-formyl-methionyl-leucyl-phenylalanine/ cytochalasin B (fMLP/CB)-induced superoxide anion (O<sub>2</sub>· ) generation and elastase release in human neutrophils, as shown in Table 4. At a concentration of 10  $\mu$ g/mL, none of compounds were able to significantly reduce the expression of superoxide anion generation, relative to the control cells stimulated with fMLP/CB only. At the same concentration, compound 1 was found to significantly inhibit the elastase release (31.7% ± 3.2% inhibition) in the same fMLP/CB-stimulated neutrophils.

**Table 3.** Cytotoxicity (IC<sub>50</sub>  $\mu$ M) of compounds **5** and **7**.

| Compound       | P388 | K562 | HT-29 | A-549 |
|----------------|------|------|-------|-------|
| 5              | 13.8 | 36.3 | (-) a | (-)   |
| 7              | (-)  | (-)  | (-)   | 37.2  |
| 5-Fluorouracil | 8.5  | 24.6 | 20.8  | 38.5  |

<sup>&</sup>lt;sup>a</sup>  $IC_{50} > 40 \mu M$ .

**Table 4.** Effect of compounds 1–7 on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils at  $10~\mu g/mL$ .

| Commonada | Superoxi               | de Anion      | Elastase Release       |                |     |  |
|-----------|------------------------|---------------|------------------------|----------------|-----|--|
| Compounds | $IC_{50} (\mu g/mL)^a$ | Inhibition %  | $IC_{50} (\mu g/mL)^a$ | Inhibitio      | n % |  |
| 1         | >10                    | $1.0 \pm 5.5$ | >10                    | $31.7 \pm 3.2$ | *** |  |
| 2         | >10                    | $9.6 \pm 5.5$ | >10                    | $11.5 \pm 5.0$ | -   |  |
| 3         | >10                    | $1.7 \pm 0.7$ | >10                    | $17.9 \pm 6.9$ | *   |  |
| 4         | >10                    | $6.1 \pm 2.6$ | >10                    | $6.4 \pm 2.4$  | -   |  |
| 5         | >10                    | $6.5 \pm 2.9$ | >10                    | $13.6 \pm 4.9$ | *   |  |
| 6         | >10                    | $1.0 \pm 1.9$ | >10                    | $6.1 \pm 5.6$  | -   |  |
| 7         | >10                    | $4.2 \pm 3.8$ | >10                    | $3.1 \pm 6.9$  | -   |  |

Percentage of inhibition (Inh %) at 10  $\mu$ M concentration. Results are presented as mean  $\pm$  S.E.M. (n = 3 or 4). \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001 compared with the control value. <sup>a</sup> Concentration necessary for 50% inhibition (IC<sub>50</sub>).

# 3. Experimental Section

## 3.1. General Experimental Procedures

Silica gel (230–400 mesh, Merck, Darmstadt, Germany) was used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F-254, 0.2 mm) were used for analytical TLC. High-performance liquid chromatography was performed on a Hitachi L-7100 HPLC apparatus with a Hitachi L-2455 HPLC apparatus (Hitachi Ltd., Tokyo, Japan) with a Supelco C18 column (250 × 21.2 mm, 5 μm). NMR spectra were recorded on a Varian 400MR FT-NMR instrument (Varian Inc, Palo Alto, CA, USA) at 400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C in CDCl<sub>3</sub>. LRMS and HRMS were obtained by ESI on a Bruker APEX II mass spectrometer (Bruker, Bremen, Germany). Optical rotations were measured on a JASCO P-1020 polarimeter. IR spectra were recorded on a JASCO FT/IR-4100 infrared spectrophotometer (Japan Spectroscopic Corporation, Tokyo, Japan).

## 3.2. Animal Material

The animal *Cladiella hirsuta* was collected by hand using SCUBA off the coast of Sianglu Islet (23°32' N, 119°38' E) in the region of Penghu Islands, in June 2008, at a depth of 10 m, and was stored in a freezer until extraction. A voucher sample (PI-20080610-17) was deposited at the Department of Marine Biotechnology and Resources, National Sun Yat-sen University.

## 3.3. Extraction and Separation

The frozen bodies of *C. hirsuta* (3.1 kg, wet wt) were sliced and exhaustively extracted with acetone (3 × 10 L). The organic extract was concentrated to an aqueous suspension and was partitioned between ethyl acetate (EtOAc) and  $H_2O$ . The EtOAc layer was dried with anhydrous  $Na_2SO_4$ . After removal of solvent in vacuo, the residue (32.8 g) was subjected to column chromatography on silica gel and eluted with EtOAc in *n*-hexane (0%–100% of EtOAc, gradient) and further with MeOH in EtOAc of increasing polarity to yield 25 fractions. Fraction 18, eluting with *n*-hexane–EtOAc (1:1), was rechromatographed over a Sephadex LH-20 column using acetone as the

mobile phase to afford four subfractions (A1–A4). Subfractions A3 and A4 were combined and separated by reversed-phase HPLC (MeOH–H<sub>2</sub>O, 3:1 and 2:1) to afford compounds **4** (1.8 mg), **5** (1.4 mg), **6** (27.7 mg) and **7** (5.6 mg). Fraction 19, eluting with *n*-hexane–EtOAc (1:2), was rechromatographed over a Sephadex LH-20 column, using acetone as the mobile phase, to afford four subfractions (B1–B4). Subfractions B2 and B3 were combined and separated by reversed-phase HPLC (acetonitrile–H<sub>2</sub>O, 3:1 and 2:1) to afford compounds **1** (9.2 mg), **2** (4.0 mg) and **3** (1.8 mg).

Hirsutalin N (1): colorless oil;  $[\alpha]^{25}_D$  –98 (*c* 0.54, CHCl<sub>3</sub>); IR (neat)  $v_{\text{max}}$  3451 and 1733 cm<sup>-1</sup>; <sup>13</sup>C and <sup>1</sup>H NMR data (400 MHz; CDCl<sub>3</sub>), see Table 1; ESIMS m/z 461 [M + Na]<sup>+</sup>; HRESIMS m/z 461.2518 [M + Na]<sup>+</sup>(calcd for C<sub>24</sub>H<sub>38</sub>O<sub>7</sub>Na, 461.2515) (Supplementary Information, Figures S1–S3).

Hirsutalin O (2): colorless oil;  $[\alpha]^{25}_D$  –128 (*c* 0.68, CHCl<sub>3</sub>); IR (neat)  $v_{\text{max}}$  3482 and 1729 cm<sup>-1</sup>; <sup>13</sup>C and <sup>1</sup>H NMR data (400 MHz; CDCl<sub>3</sub>), see Table 1; ESIMS m/z 445 [M + Na]<sup>+</sup>; HRESIMS m/z 445.2564 [M + Na]<sup>+</sup>(calcd for C<sub>24</sub>H<sub>38</sub>O<sub>6</sub>Na, 445.2566) (Supplementary Information, Figures S4–S6).

Hirsutalin P (3): colorless oil;  $[\alpha]^{25}_D$  +27 (*c* 0.54, CHCl<sub>3</sub>); IR (neat)  $v_{\text{max}}$  3426 and 1730 cm<sup>-1</sup>; <sup>13</sup>C and <sup>1</sup>H NMR data (400 MHz; CDCl<sub>3</sub>), see Table 1; ESIMS m/z 435 [M + Na]<sup>+</sup>; HRESIMS m/z 435.2720 [M + Na]<sup>+</sup>(calcd for C<sub>23</sub>H<sub>40</sub>O<sub>6</sub>Na, 435.2722) (Supplementary Information, Figures S7–S9).

Hirsutalin Q (4): colorless oil;  $[\alpha]^{25}_D$  +12 (*c* 0.51, CHCl<sub>3</sub>); IR (neat)  $v_{max}$  3421 and 1724 cm<sup>-1</sup>; <sup>13</sup>C and <sup>1</sup>H NMR data (400 MHz; CDCl<sub>3</sub>), see Table 2; ESIMS m/z 403 [M + Na]<sup>+</sup>; HRESIMS m/z 403.2457 [M + Na]<sup>+</sup>(calcd for C<sub>22</sub>H<sub>36</sub>O<sub>5</sub>Na, 403.2460) (Supplementary Information, Figures S10–S12).

Hirsutalin R (**5**): yellow oil;  $[\alpha]^{25}_D$  –18 (*c* 0.54, CHCl<sub>3</sub>); IR (neat)  $v_{\text{max}}$  3437 and 1740 cm<sup>-1</sup>; <sup>13</sup>C and <sup>1</sup>H NMR data (400 MHz; CDCl<sub>3</sub>), see Table 2; ESIMS m/z 513 [M + Na]<sup>+</sup>; HRESIMS m/z 513.2831 [M + Na]<sup>+</sup>(calcd for C<sub>28</sub>H<sub>42</sub>O<sub>7</sub>Na, 513.2828) (Supplementary Information, Figures S13–S15).

# 3.4. Cytotoxicity Testing

Cell lines were purchased from the American Type Culture Collection (ATCC). Cytotoxicity assays of compounds **1–7** were performed using the Alamar Blue assay [32,33].

# 3.5. In Vitro Anti-Inflammatory Assay

Human neutrophils were obtained using dextran sedimentation and Ficoll centrifugation. Measurements of superoxide anion generation and elastase release were carried out according to previously described procedures. [34,35]. LY294002, a phosphatidylinositol-3-kinase inhibitor, was used as a positive control for inhibition of superoxide anion generation and elastase release with  $IC_{50}$  0.6  $\pm$  0.1 and 1.2  $\pm$  0.3  $\mu g/mL$  [36].

## 4. Conclusions

Five new eunicellin-type compounds, hirsutalins N–R (1–5) and two known eunicellin-type compounds (6 and 7), were discovered from the soft coral *C. hirsuta*. Compound 5 displayed cytotoxicity against the proliferation of P388 and K562 cancer cells possibly due to the presence of the  $\alpha,\beta$ -unsaturated ketone group. Compound 1 was found to effectively inhibit the elastase release in FMLP/CB-induced human neutrophils.

# Acknowledgments

This research was supported by grants from the National Science Council (100-2320-B-110-001-MY2), NSYSU-KMU JOINT RESEARCH PROJECT (NSYSUKMU 02C030117) and Aim for the Top University Program (02C030205) from Ministry of Education of Taiwan, awarded to J.-H. Sheu.

## **Author Contributions**

Jyh-Horng Sheu designed the whole experiment and contributed to manuscript preparation. Tzu-Zin Huang and Bo-Wei Chen carried out the experiment and wrote the manuscript. Chiung-Yao Huang and Tsong-Long Hwang performed and analyzed the bioassay. Chang-Feng Dai identified the soft coral.

## **Conflicts of Interest**

The authors declare no conflict of interest.

## References

- 1. Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Schönholzer, P. Two new diterpenes related to eunicellin from a *Cladiella* species (soft coral). *Tetrahedron Lett.* **1977**, *18*, 4643–4646.
- 2. Hochlowski, J.E.; Faulkner, D.J. A diterpene related to cladiellin from a Pacific soft coral. *Tetrahedron Lett.* **1980**, *21*, 4055–4056.
- 3. Uchio, Y.; Nakatani, M.; Hase, T.; Kodama, M.; Usui, S.; Fukazawa, Y. A new eunicellin-based diterpene from an Okinawan soft coral, *Cladiella* sp. *Tetrahedron Lett.* **1989**, *30*, 3331–3332.
- 4. Uchio, Y.; Kodama, M.; Usui, S.; Fukazawa, Y. Three new eunicellin-based diterpenoids from an Okinawan *Cladiella* species of soft coral. *Tetrahedron Lett.* **1992**, *33*, 1317–1320.
- 5. Sarma, N.S.; Chavakula, R.; Rao, I.N. Crystal and molecular structure of sclerophytin F methyl ether from the soft coral *Cladiella krempfi. J. Nat. Prod.* **1993**, *56*, 1977–1980.
- 6. Rao, C.B.; Rao, D.S.; Satyanarayana, C.; Rao, D.V.; Kassühlke, K.E.; Faulkner, D.J. New cladiellane diterpenes from the soft coral *Cladiella australis* of the Andaman and Nicobar Islands. *J. Nat. Prod.* **1994**, *57*, 574–580.
- 7. Rao, D.S.; Sreedhara, C.; Rao, D.V.; Rao, C.B. Two new cladiellane diterpenes from the soft coral *Cladiella australis* of the Indian Ocean. *Ind. J. Chem. Sect. B* **1994**, *33B*, 198–199.
- 8. Yamada, K.; Ogata, N.; Ryu, K.; Miyamoto, T.; Komori, T.; Higuchi, R. Bioactive terpenoids from octocorallia. 3. A new eunicellin-based diterpenoid from the soft coral *Cladiella sphaeroides*. *J. Nat. Prod.* **1997**, *60*, 393–396.
- 9. Chill, L.; Berrer, N.; Benayahu, Y.; Kashman, Y. Eunicellin diterpenes from two Kenyan soft corals. *J. Nat. Prod.* **2005**, *68*, 19–25.
- 10. Ahmed, A.F.; Wu, M.-H.; Wang, G.-H.; Wu, Y.-C.; Sheu, J.-H. Eunicellin-based diterpenoids, australins A–D, isolated from the soft coral *Cladiella australis*. *J. Nat. Prod.* **2005**, *68*, 1051–1055.
- 11. Wu, S.-L.; Su, J.-H.; Wen, Z.-H.; Hsu, C.-H.; Chen, B.-W.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. Simplexins A–I, eunicellin-based diterpenoids from soft coral *Klyxum simplex. J. Nat. Prod.* **2009**, *72*, 994–1000.

12. Chen, B.-W.; Wu, Y.-C.; Chiang, M.Y.; Su, J.-H.; Wang, W.-H.; Fan, T.-Y.; Sheu, J.-H.; Eunicellin-based diterpenes from the soft coral *Klyxum simplex*. *Tetrahedron* **2009**, *65*, 7016–7022.

- 13. Chen, B.-W.; Chao, C.-H.; Su, J.-H.; Wen, Z.-H.; Sung, P.-J.; Sheu, J.-H. Anti-inflammatory eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex*. *Org. Biomol. Chem.* **2010**, *8*, 2363–2366.
- 14. Hassan, H.M.; Khanfar, M.A.; Elnagar, A.Y.; Mohammed, R.; Shaala, L.A.; Youssef, D.T.A.; Hifnawy, M.S.; El Sayed, K.A. Pachycladins A–E, prostate cancer invasion and migration inhibitory eunicellin-based diterpenoids from the Red Sea soft coral *Cladiella pachyclados*. *J. Nat. Prod.* **2010**, *73*, 848–853.
- 15. Williams, D.E.; Amlani, A.; Dewi, A.S.; Patrick, B.O.; van Ofwegen, L.; Mui, A.L.-F.; Andersen, R.J. Australin E isolated from the soft coral *Cladiella* sp. collected in Pohnpei activates the inositol 5-phosphatase SHIP1. *Aust. J. Chem.* **2010**, *63*, 895–900.
- 16. Chen, Y.-H.; Tai, C.-Y.; Hwang, T.-L.; Weng, C.-F.; Li, J.-J.; Fang, L.-S.; Wang, W.-H.; Wu, Y.-C.; Sung, P.-Y. Cladielloides A and B: New eunicellin-type diterpenoids from an Indonesian octocoral *Cladiella* sp. *Mar. Drugs* **2010**, *8*, 2936–2945.
- 17. Chen, B.-W.; Chao, C.-H.; Su, J.-H.; Tsai, C.-W.; Wang, W.-H.; Wen, Z.-H.; Hsieh, C.-H.; Sung, P.-J.; Wu, Y.-C.; Sheu, J.-H. Klysimplexins I–T, eunicellin-based diterpenoids from the cultured soft coral *Klyxum simplex. Org. Biomol. Chem.* **2011**, *9*, 834–844.
- 18. Ciavatta, M.L.; Manzo, E.; Mollo, E.; Mattia, C.A.; Tedesco, C.; Irace, C.; Guo, Y.-W.; Li, X.-B.; Cimino, G.; Gavagnin, M. Tritoniopsins A–D, cladiellane-based diterpenes from the South China Sea nudibranch *Tritoniopsis elegans* and its prey *Cladiella krempfi. J. Nat. Prod.* **2011**, *74*, 1902–1907.
- 19. Chen, Y.-H.; Tai, C.-Y.; Kuo, Y.-H.; Li, J.-J.; Hwang, T.-L.; Fang, L.-S.; Wang, W.-H.; Sheu, J.-H.; Sung, P.-J. Cladieunicellins A–E, new eunicellins from an Indonesian soft coral *Cladiella* sp. *Chem. Pharm. Bull.* **2011**, *59*, 353–358.
- 20. Wu, S.-L.; Su, J.-H.; Lu, Y.; Chen, B.-W.; Huang, C.-Y.; Wen, Z.-H.; Kuo, Y.-H.; Sheu, J.-H. Simplexins J-O, eunicellin-based diterpenoids from a Dongsha Atoll soft coral *Klyxum simplex*. *Bull. Chem. Soc. Jpn.* **2011**, *84*, 626–632.
- 21. Hsu, F.-J.; Chen, B.-W.; Wen, Z.-H.; Huang, C.-Y.; Dai, C.-F.; Su, J.-H.; Wu, Y.-C.; Sheu, J.-H. Klymollins A–H, bioactive eunicellin-based diterpenoids from the Formosan soft coral *Klyxum molle*. *J. Nat. Prod.* **2011**, 74, 2467–2471.
- 22. Tai, C.-J.; Su, J.-H.; Huang, M.-S.; Wen, Z.-H.; Dai, C.-F.; Sheu, J.-H. Bioactive eunicellin-based diterpenoids from the soft coral *Cladiella krempfi*. *Mar. Drugs* **2011**, *9*, 2036–2045.
- 23. Chen, Y.-H.; Tai, C.-Y.; Su, Y.-D.; Chang, Y.-C.; Lu, M.-C.; Weng, C.-F.; Su, J.-H.; Hwang, T.-L.; Wu, Y.-C.; Sung, P.-J. Discovery of new eunicellins from an Indonesian octocoral *Cladiella* sp. *Mar. Drugs* **2011**, *9*, 934–943.
- 24. Lin, M.-C.; Chen, B.-W.; Huang, C.-Y.; Dai, C.-F.; Hwang, T.-L.; Sheu, J.-H. Eunicellin-based diterpenoids from the Formosan soft coral *Klyxum molle* with inhibitory activity on superoxide generation and elastase release by neutrophils. *J. Nat. Prod.* **2013**, *76*, 1661–1667.
- 25. Tai, C.-J.; Su, J.-H.; Huang, C.-Y.; Huang, M.-S.; Wen, Z.-H.; Dai, C.-F.; Sheu, J.-H. Cytotoxic and anti-inflammatory eunicellin-based diterpenoids from the soft coral *Cladiella krempfi*. *Mar. Drugs* **2013**, *11*, 788–799.

26. Chen, T.-H.; Lu, M.-C.; Chang, Y.-C.; Su, Y.-D.; Chen, Y.-H.; Lin, N.-C.; Fang, L.-S.; Wu, Y.-C.; Sung, P.-J. Discovery of new eunicellin-based diterpenoids from a Formosan soft coral *Cladiella* sp. *Mar. Drugs* **2013**, *11*, 4585–4593.

- 27. Lee, Y.-N.; Tai, C.-J.; Huang, T.-L.; Sheu, J.-H. Krempfielins J–M, new eunicellin-based diterpenoids from the soft coral *Cladiella krempfi*. *Mar. Drugs* **2013**, *11*, 2741–2750.
- 28. Cai, Y.-S.; Yao, L.-G.; Di Pascale, A.; Irace, C.; Mollo, E.; Taglialatela-Scafati, O.; Guo, Y.-W. Polyoxygenated diterpenoids of the eunicellin-type from the Chinese soft coral *Cladiella krempfi*. *Tetrahedron* **2013**, *69*, 2214–2219.
- 29. Chen, B.-W.; Chang, S.-M.; Huang, C.-Y.; Chao, C.-H.; Su, J.-H.; Wen, Z.-H.; Hsu, C.-H.; Dai, C.-F.; Wu, Y.-C.; Sheu, J.-H. Hirsutalins A–H, eunicellin-based diterpenoids from the soft coral *Cladiella hirsuta*. *J. Nat. Prod.* **2010**, *73*, 1785–1791.
- 30. Chen, B.-W.; Wang, S.-Y.; Huang, C.-Y.; Chen, S.-L.; Wu, Y.-C.; Sheu, J.-H. Hirsutalins I–M, eunicellin-based diterpenoids from the soft coral *Cladiella hirsuta*. *Tetrahedron* **2013**, *69*, 2296–2301.
- 31. Chen, B.-W.; Chang, S.-M.; Huang, C.-Y.; Su, J.-H.; Wen, Z.-H.; Wu, Y.-C.; Sheu, J.-H. Hirsutosterols A–G, polyoxygenated steroids from a Formosan soft coral *Cladiella hirsuta*. *Org. Biomol. Chem.* **2011**, *9*, 3272–3278.
- 32. O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. *Eur. J. Biochem.* **2000**, *267*, 5421–5426.
- 33. Nakayama, G.R.; Caton, M.C.; Nova, M.P.; Parandoosh, Z. Assessment of the Alamar Blue assay for cellular growth and viability *in vitro*. *J. Immunol. Methods* **1997**, *204*, 205–208.
- 34. Hwang, T.-L.; Wang, C.-C.; Kuo, Y.-H.; Huang, H.-C.; Wu, Y.-C.; Kuo, L.-M.; Wu, Y.-H. The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. *Biochem. Pharmacol.* **2010**, *80*, 1190–1200.
- 35. Hwang, T.-L.; Leu, Y.-L.; Kao, S.-H.; Tang, M.-C.; Chang, H.-L. Viscolin, a new chalcone from *Viscum coloratum*, inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway. *Free Radic. Biol. Med.* **2006**, *41*, 1433–1441.
- 36. Lee, Y.-N.; Tai, C.-J.; Huang, T.-L.; Sheu, J.-H. Krempfielins N–P, new anti-flammatory eunicellins from a Taiwanese soft coral *Cladiella krempfi. Mar. Drugs* **2014**, *12*, 1148–1156.
- © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).