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Abstract: Angiogenesis is the formation of blood vessels from pre-existing vasculature. 

Excessive or uncontrolled angiogenesis is a major contributor to many pathological 
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conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with 

pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from 

mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in 

human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated 

with different concentrations of catunaregin in the presence or absence of VEGF. The 

angiogenic phenotypes including cell invasion cell migration and tube formation were 

evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, 

eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western 

blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo 

neovascularization and caudal fin regeneration assays. We found that catunaregin 

dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo 

neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin 

significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation 

of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic 

activity at least in part through the regulation of the Akt and eNOS signaling pathways. 
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1. Introduction 

Angiogenesis is the formation of blood vessels from pre-existing vasculature. The process of 

angiogenesis is very complex and tightly controlled under physiological conditions. Excessive or 

uncontrolled angiogenesis is associated with various pathological conditions including cancer, diabetic 

retinopathy, and rheumatoid arthritis [1]. Thus, development of novel anti-angiogenesis could greatly 

benefit human health. For example, cancer is one of the most devastating diseases, and can be a great 

burden on modern society, while anti-angiogenic therapy is becoming a powerful treatment approach 

in cancer therapy.  

Traditionally, great efforts have been placed on developing drugs that attack and kill cancer cells. 

During past years, chemotherapy based on cytotoxic agents has been the main treatment for most 

cancer patients. Although cytotoxic agents have significantly improved cancer survival, these 

conventional anti-cancer drugs often cause serious side effects, chemo- and radio-resistance, disease 

relapse and metastases. Therefore, the alternative chemotherapeutic regimens with minimal side 

effects are currently the priority consideration for the development of cancer treatment. Angiogenesis 

plays a critical role in the progression of cancer. Through stimulating blood vessel growth from nearby 

pre-existing capillaries, tumors achieve sufficient blood supply for cancer cell progression and 

metastasis [2]. It has been shown that increased angiogenesis is associated with poor prognosis and 

relapse of cancer whereas blocking the formation of new blood vessels prevents the growth of cancer. 

Thus, the development of inhibitors of angiogenesis is increasingly receiving attention in the field of 

cancer. In the U.S., there are currently thirteen approved anti-angiogenesis therapies in oncology. 

However, as current anti-angiogenesis therapy is still in the infant stage of the drug development, there 

are lots of limitations of anti-angiogenesis therapy such as low efficacy, and development of resistance 
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during the long term use of these therapeutic agents. Therefore, intensive efforts are needed to develop 

novel anti-angiogenic agents, especially small molecule targeting the tumor vasculature [3].  

Vascular endothelial growth factor (VEGF) is a very important stimulator for tumor angiogenesis. 

VEGF is regarded as the prognostic indicator in cancers because of its significant association with 

tumor size and progress in several cancers. Thus, VEGF signaling pathway is an attractive target for 

the development of anti-angiogenesis inhibitors.  

The marine environment is a rich source of novel and unusual secondary metabolites for drug 

discovery. Catunaregin was first isolated from the stem bark of catunaregam spinosa, a Chinese 

mangrove associate and the extraction and isolation of catunaregin was described in the literature [4]. 

Our previous study demonstrated that catunaregin may have anti-cancer property. In this study, we 

investigated the potential inhibitory action of catunaregin on angiogenesis in human umbilical vein 

endothelial cells (HUVECs) and transgenic zebrafish (Danio rerio; fli1:EGFP). We further explored 

the mechanism by which catunaregin inhibited angiogenesis in HUVECs. We found that catunaregin 

exerted anti-angiogenic activity in both HUVECs and zebrafish. In addition, catunaregin significantly 

reduced the phosphorylation of Akt and eNOS and the inhibition was in parallel to its anti-angiogenic 

effect, suggesting that catunaregin inhibited angiogenesis possibly through the modulation of the Akt 

and eNOS signaling pathways. Since angiogenesis plays an important pathological role in the progress 

of a wide range of diseases, our findings provide a rationale for future development of this compound 

as a potential drug or chemopreventive supplement to target diseases with excessive angiogenesis. 

2. Results and Discussion 

2.1. The Isolation and Preparation of Catunaregin 

Catunaregin was first isolated from the stem bark of Catunaregam spinosa, a Chinese mangrove 

associate and the extraction and isolation of catunaregin was described in the experimental part of the 

literature [4]. In continuation of our studies on the chemical diversity of mangrove plants in Hainan 

Island, the plant Micromelum falcatum (Lour.) Tan was investigated, and the novel norneolignan, 

catunaregin was isolated again from this plant. The air-dried material Micromelum falcatum (Lour.) 

Tan (10.0 kg), which was collected in Wenchang, Hainan Province, was extracted with 95% EtOH 

three times. The aq. residue was subjected to extraction with n-hexane and EtOAc (each 3×). The 

EtOAc extract (102 g) was separated on silica gel (1300 g, 200–300 mesh) with solvents of increasing 

polarity: 10%–70% acetone in n-hexane and gained 20 fractions. Fr.3 (1.1 g, eluted with 

n-hexane–acetone 7:3) was fractionated on silica gel with chloroform–acetone (19:1), then purified by 

Semi-preparation HPLC (250 × 10 mm i.d. 5 μm, MeOH/H2O, 60:40) to 12.0 mg of catunaregin (Chart 1). 

Chart 1. Chemical structure of catunaregin. 
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2.2. Inhibitory Effect of Catunaregin on VEGF-induced HUVEC Invasion, Migration, and  

Tube Formation 

Angiogenesis is the process of forming blood vessels from preexisting vessels. In response to 

VEGF, endothelial cells migrate into the surrounding extracellular matrix where they form blood 

capillaries, and thus, cell migration is a crucial step in angiogenesis and invasion. In this study, the 

anti-angiogenesis of catunaregin was first examined using the wound-healing method. Wound-healing 

assays was performed on HUVECs treated with catunaregin at concentrations of 10, 50, and 100 μM. 

As shown in Figure 1, treatment of HUVECs with catunaregin at these concentrations significantly 

prevented cell migration. The percentage decreases were 6.7%, 16.6% and 65.4% at 100 ng/mL VEGF 

plus catunaregin at 10, 50, and 100 μM, respectively. To further assess the anti-angiogenesis of 

catunaregin, a transwell invasion assay, the most popular in vitro test of angiogenesis [5]. During this 

assay, cells were seeded onto the upper surface of an 8 mm pore size membrane separating upper and 

lower chambers. The upper chamber contained catunaregin in 0.1% endothelial basal medium (EBM), 

and cellular invasion through the membrane was induced when VEGF was present in the lower 

chamber. The invasion assay showed that catunaregin significantly reduced VEGF-induced invasion of 

HUVECs. The percentage decrease were 6.4%, 16% and 61.3% at 100 ng/mL VEGF plus catunaregin 

at 10, 50 and 100 μM, respectively (Figure 2). The anti-angiogenesis of catunaregin was further 

examined using tube formation assay. In the tube formation assay, HUVECs were seeded on 

VEGF-reduced two-dimensional Matrigel. Consistent with previous reports, robust tubular structures 

were formed in the presence of VEGF whereas preincubation with catunaregin markedly and 

dose-dependently abolished VEGF-induced tube formation (Figure 3). 

Figure 1. Anti-angiogenic effect of catunaregin in migration of human umbilical vein 

endothelial cells (HUVECs). Representative fluorescence microscopy images. The bar 

chart shows quantitative data for HUVECs migration with different treatments (* VEGF 

vs. catunaregin plus VEGF, p < 0.01).  
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Figure 2. Anti-angiogenic effect of catunaregin in invasion of HUVECs. Representative 

fluorescence microscopy images. The bar chart shows quantitative data for HUVECs 

invasion with different treatments (* VEGF vs. catunaregin plus VEGF, p < 0.01). 

 

Figure 3. Anti-angiogenic effect of catunaregin in tube formation of HUVECs. 

Representative fluorescence microscopy images. The bar chart shows quantitative data for 

HUVECs tube formation with different treatments. (* VEGF vs. catunaregin plus VEGF,  

p < 0.05; 
#
 VEGF vs. catunaregin plus VEGF, p < 0.01). 

 
  



Mar. Drugs 2014, 12 2795 

 

 

2.3. Catunaregin Inhibited Angiogenesis through Modulation of AKT and eNOS Signaling Pathways 

Activation of Akt/eNOS and phosphorylation of ERK 1/2 are two most important mediators in 

VEGF-induced angiogenesis. To elucidate the mechanisms that underlie the anti-angiogenic effect of 

catunaregin, we examined these two signaling pathways using Western blotting. As shown in Figure 4, 

catunaregin significantly and concentration-dependently suppressed the VEGF-triggered phosphorylations 

of AKT (Ser473) and eNOS (Ser1172), whereas only mildly inhibited VEGF-induced phosphorylation 

of ERK 1/2 in HUVECs. Therefore, we believe that catunaregin inhibits angiogenesis possibly by 

modulating the AKT and eNOS signaling pathways.  

Figure 4. Catunaregin decreases phosphorylation of AKT and eNOS expression in 

HUVECs. Catunaregin significantly and concentration-dependently suppressed the 

VEGF-triggered phosphorylations of AKT and eNOS, whereas only mildly inhibited 

VEGF-induced phosphorylation of ERK 1/2 in HUVECs (* VEGF vs. catunaregin plus 

VEGF, p < 0.01). 

 

2.4. Catunaregin Inhibited Angiogenesis in Zebrafish Embryo and Caudal Fin Regeneration Assays 

To test whether the results obtained from in vitro studies is reproducible in vivo, we examined the 

anti-angiogenesis of catunaregin in zebrafish embryo and caudal fin regeneration assays in transgenic 

TG (fli1:EGFP) zebrafish. In these transgenic animals, enhanced EGFP are expressed in all endothelial 

cells which allow observation of bright blood vessels at all stages of embryogenesis. We first 

examined the anti-angiogenesis of catunaregin on the development of caudal intersegmental vessels at 

late tail bud stages of TG (fli1:EGFP) transgenic zebrafish embryos. In agreement with the results 

obtained from in vitro experiments, catunaregin significantly reduced the number of caudal 

intersegmental vessels in a dose-dependent manner. We further tested the specificity of 

anti-angiogenesis of catunaregin in zebrafish caudal fin regeneration assay because this assay can 

separate regenerative angiogenesis from tissue regrowth [6]. In caudal fin regeneration experiments, 

zebrafish caudal fins were amputated at mid-fin level, and then allowed to recover. Amputated blood 

vessels healed their ends by one day post amputation (dpa) and then reconnect arteries and veins via 

anastomosis, to resume blood flow at wound sites by 2 dpa. By 3 dpa, networks of endothelial cells in 
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the regenerated tissue formed a vascular plexus that extended to the fin tip. When 100 μM catunaregin 

was added to water, new vessel formation was prevented and fin regeneration was arrested as 

evidenced by the absence of fin blastema. Although angiogenesis is essential for the regeneration of a 

complete fin, we found that limited fin tissue could still be formed in the absence of new blood vessels. 

Within the new formed tissue, skin and pigment cells appeared intact by visual inspection, indicating 

that catunaregin may specifically inhibited regenerative angiogenesis (Figure 5).  

Figure 5. Inhibition of the zebrafish neovascularization by catunaregin. (A) Live 

fluorescent zebrafish embryo assay. Transgenic TG (fli1:EGFP) zebrafish embryos, which 

show green fluorescent protein (GFP) expression in endothelial cells, were incubated for 

72 h without or with 100 μM catunaregin. (B) Caudal fin regrowth is limited by 

angiogenesis. The same fins are shown in bright field (top panels) and with the 

corresponding endothelial-eGFP signal (bottom panels). Zebrafish tail fins were clipped, 

then allowed to recover normally or treated with catunaregin as indicated. (C) Quantitative 

comparison of vessel and fin regeneration in control and catunaregin-treated fish. Black 

bars, nonvascularized fin tissue; white bars, vascularized tissue. Average values are plotted 

for fin and vessel growth (n = 15) (* catunaregin vs. control, p < 0.01). 

 

3. Experimental Section 

3.1. Preparation of Catunaregin 

Reagents and solvents were commercial quality and used without further purification, except for 

re-purified methanol used in HPLC system. NMR spectra were recorded on Bruker DRX-500 

spectrometer (Bruker, Bremen, Germany) with SiMe4 (Cambridge Isctope Laboratories, Tewksbury, 
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MA, USA) as internal standard. HRESI-MS was recorded on VG Auto Spec-3000 MS spectrometer 

(Bruker, Bremen, Germany). Thin layer chromatography (TLC) was carried out on precoated silica gel 

G plates (Qingdao Haiyang Chemical Plant, Qingdao, China) and spots were visualized by spraying 

the plates with 50% H2SO4 solution, followed by heating. Semi-preparative RP-HPLC was carried out 

on ODS columns (YMC-Pack ODS-5-A, 250 × 10 mm, 5 μm, YMC, Kyoto, Japan) with the 

CH3OH–H2O solvent system as eluents. Waters 600 HPLC system (Waters, Voorhees, NJ, USA) was 

equipped with a Waters 996 photodiode array detector (Waters, Voorhees, NJ, USA) to check the 

fraction and purity of target compound. 

3.2. The Isolation of Catunaregin 

Catunaregin was isolated and purified by CAS Key Laboratory of Tropical Marine Bio-resources 

and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 

China. The purity of the compound was >98%. Catunaregin was dissolved in dimethyl sufoxide 

(DMSO) and stored at −20 °C until use. The solution form of catunaregin was then diluted by PBS to 

the concentration needed. All reagents were purchased from Sigma (Sigma, Shanghai, China) unless 

otherwise stated. 

3.3. Preparation of Reagents and Cell Culture 

Human umbilical vein endothelial cells (HUVECs) were obtained from Sciencell, Carlsbad, NM, 

USA. HUVECs (Passages 4 to 7) were cultured at 37 °C in M199 media (Invitrogen, Carlsbad, NM, 

USA) supplemented with 10% FBS. Cells were maintained in a humidified atmosphere of 5% CO2. 

The anti-angiogenic effect of catunaregin on HUVECs was evaluated using a stock solution of 

catunaregin (1 mg/mL) prepared in PBS containing 10% DMSO (GIBCO, Langley, VA, USA). The 

anti-angiogenic effect on zebrafish was evaluated using a stock solution of catunaregin (1 mg/mL) 

prepared in sterilized Milli-Q water containing 0.5% DMSO. Vascular endothelial growth factor 

(VEGF) was obtained from Sigma, St. Louis, MO, USA and prepared as a stock solution of  

100 μg/mL in sterilized Milli-Q water. 

3.4. Cell Invasion, Migration and Tube Formation 

HUVEC migration assay was performed using the wound healing method as previously  

described [7,8]. The HUVECs (3 × 10
5
 cells) were seeded into each well of a 24-well plate and 

incubated with complete medium at 37 °C and 5% CO2. After 24 h of incubation, cells were starved 

for additional 24 h by low serum (0.5% FBS) medium. The HUVECs were then scraped away 

horizontally in each well using a P100 pipette tip (Axygen, Union city, CA, USA). Three randomly 

selected views along the scraped line were photographed on each well using a fluorescent inverted 

microscope (Olympus, Tokyo, Japan) and the CCD camera (Olympus, Tokyo, Japan) attached to the 

microscope at 50× magnification. The medium was then changed to fresh low serum (1% FBS) 

medium containing DMSO with or without vascular endothelial growth factor (VEGF; 100 ng/mL) and 

the indicated concentration of the compound of catunaregin. The final concentration of DMSO was 

0.1% in all experimental groups. After 12 h of incubation, another set of images were taken by the 
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same method. Image analysis for signs of migration was performed by Metamorph Imaging Series 

(Molecular Devices, Tokyo, Japan). The average scraped area of each well under each condition was 

measured and subtracted from that of the before-treatment condition. Data are expressed as percentage 

wound closure relative to the wound closure area in the control medium. The wound closure area of 

the control cells was set at 100%. 

HUVEC invasion was investigated as described [5,9]. Briefly, the effect of catunaregin on HUVEC 

invasion was measured using the 10 mm tissue culture insert (transwell) with polycarbonate membrane 

(8 mm pores) and 24-well companion plate. The upper side and lower side of the membrane were 

pre-coated with 1:30 (v/v) and 1:100 (v/v) of Matrigel, respectively. The HUVECs were resuspended 

in low serum (1% FBS) medium and seeded onto the culture inserts at 5 × 10
4
 cells per insert in 

triplicate. They were then deposited into the 24-well companion plate with 500 μL of low serum  

(1% FBS) medium containing DMSO with or without vascular endothelial growth factor (VEGF; 

100 ng/mL) and the indicated concentration of the compound of catunaregin. The final concentration of 

DMSO was 0.1% in all experimental groups. The inserts were removed after 8 h of incubation and 

were then washed with PBS. Non-invasive cells on the upper surface of the membrane were removed 

by wiping with cotton swabs. The inserts were fixed in paraformaldehyde, stained with DAPI and 

mounted on microscope slides. Images of the invasive cells were captured at 100× magnification using 

a fluorescent inverted microscope and a CCD camera. Following this, HUVEC invasion was quantified 

by counting the number of cells per insert with the software Metamorph Imaging Series (Molecular 

Devices, Tokyo, Japan). 

Endothelial tube formation was assessed in 24-well plates using growth factor-reduced Matrigel™ 

as described previously [10,11]. Briefly, growth factor-reduced Matrigel (250 μL) was pipetted  

onto 24-well culture plates and polymerized for 30 min at 37 °C. HUVECs were seeded on 

Matrigel-coated plates at a density of 5 × 10
4
 in low serum (1% FBS) medium containing DMSO with 

or without vascular endothelial growth factor (VEGF; 100 ng/mL) and the indicated concentration of 

the compound of catunaregin. The final concentration of DMSO was 0.1% in all experimental groups,  

then incubated at 37 °C for 8 h. The network-like structures were examined under an inverted 

microscope (at 50× magnification). Tube-like structures were defined as endothelial cord formations 

that were connected at both ends. The tube length was quantified using the software NIH Image (NIH, 

Bethesda, MD, USA) as reported earlier [10,11]. 

3.5. Western Immunoblot Analysis 

HUVECs were plated in 60-mm dishes (16,700 cells per centimeter square) and cultured for 2 days. 

The culture medium was then replaced with fresh medium containing 2% FBS, and the cells were 

treated with indicated concentration of the compound of catunaregin for 24 h. Whole-cell protein 

extracts (20 μg) were separated on 10%–12.5% sodium dodecylsulfate polyacrylamide gels, and 

transferred to nitrocellulose membranes (Amersham, Pittsburgh, PA, USA). The blotted membranes 

were incubated with antibodies against Akt, phosphorylated Akt (Ser473), endothelial nitric oxide 

synthase (eNOS), phosphorylated eNOS (Ser1177) and β-actin. Densitometrical results were 

calculated by NIH image software. The primary antibodies used were antiphospho-ERK1/2 (Cell 

Signaling Technology, Danvers, MA, USA), antibody to total ERK1/2 (Cell Signaling), anti-eNOS 
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(Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-phosphorylation of eNOS at S1177 (P-eNOS 

S1177) (Cell Signaling), anti-phospho-Akt (Cell Signaling), anti-Akt (Cell Signaling), and anti-β-actin 

(Biosynthesis Biotechnology, Beijing, China). 

3.6. Zebrafish Embryo Assay 

The transgenic zebrafish cell line TG (fli1:EGFP), in which endothelial cells expressed eGFP, was 

kindly provided by ZFIN (Eugene, OR, USA) and maintained as described [11,12]. Zebrafish embryos 

were generated by natural pair-wise mating of fish that were between 3 and 12 months old. Embryos 

were collected as described. Healthy embryos were harvested at the 1–4 cell stage, plated in a 96-well 

microplate and incubated with 100 μL of the indicated concentrations of the tested compounds at  

28 °C for 24 h. DMSO was used as both carrier of drugs and control. After incubation, fish embryos 

were anesthetized with tricaine (0.02%), placed on slides and examined under an OLYMPUS IX71 

fluorescence inverted microscope (Olympus, Tokyo, Japan). Phenotypic changes were evaluated by 

two different observers. 

3.7. Zebrafish Caudal Fin Regeneration Assay 

Adult TG (Fli-EGFP) transgenic fishes were anesthetized with tricaine (0.02%), and their caudal fin 

was partially amputated. Then, fishes were maintained for 3 days at 28 °C in 100 μL water containing 

the indicated concentration of the compound. After three days, fishes were anesthetized and examined 

and photographed under an OLYMPUS IX71 fluorescence inverted microscope. 

3.8. Statistical Analysis 

All data were presented as mean ± SEM. Differences among test groups were analyzed by 

ANOVA, using Newman-Keuls multiple comparison test (Prism 4.0, GraphPad Software, Inc., San 

Diego, CA, USA). A p value <0.05 was considered statistically significant. 

4. Conclusions 

This is the first study concerning the anti-angiogenic action of catunaregin. Our experimental 

results demonstrated that the catunaregin could significantly inhibit VEGF-induced different 

angiogenic phenotypes of HUVECs in vitro and the vessel formation in transgenic zebrafish. To 

further investigate the underlying mechanisms behind the anti-angiogenic property of catunaregin, we 

examined angiogenesis-related signaling pathways in HUVECs. Our results demonstrated that 

catunaregin inhibited the phosphorylation of Akt and eNOS in HUVECs, indicating a new mode of 

biological activity for catunaregin. Interestingly, catunaregin inhibited regenerative angiogenesis 

without severely affecting tissue regrowth. Thus, catunaregin may primarily inhibit the formation of 

new blood vessels through blockade of angiogenic process of endothelial cells. Given the critical role 

of Akt and eNOS signaling pathways in tumorigenesis and tumor metastasis, our results provide an 

impetus for further investigation and development of catunaregin as a novel anti-angiogenesis 

candidate for the treatment of diseases with increased angiogenesis.  
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Catunaregin is a novel norneolignan with a unique O-bridged furopyran ring. It can produce 

hemiacetal compound when 7-position is cleaved via hydrolysis. Moreover, hemiacetal compound can 

be open loop at 1-position and 5-position through acetal hydrolysis, thereby affording diketone 

intermediate. Thus, unsubstituted hydroxyl group or easily activating hydroxyl group like hemiacetal at 

6-position and 8-position of compound may be important for its anti-angiogenic action. 

Acknowledgments 

Grants from the National Key Clinical Department, National Key Discipline and Guangdong Key 

Laboratory for Diagnosis and Treatment of Major Neurological Diseases. This study was supported by 

National Natural Science Foundation of China (No. 81371255, 81100936), Doctoral Program of 

Higher Education of China (No. 20110171110058), the Young Scientists Fund of the National Natural 

Science. Foundation of China (No. 41006091), Guangdong Technological grant (No. 

2010B050700024, 2011B050400031, 2012B031800107), the Natural Science Foundation of 

Guangdong Province (No. S2011010004860), Sun Yat-sen University 5010 Clinical Research 

Program (No. 2007010). This study was also supported by multi-year research grant, university of 

Macau, MYRG122 (Y1-L3)-ICMS12-SHX. 

Author Contributions 

Conceived and designed the experiments: JX L, XM L, SZ Y; Performed the experiments: JX L, SZ 

Y, MQ L, M X, Q W, SM L, Y H, GC G, XL Y, M H, H S; Analyzed the data: JX L, SZ Y, M X; 

Wrote the paper: JX L, SZ Y, XM L, H S. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Munoz-Chapuli, R.; Quesada, A.; Angel Medina, M. Angiogenesis and signal transduction in 

endothelial cells. Cell. Mol. Life. Sci. 2004, 61, 2224–2243. 

2. Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Eng. J. Med. 1971, 285, 

1182–1186. 

3. Jeong, S.; Koh, W.; Lee, E.; Lee, H.; Bae, H.; Lü, J.; Kim, S. Antiangiogenic phytochemicals and 

medicinal herbs. Phytother. Res. 2011, 25, 1–10. 

4. Gao, G.; Luo, X.; Wei, X.; Qi, S.; Yin, H.; Xiao, Z.; Zhang, S. Catunaregin and epicatunaregin, 

two norneolignans possessing an unprecedented skeleton from Catunaregam spinosa. Helv. Chim. 

Acta. 2010, 93, 339–344. 

5. Lu, X.; Xu, Z.; Yao, X.; Su, F.; Ye, C.; Li, J.; Lin, Y.; Wang, G.; Zeng, J.; Huang, R.; et al. 

Marine cyclotripeptide X-13 promotes angiogenesis in zebrafish and human endothelial cells via 

PI3K/Akt/eNOS signaling pathways. Mar. Drugs. 2012, 10, 1307–1320. 



Mar. Drugs 2014, 12 2801 

 

 

6. Bayliss, P.; Bellavance, K.; Whitehead, G.; Abrams, J.; Aegerter, S.; Robbins, H.; Cowan, D.; 

Keating, M.; O’Reilly, T.; Wood, J.; et al. Chemical modulation of receptor signaling inhibits 

regenerative angiogenesis in adult zebrafish. Nat. Chem. Biol. 2006, 2, 265–273. 

7. Lu, X.; Luo, D.; Yao, X.; Wang, G.; Liu, Z.; Li, Z.; Li, W.; Chang, F.; Wen, L.; Lee, S.; et al. 

DL-3n-butylphthalide promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and 

phosphatidylinositol 3-kinase/Akt-endothelial nitric oxide synthase signaling pathways.  

J. Cardiovasc. Pharmacol. 2012, 59, 352–362. 

8. Lam, H.W.; Lin, H.; Lao, S.; Gao, J.; Hong, S.; Leong, C.; Yue, P.; Kwan, Y.; Leung, A.;  

Wang, Y.; et al. The angiogenic effects of angelica sinensis extract on HUVEC in vitro and 

zebrafish in vivo. J. Cell. Biochem. 2008, 103, 195–211. 

9. Raghunath, M.; Wong, Y.; Muhamma, F.; Ge, R. Pharmacologically induced angiogenesis in 

transgenic zebrafish. Biochem. Biophys. Res. Commun. 2009, 378, 766–771. 

10. Abdel-Malak, N.; Mofarrahi, M.; Mayaki, D.; Khachigian, L.; Hussain, S. Early growth 

response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and 

differentiation. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 209–216. 

11. Lam, K.H.; Alex, D.; Lam, I.K.; Tsui, S.K.; Yang, Z.F.; Lee, S.M. Nobiletin, a polymethoxylated 

flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC  

in vitro model. J. Cell. Biochem. 2011, 112, 3313–3321. 

12. Hong, S.; Wan, J.; Zhang, Y.; Hu, G.; Lin, H.; Seto, S.; Kwan, Y.; Lin, Z.; Wang, Y.; Lee, S. 

Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish 

in vivo. Phytother. Res. 2009, 23, 677–686. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


