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Abstract: In this paper, we report new protease inhibitory activity of plakortide E towards 
cathepsins and cathepsin-like parasitic proteases. We further report on its anti-parasitic 
activity against Trypanosoma brucei with an IC50 value of 5 μM and without cytotoxic 
effects against J774.1 macrophages at 100 μM concentration. Plakortide E was isolated 
from the sponge Plakortis halichondroides using enzyme assay-guided fractionation  
and identified by NMR spectroscopy and mass spectrometry. Furthermore, enzyme  
kinetic studies confirmed plakortide E as a non-competitive, slowly-binding, reversible 
inhibitor of rhodesain. 

Keywords: Plakortis halichondroides; plakortide E; protease inhibitor; slowly-binding 
reversible inhibitor; cathepsin; rhodesain  

 

OPEN ACCESS



Mar. Drugs 2014, 12 2615 
 

 

1. Introduction 

Proteases enable breakdown of proteins via catalytic hydrolysis of peptide bonds [1]. Malfunction 
in the control of protease activity leads to undesired and unregulated proteolysis which causes many 
diseases. Therefore, inhibitors of proteases have the potential to provide successful therapeutics for a 
wide range of diseases [2,3].  

Marine sponges of the family Plakinidae are known to be rich sources of structurally unique and 
biologically active metabolites [4]. Bioactivity-guided fractionation of the crude cyclohexane extract 
from the sponge Plakortis halichondroides yielded a pure endoperoxide metabolite, named  
plakortide E (Figure 1), which was previously isolated from the same sponge species [5,6].  
Plakortide E was previously shown to stimulate sarcoplasmic reticulum (SR) Ca2+ ATPase activity [5]. 
Other endoperoxides from the plakortin family, e.g., six-membered plakortin [7], dihydroplakortin,  
3-epiplakortin, plakortide Q [8] and plakortide M [9], are known to be active against Plasmodia, while 
the five-membered endoperoxide plakortide E was reported to be inactive [10]. In this work, we 
highlight its new anti-protease and anti-parasitic activities. 

2. Results and Discussion 

The lyophilized material of the sponge Plakortis halichondroides was sequentially extracted with 
three different solvents and the crude extracts were tested for protease inhibitory activity against the 
following proteases: Human cysteine proteases cathepsin B [11] and L [12], the related parasite 
enzyme rhodesain [13] from Trypanosoma brucei rhodesiense, and the two cysteine proteases 
expressed by the SARS coronavirus, namely SARS main protease [14] and SARS papain-like  
protease [15]. The active crude cyclohexane extract (CY) was further fractionated using column 
chromatography and finally purified with HPLC to yield the active pure metabolite plakortide E 
(Figure 1). The purification process was based upon the bioactivity results, i.e., only fractions which 
showed activity against the enzymes were purified further. The activity of the fractions gradually 
enhanced with every step of purification process, with the exception of the first cyclohexane extract 
whichshowed very high inhibition of cathepsins B and L (Figure 2) probably being due to presence of 
other non polar active compounds. 

Figure 1. Structure of plakortide E.  
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Figure 2. Protease inhibitory activity of the crude cyclohexane extract (CY), the 
subfractions CYFr III and CY E as well as plakortide E.  

 

The pure metabolite plakortide E was further tested against the parasite cathepsin-L like protease 
falcipain-2 [16] from Plasmodium falciparum, as well as against the mammalian serine proteases 
chymotrypsin and the serine protease from Dengue virus (NS2B/NS3 protease) [17]. Inhibition at  
100 μg/mL (285.71 μM) was only found with the cathepsins and the cathepsin-like proteases  
(Figure 3), especially with cathepsin B, L, rhodesain and SARS PLpro. 

Figure 3. Percent inhibition of proteases by plakortide E at 100 μg/mL (285 μM), tests 
were performed in triplicates. 
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In order to study the inhibition mechanism of plakortide E, enzyme assays [18] with various 
inhibitor and substrate concentrations were performed with cathepsin B to determine whether the 
inhibition is competitive with respect to the substrate. The IC50 values for cathepsin B were determined 
at three different substrate concentrations (50, 100, 200 μM). The values (29, 26, 36 μg/mL, 82, 73, 
103 μM) were almost similar indicating non-competitive inhibition. For cathepsin L, an IC50 of  
37 μg/mL (105 μM) at a substrate concentration of [S] = 6.25 μM and for rhodesain an IC50 of  
44 μg/mL (124 μM) at a substrate concentration of [S] = 30.0 μM was determined. With rhodesain, 
non-linear progress curves for the substrate hydrolysis were observed in the presence of inhibitor. 
Therefore, we determined the time-dependency of inhibition by measuring IC50 values in correlation to 
incubation time of enzyme with the inhibitor added, prior to substrate addition. The IC50 values 
decrease with longer incubation times (5 min → 90 μg/mL (257 μM); 30 min → 72 μg/mL  
(205 μM); 60 min → 27 μg/mL (77 μM)) indicating covalent inhibition or other mechanisms leading 
to slow binding. To address whether the inhibition is reversible or irreversible, further kinetic studies 
were performed as described by Copeland [19]. Dilution assays were performed and compared with 
K11777 [20], an irreversible vinylsulfone-based inhibitor of rhodesain. The enzyme rhodesain 
(100 fold concentration as used in the normal enzyme assays) was preincubated with the 10 fold IC50 
concentration of the compound for one hour, which allows the formation of enzyme-inhibitor 
complexes and leads to total block of enzyme activity. The above complex was then diluted 100 fold 
by adding assay buffer and substrate. Thus, the enzyme concentration was reduced to the one used in 
the normal assays and the inhibitor concentration was reduced to 1/10 of the IC50. If reversible, the 
inhibitor will dissociate from the complex and enzyme activity is recovered. In case of irreversible 
inhibition, dissociation of the complex cannot occur and no enzyme activity will be detected. These 
assays showed reactivation of the enzyme in the case of plakortide E to about 50% activity, while in 
contrast no enzyme activity was detected with K11777. This indicates a reversible inhibition by 
plakortide E. In summary, plakortide E was determined to be a non-competitive, reversible, inhibitor 
of cysteine proteases, in case of rhodesain slow-binding was observed.  

Furthermore, plakortide E was tested against the parasites Leishmania major promastigotes and the 
trypomastigote forms of Trypanosoma brucei, Candida albicans, and was also tested for its 
cytotoxicity against J774.1 macrophages. The compound exhibited trypanocidal activity with an IC50 
value of 5 μM (after 48 h and also after 72 h). This may at least in parts be due to the protease 
inhibiting properties of plakortide E. It did not show activity against Leishmania which also express a 
variety of cathepsin-like proteases [21]. No activity against Candida, and no cytotoxic effects against 
macrophages at 100 μM were observed. Since Leishmania promastigote forms express less cysteine 
proteases than the amastigote forms, the cysteine-protease inhibiting properties of the compound may 
not be sufficient for detectable leishmanicidal activity.  

3. Experimental Section  

The sponge Plakortis halichondroides was collected by SCUBA diving at depths of 30 m in 
Bahamas in July 2008 (GPS: 26°27′3.25″N, 77°54′14.59″W). Sponge tissues were cut into small 
pieces and preserved at −80 °C until extraction. The frozen material was then dried by lyophilization. 
The lyophilized material (640 g) was subsequently macerated and sequentially extracted with 
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cyclohexane (CY), methylene dichloride (DCM), and finally methanol (MeOH). After filtration, the 
crude extracts were concentrated under reduced pressure. The crude cyclohexane extract (15.27 g) was 
chromatographed on a silica gel (200 g) column and eluted with an isocratic solvent 
(cyclohexane/methylene dichloride/methanol/formic acid (2:1:1:0.05)). The eluted fractions were 
combined based upon TLC results to yield five fractions (CYFr I–V). Further fractionation of the 
fraction CYFr III by silica gel column chromatography using the solvent system 
(cyclohexane/methylene dichloride (90:10) with increasing polarity (chloroform/methanol (10:90)) 
afforded seven subfractions (CY A–G). The subfraction CY E was subjected to preparative HPLC 
using a RP 18 column (eluent methanol/water with 0.1% formic acid 70:30, flow 8 mL/min) affording 
3 fractions (CY M, N and P). The fraction CY N was further purified using preparative HPLC using 
RP 18 column (methanol/water amended with 0.1% formic acid 70:30, flow 8 mL/min, and the 
retention time of the peak was observed at 40 min) to yield the pure bioactive compound 1. The 
compound 1 was identified as plakortide E, by means of MS and NMR spectral data (Table 1) and 
comparison to previously published NMR data [5,6,22]. Enzyme assays [18,21,23–25] and parasite 
growth assays [21,23–26] were performed as described previously. 

Table 1. NMR-spectroscopic data of plakortide E (1) in CDCl3 (1H: 400 MHz; 13C: 
100 MHz, δ in ppm). 

Position δC Multiplicity δH Multiplicity J (Hz) 
1 171.76 C    
2 119.75 CH 6.09 d 15.8 
3 152.31 CH 6.96 d 15.8 
4 87.31 C    

5 56.11 CH2 
2.55 
2.45 

d 
d 

12.0 
12.0 

6 89.39 C    
7 126.71 CH 5.12 s  
8 136.82 C    

9 46.67 CH2 
2.00 
1.85 

m 
m 

 

10 42.68 CH 1.99 m  
11 132.91 CH 5.05 ddt 15.2, 8.3 
12 132.10 CH 5.34 dt 15.2, 6.3, 6.3 
13 25.73 CH2 1.96 m  
14 14.19 CH3 0.94 t 7.4 

15 32.36 CH2 
1.88 
1.64 

m 
m 

 

16 9.01 CH3 0.89 t 7.4 
17 30.88 CH2 1.76 m  
18 8.95 CH3 0.92 t 7.5 
19 17.92 CH3 1.62 d 1.2 

20 27.79 CH2 
1.34 
1.10 

m 
m 

 

21 11.72 CH3 0.81 t 7.4 
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NMR spectra (Table 1) were obtained with a BRUKER (Bruker Biospin GmbH, Rheinstetten 
Germany), Typ Advance 400 spectrometer. Mass spectra were measured using a Bruker micrOTOF 88 
mass spectrometer. Column chromatography was performed using silica gel (0.063–0.200 mm mesh, 
Merck, Darmstadt, Germany). TLC was conducted on pre-coated silica gel 60 F254 plates (0.20 mm, 
Merck, Darmstadt, Germany); spots were detected using vanillin spray reagent, UV 254 nm and 
iodinevapours. Reagents were purchased from Sigma-Aldrich (Munich, Germany) or Fluka (Munich, 
Germany). Solvents were purchased from Roth (Karlsruhe, Germany) or Merck (Darmstadt, 
Germany). High performance liquid chromatography was performed on a Varian ProStar (Rheinfelden, 
Schweiz), consisting of an analytical/preparative HPLC Upscale Linear system (0.05–50 mL/min at 
275 bar pressure with scale-mast), a preparative autosampler and a 2-channel UV detector. The 
detection wavelengths were 254 nm and 230 nm.  

Plakortide E: The product was obtained as colourless viscous oil (0.018 g). CDCl3 was used as 
solvent for measuring NMR spectra. ESI-MS found: 373.23404 [M + Na]+, calcd. for C21H34O4, 
350.49. The specific rotation of plakortide E was [α]D

22 = +60.7°, c = 0.00313 in CHCl3. 
Enzyme assays and in vitro tests for antiparasitic activity were performed as published previously: 

for cathepsin-like cysteine proteases see [18,23–26], for SARS Mpro see [27], for SARS PLpro  
see [15], for Dengue virus protease see [28], for assays against T. brucei see [24,29–32], for assays on 
macrophages see [33], for assays on L. major promastigotes see [21], for assays on C. albicans see [34,35]. 

4. Conclusions 

Plakortide E, obtained from the marine sponge Plakortis halichondroides, was identified as a new 
protease inhibitor. Plakortide E showed selectivity towards the cathepsin-like cysteine proteases, with 
a non-competitive, reversible, and, in the case of rhodesain, a slow-binding inhibitory mode of action. 
The anti-protease activity of the compound may contribute to its anti-parasitic activity against 
Trypanosoma brucei, as rhodesain and also the cathepsin B like protease TbCatB [13] are known to be 
essential for the parasite’s growth and pathogenicity. 
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