Supplementary Information

Table S1. Results of 16S rRNA gene sequencing indicating closest relative by BLAST search, species, phylogeny, previous known source and cultivation media. Animal sources are annotated follows: Sponges = 1 , soft corals = 2 , sea urchins = 3 .

Media	Sample Code	Source		% Sequence Identity		
		Animal Source	Previously Reported Source	over Sequence Length	Closest Relative by BLAST	Phylogeny
ISP2	SPGII2	Hydroid	Subarctic glacial fjord	1310/1310 (100%)	Salinibacterium sp. KJF1-8	Actinobacteria
ISP2	SPDII6	Sycon ciliatum ¹	Antarctic sandy intertidal sediments	1382/1382 (100%)	Rhodococcus sp. ZS402	Actinobacteria
ISP2	SPCII6	Grantia compressa ¹	Subarctic glacial fjord	1422/1431 (99%)	Psychrobacter sp. KJF3-38	Proteobacteria
ISP2	SPCII1	Grantia compressa ¹	Deep sea sediment	1395/1410 (99%)	Dietzia sp. O705 K4-1	Actinobacteria
ISP2	SPCII4	Grantia compressa ¹	Subarctic glacial fjord	1407/1428 (99%)	Salinibacterium sp. KJF5-12	Actinobacteria
ISP2	SPCII7	Grantia compressa ¹	Terrestrial habitat (Sub-Antarctica)	1404/1413 (99%)	Microbacteriaceae bacterium MI-5.1P16	Actinobacteria
ISP2	SPAII13	Suberites ficus ¹	Soil	1394/1401 (99%)	Micrococcus luteus strain WS27	Actinobacteria
ISP2	SPAII10(A)	Suberites ficus ¹	Marine, coastal sediment	1319/1377 (96%)	Sphingomonas sp. 2MP11	Proteobacteria
LURIA	SPAVII15	Suberites ficus ¹	Antarctic soil	1270/1270 (100%)	Psychrobacter sp. SOZ1-6074	Proteobacteria
LURIA	SPAVII16(B)	Suberites ficus ¹	Marine sediments	1329/1329 (100%)	Kocuria sp. CNJ770 PL04	Actinobacteria
LURIA	SCBVII10(B)	Mycale (Carmia) similaris ¹	Silkworm	1334/1334 (100%)	Bacillus sp. SW41	Firmicutes
LURIA	SCBVII7(A)	Mycale (Carmia) similaris ¹	Deep sea sediment	1336/1421 (94%)	Psychrobacter sp. es 5	Proteobacteria
LURIA	SCBVII7(B)	Mycale (Carmia) similaris ¹	Deep sea sediment	1342/1426 (94%)	Psychrobacter sp. es 5	Proteobacteria
LURIA	SPAVII8	Suberites ficus ¹	Jasmine petal	1402/1412 (99%)	Leucobacter sp. MLB08	Actinobacteria
		C L $(c - 1)$	Surface water from the	1412/1425 (000()	uncult. Gammaproteobacterium	Drugto sha stari s
LUKIA	5PA V 119	Suberites ficus	Northern Bering Sea	1412/1425 (99%)	clone DBS1e81	r roteopacteria
LURIA	SCBVII11	Mycale (Carmia) similaris ¹	Chionoecetes japonicus (red tanner crab)	1428/1432 (99%)	Psychrobacter sp. CJ-G-PYD3	Proteobacteria
LURIA	SPAVII12	Suberites ficus ¹	Deep-sea hydrothermal vent sediment	1421/1427 (99%)	Psychrobacter sp. YDC2-1	Proteobacteria
LURIA	SCBVII9	Mycale (Carmia) similaris ¹	Wastewater treatment plant	1415/1417 (99%)	Pseudomonas sp. CGMCC 4169	Proteobacteria
LURIA	SPAVII7	Suberites ficus ¹	Seawater	1377/1386 (99%)	Micrococcus sp. S3582	Actinobacteria
M1	SPBI5	<i>Leucosolenia</i> sp. ¹	Purple paddy soil profile	1087/1097 (99%)	Bacillus sp. 4115	Firmicutes
M1	SPAI9	Suberites ficus ¹	Rainbow trout, west coast of Norway	1255/1255 (100%)	Vibrio sp. KV180308-14a	Proteobacteria
M1	SPAI11(A)	Suberites ficus ¹	Suberites domuncula	829/845 (98%)	Vibrio sp. 0exn1	Proteobacteria
M1	SPAI11(B)	Suberites ficus ¹	Suberites domuncula	1039/1049 (99%)	Vibrio splendidus isolate 28	Proteobacteria
M1	SPAiI7	Suberites ficus ¹	Rainbow trout, Galacia, Spain	820/836 (98%)	Vibrio sp. R117	Proteobacteria

 Table S1. Cont.

Media	Sample Code	Source		% Sequence Identity		
		Animal Source	Previously Reported Source	over Sequence Length	Closest Relative by BLAST	Phylogeny
M1	SPCI2	Grantia compressa ¹	Mature marine biofilm	789/813 (97%)	Kopriimonas byunsanensis strain KOPRI	Proteobacteria
M1	SPBI1(A)	<i>Leucosolenia</i> sp. ¹	Rainbow trout/coral mucus	877/885 (99%)	Vibrio sp. R8	Proteobacteria
M1	SPBI1(B)	<i>Leucosolenia</i> sp. ¹	Rainbow trout, coral mucus	1300/1313 (99%)	Vibrio sp. R8	Proteobacteria
M1	SPBI4 (B)	<i>Leucosolenia</i> sp. ¹	Coastal marsh	807/831 (97%)	Microbacterium sp. OS-6	Actinobacteria
M1	SPCI1 (B)	Grantia compressa ¹	Rainbow trout	1194/1194 (100%)	Vibrio sp. R117	Proteobacteria
M1	SPAI8	Suberites ficus ¹	Corylus avellana L. (Common Hazel).	1234/1234 (100%)	Microbacterium schleiferi strain Msc-2	Actinobacteria
M1	SPBI3	<i>Leucosolenia</i> sp. ¹	Seawater and Fjord water	904/922 (98%)	Leeuwenhoekiella aequorea	Bacteriodetes
M1	SPBI7	<i>Leucosolenia</i> sp. ¹	-	1219/1231 (99%)	uncultured marine bacterium	unknown
M1	SPEI1	Diadema ³	Arctic Sea Ice	1427/1447 (99%)	Vibrio sp. Bsi 20140	Proteobacteria
M1	SPCI3(A)	Grantia compressa ¹	Heamolymph of spider crab	1431/1434 (99%)	Vibrio tasmaniensis strain Mj28	Proteobacteria
M1	SPDI4(B)	Sycon ciliatum ¹	Macroalgae associated bacteria	1386/1407 (99%)	Microbacterium sp. AB320d	Actinobacteria
M1	SPDI6	Sycon ciliatum ¹	Beach sediment	1440/1445 (99%)	<i>uncult.</i> Gammaproteobacterium clone F11-OC070	Proteobacteria
M1	SPAI6	Suberites ficus ¹	Subarctic glacial fjord	1399/1401 (99%)	Polaribacter sp. KJF 12-6	Bacteriodetes
M1	SPBI6(A)	<i>Leucosolenia</i> sp. ¹	Sea water, Arctic ocean	1332/1377 (96%)	uncult. bact. clone OA4-30d-017	Unknown
M1	SCBI5	Mycale (Carmia) similaris ¹	Sparisoma sp. "ninidae"	812/812 (100%)	Micrococcus sp. PB7-11B	Actinobacteria
M1	SPFI2(B)	Dead Man's Finger ²	Deep sea, Alphaproteobacteria	943/943 (100%)	Sulfitobacter sp. MBEF09	Proteobacteria
M1	SPGI1(B)	Hydroid	Polysiphonia stricta (red alga)	1401/1415 (99%)	Shewanella sp. P1	Proteobacteria
M1	SPGI1(D)	Hydroid	Haemolymph of the spider crab Maja brachydactyla	1416/1424 (99%)	Vibrio tasmaniensis strain Mj28	Proteobacteria
M1	SCBI4(W)	Mycale (Carmia) similaris ¹	Phytoplankton culture in bivalve hatchery	937/937 (100%)	Vibrio sp. 2134	Proteobacteria
M1	SCBI4(P)	Mycale (Carmia) similaris ¹	Antarctic sea sediment	984/984 (100%)	Kocuria sp. SS14.13	Actinobacteria
M1	SPBI1(C)	<i>Leucosolenia</i> sp. ¹	North Sea	788/791 (99%)	Vibrio sp. SW5-2	Proteobacteria
M1	SPGI1(A)	Hydroid	Chionoecetes japonicus (red tanner crab)	829/830 (99%)	Agreia sp. CJ-G-TSA8	Actinobacteria
M1	SPGI1(C)	Hydroid	Chionoecetes japonicus (red tanner crab)	876/876 (100%)	Agreia sp. CJ-G-TSA8	Actinobacteria
M1	SPGI3	Hydroid	Phytoplankton culture in bivalve hatchery	904/904 (100%)	Vibrio sp. 2197	Proteobacteria

Table S1. Cont.

Media	Sample Code	Source		% Sequence Identity		Dhadaaaaa
		Animal Source	Previously Reported Source	over Sequence Length	Closest Relative by BLAST	Phylogeny
M1	SCAI8(A)	Mycale (Carmia) similaris ¹	Phytoplankton culture in bivalve hatchery	866/866 (100%)	Vibrio sp. 2197	Proteobacteria
M1	SCAI9	Mycale (Carmia) similaris ¹	Cassostrea gigas (Hollow oyster)	760/760 (100%)	Vibrio splendidus LGP32	Proteobacteria
M1	SPGI5	Hydroid	Glacier	858/859 (99%)	Arthrobacter sp. TMN-7	Actinobacteria
M1	SCBI1(A)	Mycale (Carmia) similaris ¹	North Sea	688/688 (100%)	Vibrio sp. SW5-2	Proteobacteria
M1	SCAI5	Mycale (Carmia) similaris ¹	Delesseria sanguinea (macroalgae)	939/939 (100%)	Salinibacterium sp. AB271d	Actinobacteria
M1	SPFI3	Dead Man's Finger (Soft Coral)	Marine biofilm	876/880 (99%)	Kopriimonas byunsanensis strain KOPRI	Proteobacteria
M1	SCAI6	Mycale (Carmia) similaris ¹	Soil	850/850 (100%)	Leucobacter sp. 4J7B1	Actinobacteria
M1	SPGI2	Hydroid	Phytoplankton culture in bivalve hatchery	901/901 (100%)	Vibrio sp. 2197	Proteobacteria
MA	SPCVI8	Grantia compressa ¹	Membranipora membranacea (Bryozoan)	842/859 (98%)	Pseudoalteromonas sp. BB68	Proteobacteria
OLIGO	SPGV4(A)	Hydroid	North Sea	1274/1286 (99%)	Cellulophaga sp. SW5-7	Bacteriodetes
OLIGO	SPAiV4	Suberites ficus ¹	Aquatic animals "Latris lineata"	1430/1434 (99%)	Vibrio sp. V004	Proteobacteria
OLIGO	SPAiV5	Suberites ficus ¹	Oil-polluted subtidal sediments	1387/1389 (99%)	Uncultured Gammaproteobacterium clone FII-OX070	Proteobacteria
OLIGO	SPAV6(B)	Suberites ficus ¹	Smenospongia sp.	1395/1398 (99%)	Vibrio splendidus strain W221	Proteobacteria
OLIGO	SPAV6(C)	Suberites ficus ¹	Oil-polluted subtidal sediments	1420/1425 (99%)	Uncultured Gammaproteobacterium clone FII-OX070	Proteobacteria
OLIGO	SPAV7	Suberites ficus ¹	Oil-polluted subtidal sediments	1405/1407 (99%)	Uncultured Gammaproteobacterium clone FII-OX002	Proteobacteria
OLIGO	SPFeV1	Dead Man's Finger ²	Oil-polluted subtidal sediments	1434/1442 (99%)	Uncultured Gammaproteobacterium clone FII-OX070	Proteobacteria
OLIGO	SPFeV3	Dead Man's Finger ²	Oil-polluted subtidal sediments	1416/1425 (99%)	Uncultured Gammaproteobacterium clone FII-OX002	Proteobacteria
OLIGO	SPGV2(A)	Hydroid	Sea cucumber "Apostichopus japonicas"	1426/1429 (99%)	Vibrio splendidus partial 16S rRNA gene, strain ctt 31/5	

Table S1. Cont.

Media		Source		% Sequence Identity		
	Media	Sample Code	Animal Source	Previously Reported Source	over Sequence Length	Closest Relative by BLAS I
OLIGO	SPGV2(B)	Hydroid	Intestinal microflora of Haliotis discus hannai	1427/1442 (99%)	Vibrio sp. V004	Proteobacteria
OLIGO	SPGV4(B)	Hydroid	Oil-polluted subtidal sediments	1417/1418 (99%)	Uncultured Gammaproteobacterium clone FII-TR031	Proteobacteria
OLIGO	SPC V6(A)	Grantia compressa ¹	Deep sea sediment	1404/1406 (99%)	Arthrobacter sp. An10	Actinobacteria
OLIGO	SPC V6(B)	Grantia compressa ¹	Oil-polluted subtidal sediments	1421/1425 (99%)	Uncultured Gammaproteobacterium	Proteobacteria
OLIGO					clone FII-OX070	
OLIGO	SPC V6(C)	Grantia compressa ¹	Oil-polluted subtidal sediments	1421/1425 (99%)	Uncultured Gammaproteobacterium	Proteobacteria
OLIGO				1421/1423 (9970)	clone FII-OX070	
OLIGO	SPC V7	Grantia compressa ¹	Oil-polluted subtidal sediments	1405/1409 (99%)	Uncultured Gammaproteobacterium	Proteobacteria
OLIGO					clone FII-TR031	
OLIGO	SPD V6	SPD V6 Sycon ciliatum ¹	<i>Sycon ciliatum</i> ¹ Oil-polluted subtidal sediments 1417/142	1417/1428 (99%)	Uncultured Gammaproteobacterium	Proteobacteria
OLIGO					clone FII-TR031	
R2A	SCBIII7	Mycale (Carmia) similaris ¹	Sparisoma sp. "ninidae" (Parrotfish)	1396/1398 (99%)	Micrococcus sp. PB7-11B	Actinobacteria
R2A	SPAiIII8(A)	Suberites ficus ¹	Marine habitat	1410/1416 (99%)	Maribacter ulvicola strain KMM 3951	Bacteriodetes
R2A	SPAIII6(B)	Suberites ficus ¹	Sparisoma sp. "ninidae" (Parrotfish)	1384/1385 (99%)	Micrococcus sp. PB7-11B	Actinobacteria
R2A	SPAIII6 (C)	Suberites ficus ¹	Sparisoma sp. "ninidae" (Parrotfish)	1384/1385 (99%)	Micrococcus sp. PB7-11B	Actinobacteria

Settings and procedures utilized to process data in MZmine 2.10

In MZmine, the RAW data is imported by selecting the ProteoWizard-converted positive or negative files in mzML format (Raw data methods \rightarrow Raw data import). The peaks in the samples and blanks were detected using the chromatogram builder. Mass ion peaks were isolated (Raw Data Methods \rightarrow Peak detection \rightarrow Mass detection) with a centroid detector threshold that was greater than the noise level set to 1.0×10^4 and an MS level of 1. Following this, the chromatogram builder (Raw Data Methods \rightarrow Peak detection \rightarrow Chromatogram builder) was used with a minimum time span set to 0.2 min, and the minimum height and m/z tolerance to 1.0×10^4 and 0.001 m/z or 5.0 ppm, respectively. For all remaining steps, select all files under peak lists before executing each step.

Chromatogram deconvolution was then performed to detect the individual peaks (<u>Peak List</u> <u>Methods \rightarrow Peak detection \rightarrow Chromatogram deconvolution</u>). The local minimum search algorithm (chromatographic threshold: 95%, search minimum in RT range: 0.4 min, minimum relative height: 5%, minimum absolute height: 3.0×10^4 , minimum ratio of peak top/edge: 3, and peak duration range: 0.2-5 min) was applied. Isotopes were also identified (<u>Peak list methods \rightarrow Isotopic peaks grouper \rightarrow <u>Deisotope</u>) using the isotopic peaks grouper (m/z tolerance: $0.001 \ m/z$ or 5.0 ppm, retention time tolerance: 0.1 absolute (min), maximum charge: 2, and representative isotope: most intense). This step will only deisotope peaks that were detected in the original search *i.e.*, those assigned a peak ID.</u>

Filtering is useful to set certain parameters when only considering a certain RT window e.g., 5–40 min or m/z range window or to discard IDs that are only present in one sample (<u>Peak List Methods \rightarrow Filtering \rightarrow Peak List Rows Filtering</u>). For chromatographic alignment and gap-filling (Peak List Methods \rightarrow Alignment \rightarrow Join aligner), the retention time normalizer (m/z tolerance: 0.001 m/z or 5.0 ppm, retention time tolerance: 0.5 absolute (min), and minimum standard intensity: 5.0×10^3) was used to reduce inter-batch variation. The peak lists were all aligned using the join aligner parameters set to m/z tolerance: 0.001 m/z or 5.0 ppm, weight for m/z: 20, retention time tolerance: 5.0 relative (%), weight for RT: 20. The values for the weight of m/z and RT should be kept the same; this means that both RT and m/z are given equal importance.

Missing peaks ((*peaks undetected by previous algorithms due to deficient peak detection or a mistake in peak list alignments*) were detected using the gap filling peak finder (<u>Peak List Methods</u> \rightarrow <u>Gap filling: Peak Finder</u>) with an_intensity tolerance of 25%, *m/z* tolerance of 0.001 *m/z* or 5.0 ppm, and retention time tolerance of 0.5 absolute (min). After this step a file will be created called "neg-gap filled" if negative mode and "pos-gap filled" if positive mode. Open the files and after gap-filling delete all peaks found in solvent blanks above a threshold (determined by user).

An adduct search (<u>Peak list methods</u> \rightarrow Identification \rightarrow Adduct search) was performed for Na-H, K-H, NH4, formate, and ACN + H (RT tolerance: 0.2 absolute (min), m/z tolerance: 0.001 m/z or 5.0 ppm, max relative adduct peak height: 30%). Additionally, a complex search (<u>Peak list methods</u> \rightarrow <u>Identification</u> \rightarrow <u>Complex search</u>) was performed (ionization method: $[M + H]^+$ for ESI positive mode and $[M - H]^-$ for ESI negative mode, retention time tolerance: 0.2 absolute (min), m/z tolerance: 0.001 m/z or 5.0 ppm, and with maximum complex peak height of 50%). The processed data set was then subjected to molecular formula prediction and peak identification (<u>Peak List Methods</u> \rightarrow Identification \rightarrow Formula Prediction) to search for unidentified features. Select atoms C,H,N,O and any other elements. Adjust parameters with heuristics element count with all three sub-options to get the isotope pattern filter working with all features with isotope peaks.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).