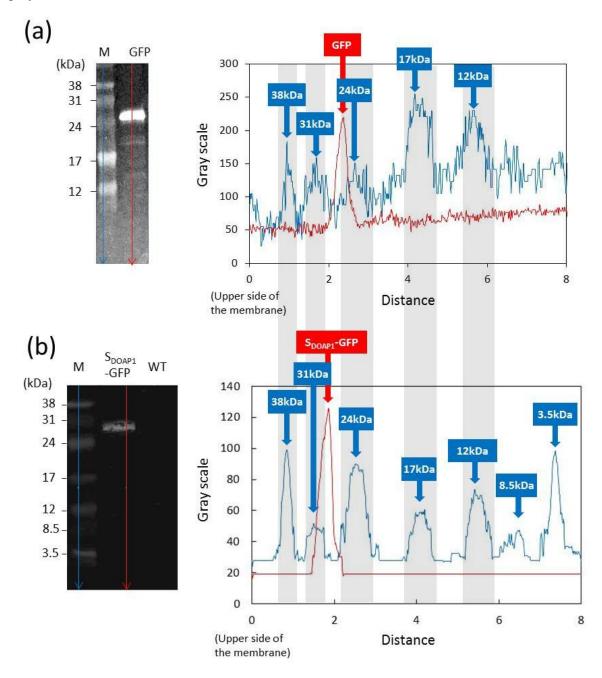
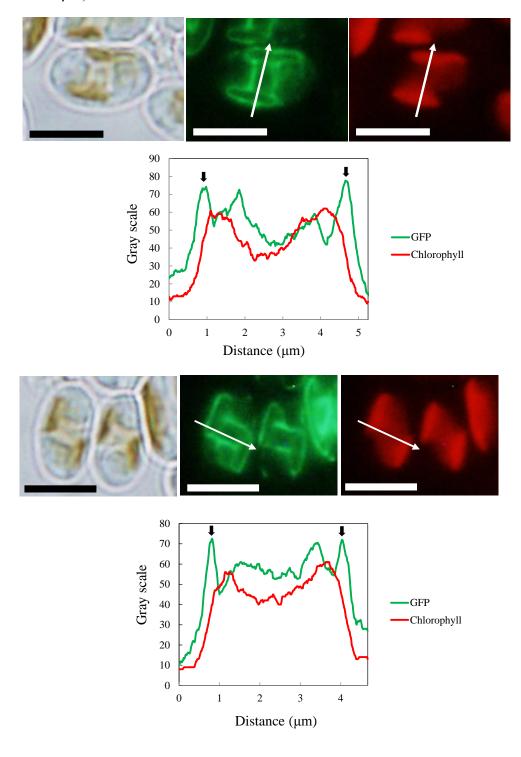
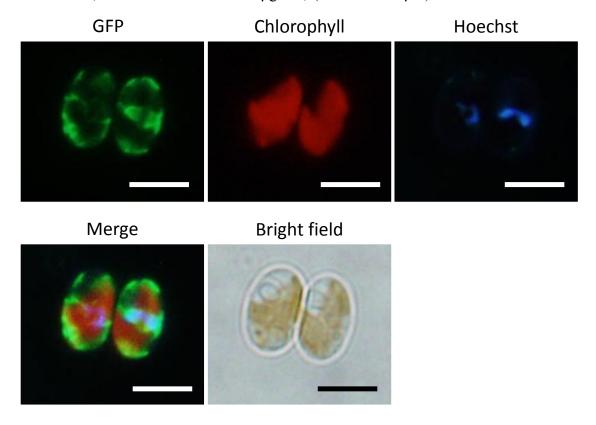
Supplementary Information

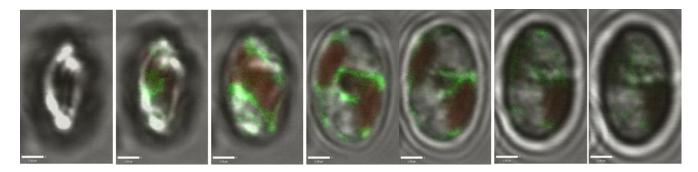

Figure S1. DNA sequence neighboring *doap1* gene (*g12504*) on the *Fistulfera* sp. genome. DOAP1-cording region predicted in this study is shown in green. An intron in *doap1* gene is shown in blue. TATA-boxes predicted with GENETIX ver.10 are shown with rectangular boxes. The region supported by RNA-seq data ranges from the closed triangle to the open triangle. The region fused with GFP gene in this study is shown in a red box.

				50					100
ATGTTCCCTG	GGCATTCGTG	TGTGGTCCTT	CGCGCACGCT	TCGTGGACTG 150	CCGAAAGCGT	GGACTTACAC	GCGGCGGGAC	TGATGGGTGG	CACGTAAGTA 200
TCCAAATCCA	ACCCCACAGT	TGAGTATGGA	GCCAGGTATA		TTTCATTCAT	GGACTAAGAG	TAGGCCAACG	TCCGTTGTCA	
				250					300
CTAAATAATG	TTCTAAGCGT	TGCCGGAGTG	GATTGTACAA		TGGGAATATT	CTTTACGTCG	GCGCGGAAGA	AATATTTAGA	
				350					400
CGTTTCAACA	TCCGTTCAAC	CGTACACTCG	ATCGATGACG	AAAGTGTGCA 450	ATACATCGTG	TTTTTCTCCC	TCCAAAGATT	CACATTTCGA	CGGACGAAAC 500
GATTAACACA	CAATACGACT	TGGTGGACGT	TGCAAAGTAT		TTATTTATTT	GTTTGCAACC	ATGATGAAAC	TCtCCTTGAG	
				550					600
CTCTTCTTGA	GCTCCCTCGT	TCAGGCTCAA	GAGTTCAACT		GACGGTGTTG	TGGTCGGGAC	GAACGACCGA	TGACACGGCC	
TECACECCAA	СССТАТСТАС	TTCTCTCCC	ACAACAACAT	650	አሮአሞሮአሞሮርር	አ ጥሮር ጥ አ <i>ር</i> ጥጥጥ	CCCACCCTTT	GAACCAACGA	700
IGCAGGGCAA	CGGIAICIAC	TIGICICCCG	ACAACAAGAI	750	ACATCATCGG	AIGGIACIII	GCGAGCCIII	GAACCAACGA	800
CTTGTGGACT	TTTGTCCCCG	AAAATCTCGG	TTTTGCCATT		GTGGTGTCAC	TTTTAACTAC	CGCAGCGCGC	GTCCTTATTT	
				850					900
ATTGCGGATG	GTGCTACCGA	CAAGACGAAC	AGTCCCTTGG	CGACGACGTG 950	AGTACTTTTG	TTGATGATAA	TGCTGACGTC	TTTCCTTTTC	TCACTCCTCT 1000
ТТТСТССАСА	GTCGTGTGAT	TGCCGTCGAC	CCGACGGGTG		CCAATCGGCT	TCCTTGCAAG	GTATTGCTGC	CGGAACTCCC	
11101001011				1050					1100
GTGACGGAGG	TCACATTCTC	GTTACACACA	ATGTGGATGC		TACTTGTCCA	TCTTTTCGGT	GGCCGGCTTG	CAACCCGGTG	
				1150					1200
ACCCATCTT	TCCGAAAACT	ATTCGTCGCA	AGAAAGCGGT	TCCAACGGTA 1250	CCGTCGCCGT	GGCCCGTCCC	TTTTCTCCCA	TTGGTTTCTA	1300
ACGGCCGGTT	GGTACGACGG	CGGTGCCAAC	AACACCAACG		CTTTGCGTGG	GATACTCCCC	GCACAGCCAC	ATCGATTGCC	
				1350					1400
GTCAAGTCTT	TGTCTTTCAA	TTCCCCATGG	AGTACATGGG		GGACTCGGAT	TCGCTCCCAT	GGGCAGTCGT	ACCGACTTTC	
cccccccmc	mmc3.cc3.3.cc	C3 CCTCTCTC3 C	CAMCHACHCC	1450	3.000003.003.0	CC3 CTCCT3 C	CTCCC3C33C	CCCCCTTGGC	1500
CGGCCCCGIC	TIGACCAACG	GAGGICICAG	CAIGIACIGG	1550	AGGCIACCAC	CGACIGCIAC	CICGGAGAAG	CCCCCIIGGC	1600
TTTTCGCGTG	GCCGCACCGG	TCGTGCCACC	TTTGATCGCG		CGCTCCGGCC	TACCAAGGAC	CCCGTGCCCA	AGTCACCCTC	
				1650					1700
CCGTCCAACC	GATGGTGTAC	GGTGTCGGTG	CCGCTCCCCA	AATCTGGTCC 1750	ATGTCGTACG	ATTACAGCAA	CATGAATGTC	GCCACCACTC	CCGATCTCGT 1800
GTCGTCGCGT	CTCTTGTTGA	CGCAAGATCA	GCAATACATT		CACAAGCGAC	CGTTTCGACG	GATGGTGGAG	TTCACATGGT	
020020002	01011011011	000111111111111111111111111111111111111	-	1850		002220000			1900
AACTTGGGAC	AGTTGGACTG	GACCGTCAAT	GTCACGGGTG		TGATATCGCC	TTGAATGGAC	GTGGTACCAT	TGTGTATGCG	
maaa, a, a, m	mmeaceema.e	as ammmaama	3 C 3 3 CMMM C C	1950	0000003.00m	mememeeea e	mmaaaa aa am	a commo como	2000
TGGGACAGAT	TTCGGCGTAC	CAGTTTGGTG	AGAACTTTGC	2050	GCCCCGACCT	TGTCTCCCAC	TTCGGACAGT	ACGTTGGCTC	2100
TGATGATGGT	GAATCGGATG	TCCCCACTCC	GGCCTTTGGT		CGACCCCCTC	GGGCAGTGGA	CCCGAAGACG	GTGAATCTCC	
				2150					2200
GCTCCGGATG	GTACGACCGT	TCCTCCCGCC	ACGGGACCCA		TCCCGTCGAT	TCGTCCTCGG	CGAACATGGC	CGTAGTGGGT	
тсттсттссс	አ ጥተርርጥተርጥተ	TAAATCATCT	CCCCCCACAA	2250	CATACTACAT	አሮርአሞአሞአአጥ	እሞሞርርአሞርርሞ	AGAAGAGTCG	2300 TACGATAGAA
2011011000	1110011011	ZAMATORIOI	MADADOODE	2350		MULITIANI	IIIOMIUOI	LUMUMUICU	2400
TTAACTAGAT	GTTTGCTCGA	AAAAGTGCGT	GTGTATGCTA	AACCGCCGGG	GAAATAGTGA	TTTCTCCAAG	ACTCGTGGTA	ATAGACAATT	TTTCGTCTTT
				2450					2500
GTTCAATGCA	TGAATCTAGT	ATTGCGCGCG	GGAGTCGTAC	AATCGAATCA 2550	AATCGTTGCT	GATTGGAAGA	TGCATATGTC	ATTGATGAGT	AGTAGAAAGA 2600
CGAATAGTGG	AAAAGCCCAC	GAACCATGAC	TCTGTTCGGC		CGACTCTTGG	TGGTTTCGTC	TCCTTCCAGC	TCTACTTGAC	
CGACCACAGA	CTATCGTTGT	TC							


Figure S2. Predicted amino acid sequence of DOAP1. The signal sequence predicted with the SignalP program is shown in orange. Quinonprotein alcohol dehydrogenase-like domain (IPR011047) is shown in blue. The region fused with GFP gene in this study is shown in a red box.

50	40	30	2 <mark>0</mark>	10
AGVLQGNGIY	WSGRTTDDTA	EFNYLDPTVL	LFLSSLVQA <mark>Q</mark>	MMKLSLSFLL
100	90	80	70	60
RCWSGVTFNY	FVPENLGFAI	EPTTGAVLWT	TSSDGTLRAF	LSPDNKMIVS
150 SASLQGIAAG		130 SPLATTRVIA		110 RSARPYLVYA
200	190	180	170	160
IFSENYSSQE	GLQPGAPLEP	EGYLSIFSVA	ILVTHNVDAL	TPVTDSDGGH
250	240	230	220	210
AWDTPRTATS	ANNTNDVFFF	NPTAGWYDGG	RPFSPIGFYH	SGSNGTVAVA
		280 GQGLGFAPMG	270 FQFPMEYMGD	260 IAETDGQVFV
350	340	330		310
PAYQGPRAQV	ATFDRADRPA	TYFSRGRTGR		YWTVSKATTD
400	390	380	370	360
SRLLLTQDQQ	NVATTPDLVS	WSMSYDYSNM	VYGVGAAPQI	TLSSDPVQPM
450	440	430	420	410
IALNGRGTIV	VNVTGGVYGD	VGNLGQLDWT	STDGGVHMVP	YIIYATQATV
500	490	480	470	460
DGESDVPTPA	DSTLAPTSGD	TPAPTLSPTS	AYQFGENFAA	YAADVLGQIS
550		530	520	510
VDSSSANMAV		PSAPDGTTVP	SGPEDGESPA	FGTIVPTPSG
			m VL	560 VGMASMLLAL


Figure S3. Western blotting signals derived from GFP (\mathbf{a}) and S_{DOAP1}-GFP (\mathbf{b}) were plotted with red lines. Molecular marker signals at the neighboring lanes were also plotted with blue lines. For better comparison between (\mathbf{a}) and (\mathbf{b}), each marker position is marked with gray column.


Figure S4. Examples of fluorescence profiling on the microscopic images of *Fistulifera* sp. JPCC DA0580 expressing S_{DOAP1} -GFP. Fluorescent signals of GFP and chlorophyll along the white arrows in the images are shown in green and red lines, respectively. Fluorescent peaks of GFP outside of the chlorophyll fluorescent region are shown with tje black arrows. (scale bar = 5 μ m).

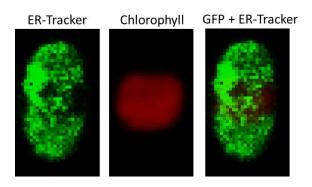

Figure S5. Microscopic observation on *Fistulifera* sp. JPCC DA0580 transformants expressing SDOAP1-GFP with Hoechst 33342 staining. Hoechst staining was conducted by adding Hoechst 33342 (Invitrogen, Eugene, OR, USA) to the cell culture at 1:50 volume ratio (final concentration = $200 \,\mu\text{g/mL}$) (scale bar = $5 \,\mu\text{m}$).

Figure S6. X-Y plane sequence images generated from the reconstructed 3D-images of Figure 3 in the main text (scale bar = $1.3 \mu m$).

Figure S7. Confocal microscopic images of Fistulifera sp. JPCC DA0580 stained with ER-TrackerTM Green (Life Technologies). The cells (1 \times 107 cells/mL) were incubated with 0.78 μ g/mL of ER-TrackerTM Green in phosphate buffered saline for 30 min.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).