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Abstract: To better understand the effect of Paralytic Shellfish Toxins (PSTs) 

accumulation in the digestive gland of the Pacific oyster, Crassostrea gigas, we 

experimentally exposed individual oysters for 48 h to a PSTs producer, the dinoflagellate 

Alexandrium catenella. In comparison to the effect of the non-toxic Alexandrium tamarense, 

on the eight apoptotic related genes tested, Bax and BI.1 were significantly upregulated in 

oysters exposed 48 h to A. catenella. Among the five detoxification related genes tested, 

the expression of cytochrome P450 (CYP1A) was shown to be correlated with toxin 

concentration in the digestive gland of oysters exposed to the toxic dinoflagellate. Beside 

this, we observed a significant increase in ROS production, a decrease in caspase-3/7 activity 

and normal percentage of apoptotic cells in this tissue. Taken together, these results 

suggest a feedback mechanism, which may occur in the digestive gland where BI.1 could 
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play a key role in preventing the induction of apoptosis by PSTs. Moreover, the expression 

of CYP1A, Bax and BI.1 were found to be significantly correlated to the occurrence of 

natural toxic events, suggesting that the expression of these genes together could be used as 

biomarker to assess the biological responses of oysters to stress caused by PSTs. 

Keywords: shellfish; toxin; biomarker; expression; phytoplankton 

 

1. Introduction  

The Pacific oyster Crassostreas gigas, like many other bivalve mollusks, is a filter feeder that 

consumes microphytoplankton, including toxic dinoflagellates when they occurred. Paralytic Shellfish 

Toxins (PSTs) are naturally produced by some cyanobacteria and a number of toxic dinoflagellate 

species including Alexandrium catenella, Alexandrium minutum, Alexandrium tamarense, Pyrodinium 

bahamense and Gymnodinium catenatum [1–3]. Saxitoxin and its congeners can be divided into three 

categories: the carbamate compounds, which include Saxitoxin, neo-Saxitoxin and Gonyautoxins 1–4; 

the N-sulfocarbamoyl compounds, which include the C and B toxins; and the decarbamoyl compounds. 

Saxitoxin is one of the most potent and deadly toxins in the world and was shown to be a highly 

selective blocker of Na+ channels in excitable cells, thereby affecting nerve impulse generation [4] and 

can lead, in extreme cases, to human death [5]. In situ, oysters feeding on toxic dinoflagellates accumulate 

PSTs. When concentration exceeds the sanitary threshold (800 μg saxitoxin equiv/kg wet weights) 

farms are closed resulting in economic losses [6].  

Several studies have described deleterious effects of PSTs on physiological and cellular processes 

in oysters including filtration activity reduction [7], oxygen consumption change [8], pseudo-feces 

production decrease [9], metabolic rate increase [10], reproductive development anomalies [11], alteration 

in feeding and digestive capacity [12–16], and modulation of gene expression [17]. Moreover, immune 

cell alteration has been reported including an adhesion alteration, phagocytosis inhibition [18,19], and 

apoptosis [20].  

Few data are available on the effect of PSTs on the digestive gland. PSTs can accumulate in the  

DG [7,21] and are able to induce modulation of the expression of key genes (α-amylase and 

triacylglycerol lipase B) involved in the digestive process [16]. No other effects were observed 

suggesting complex mechanisms occurring in this tissue. In the present study we investigate specific 

relationships between PSTs accumulation and metabolic process that occur on the digestive gland of 

C. gigas exposed to toxic strain of A. catenella in comparison with non-toxic A. tamarense. To do this, 

the temporal expressions of 5 putative related genes known to be involved in detoxification processes 

and eight key genes known to be involved in apoptosis were determined. These genes were previously 

identified from the 210,895 ESTs from C. gigas reported in the National Center for Biotechnology 

Information database of May 2013 or described by Medhioub et al. in 2013 [15]. We also look at 

caspase-3/7 activity, Reactive oxygen species production, and the appearance of apoptotic cells in 

digestive gland tissue.” 
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2. Results and Discussion 

2.1. Temporal Expression of the Genes Related to Detoxification and Apoptotic Processes 

On the five detoxification-related genes tested, Glutathione S-transferase (GST) transcript was  

over-expressed after exposure of oysters to the two tested Alexandrium species. Cytochrome P450 

subfamily 1A (CYP1A) transcript was over-expressed when oysters were fed the toxic microalgae 

Alexandrium catenella. 

GST transcripts level were significantly (p < 0.01) up-regulated 3.2 and 2.6-fold in the digestive 

gland (DG) of oysters exposed 29 h and 48 h to A. catenella, respectively (Figure 1). This same gene 

GST showed higher transcript levels 2.6 and 3.9-fold in DG of oysters exposed 29 h and 48 h to  

non-toxic A. tamarense, respectively (Figure 1). Glutathione S-transferase belongs to a large  

super-family of multi-functional enzymes primary involved in cellular detoxification by catalyzing the 

nucleophilic attack by glutathione (GSH) on electrophilic compounds with a wide range of endogenous 

and xenobiotic agents, including environmental toxins and oxidative stress products [22–27]. GST 

transcript abundance was previously demonstrated to be over expressed in oysters exposed to toxic and 

non toxic cells of the dinoflagellate Gymnodinium catenatum [17]. Similarly, in our experiment, GST 

transcript level was up-regulated in oysters exposed to the PSTs producer A. catenella but also to non 

toxic A. tamarense. These results suggest that the increase in GST transcript level is not related to 

PSTs accumulated in the DG but could be related to respiratory burst induced by the biotransformation 

and disposition of a wide range of endogenous dinoflagellates compounds [28].  

Figure 1. Relative expression of 5 detoxification-related gene transcripts and 8  

apoptotic-related gene transcripts (normalized to ribosomal protein F40) in the digestive gland 

of Crassostrea gigas exposed for 29 h (A) and 48 h (B) to Alexandrium tamarense (grey) or 

to Alexandrium catenella (black) related to the non exposed oysters. The dashed line 

represents the mean value of the control group (non exposed oysters) for each gene. Bars 

represent mean ± standard errors (N = 10 animals). * p < 0.01.  
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Figure 1. Cont.  

 

CYP1A transcripts were significantly over-expressed (p < 0.01) at 29 h and 48 h (2.7- and 7-fold, 

respectively) in the DG of oysters exposed to A. catenella, in comparison to not fed oysters or those 

exposed to A. tamarense (Figure 1). The cytochrome P450 family is a large and diverse group of 

enzymes that generally constitute the first enzymatic defense against foreign molecules. In bivalve 

mollusks, studies investigated variations in CYP1A transcripts in relation to several biotic and  

abiotic factors [29,30]. CYP1A transcripts have been demonstrated to be up-regulated in gills of  

oysters exposed to changing water temperature [31] and in DG of oysters exposed to hydrocarbon 

contamination [32]. Unlike CYP1A, C. gigas hemocytes exposure to brevetoxin led to a decrease in 

transcript level of CYP356A1 a CYP450 isoform [33].  

On the eight apoptotic-related genes tested, BI.1 and Bax were significantly over-expressed  

(p < 0.01) in the DG of oysters exposed 48 h to A. catenella, presenting an increase (4.3- and 3.1-fold, 

respectively) in comparison to oyster non-exposed (Figure 1B). Interestingly, transcript levels of the 

other C. gigas detoxification and apoptotic-related genes did not show any significant modulation 

under the different treatments after 29 h and 48 h of exposure (Figure 1). The intrinsic pathway of 

apoptosis which implies the cytochrome c release from mitochondria appears to be largely mediated by 

direct or indirect ROS action [34]. B-cell lymphoma 2 (Bcl-2) family proteins, composed of pro- and  

anti-apoptotic members, regulate this process by releasing apoptotic signals from the mitochondria. In our 

experiment, on the pro-apoptotic gene tested, Bax was significantly over-expressed after 48 h exposure 

time of oysters to A. catenella suggesting that the intrinsic pathway of apoptosis has been activated.  

In mammals, Bax protein members play a central role in the induction of the mitochondrial apoptosis 

pathway by promoting the release of apoptotic factors, such as cytochrome c into the cytosol, 

responsible for further activation of the executioner caspases (cysteine aspartate proteases) family of 

proteins, which plays a central role in the execution-phase of cell apoptosis [34–39]. 

  

0

5

10

15

R
e

la
ti

ve
 e

xp
re

ss
io

n

detoxification                                                                     apoptosis 

B

*

** *
*



Mar. Drugs 2014, 12 5039 

 

 

2.2. ROS Production  

Results show a significant increase (p < 0.01) in the production of reactive oxygen species (ROS) 

in DG of oysters at 29 h exposure to both non-toxic A. tamarense and toxic A. catenella (Figure 2). 

ROS production is not related to PSTs accumulated in DG at least for this exposure time. However, in 

the same experiment at a 48-h exposure time, ROS production remains high in oysters exposed to the 

toxic A. catenella (Figure 2). Knowing that the two Alexandrium species have nearly the same morphology 

and organic compounds, these results provide the first evidence that the presence of PSTs in the oyster 

DG induces directly or indirectly a permanent stress response in this organ after two days exposure to 

the toxic algae. Garcia-Lagunas [17] showed an increase of ROS production in C. gigas fed the toxic 

dinoflagellate Gymnodinium catenatum. In contrast, ROS production decreased when C. gigas 

hemocytes were exposed to the PSTs producer Alexandrium minutum [40], but was not modulated in 

hemocytes of Crassostrea virginicas exposed to the PSTs producer Alexandrium fundyense [19]. This 

suggests that specific PST compounds are related to ROS production.  

Figure 2. ROS production measurements in the digestive gland tissues of oysters not exposed 

(white) or exposed 29 h and 48 h to Alexandrium catenella (black) or to Alexandrium 

tamarense (grey). * p < 0.01.  

 

Multiple enzyme systems can contribute to the generation of ROS, but it appears that CYP450 

family may have an important role in any case [41,42]. In the endoplasmic reticulum, ROS are 

produced by the microsomal monooxygenase system composed of CYP450 members, NADPH-P450 

reductase (NPR) and phospholipids [43]. In mammals, the over-expression of CYP1A is associated 

with the production of ROS, including superoxide anion and hydrogen peroxide (H2O2) [44]. Even so, 

it has been difficult to clearly define the role of P450-generated oxidative stress in this experiment, but 

the production of ROS at 48 h of exposure could be generated by CYP1A activity.  

2.3. Apoptosis in Digestive Gland  

When C. gigas were exposed 29 h to the microalgae A. catenella or A. tamarense, no modulation of 

the caspase-3/7 activity was detected (Figure 3). However, after 48 h of exposure, caspase-3/7 activity 
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decreased significantly in oysters exposed to A. catenella, but not in unfed oysters or oysters exposed 

to A. tamarense (Figure 3).  

Figure 3. Caspases 3/7 activity measurements in the digestive gland tissues of oysters not 

exposed (white) or exposed 29 h and 48 h to Alexandrium catenella (black) or to 

Alexandrium tamarense (grey). * p < 0.01.  

 

Figure 4. Observations of cells in the digestive gland tubules (DGT), intestine  

epithelium (E) and Lumen (IL) of oysters exposed for 48 h to Alexandrium catenella (Ac). 

(A,C) Trichrome de Masson staining (B,D) Terminal deoxynucleotidyl TransferaseTetra  

MethylRhodamine Nick End Labeling (TTMRNEL) staining (nuclei are stained in blue, 

nuclei of apoptotic cells in red (Δ)).  
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In addition, intact A. catenella cells were observed in intestine lumen (IL) of oysters exposed for  

48 h to this microalga (Figure 4A). Thickness of digestive gland tubules (DGT) showed a dominant  

star-shape in the intestine lumen formed by digestive cells, indicating that the oysters were actively 

feeding and absorbing (Figure 4C). Moreover, no microalgae cells were observed in digestive tubules 

(Figure 4C). Epifluorescent observations of the corresponding sections showed few apoptotic cells 

through epithelia of the intestine (Figure 4B), intestine lumen (Figure 4B), and digestive tubules  

(Figure 4D). Similar results were observed in the DG of unfed oysters or oysters exposed to the  

non-toxic A. tamarense (data not shown).  

In similar experiment, we previously demonstrated that exposure of oysters to toxic A. catenella 

induces apoptosis of circulating hemocytes even though Bax and executioner caspases were over-expressed 

before apoptosis occurred [20]. Interestingly, here we found no modulation of the mRNA expression 

levels of caspase-3/7 (Figure 1). Moreover caspase-3/7 activities decreased (Figure 3) and no 

significant apoptotic cells in tubules and in intestine were observed (Figure 4). A feedback mechanism 

for regulation of cells death process may occur. On the four anti-apoptotic molecules Bcl2, BI.1, IAP1, 

IAP7B tested, BI.1 was significantly up-regulated at 48 h exposure. In mammals, several lines of 

evidence suggest that BI.1 modulates the intrinsic apoptotic pathways [45–47] and inhibits ROS 

accumulation [48,49]. Similarly in the oyster, BI.1 could play a key role for the control of ROS 

production and apoptosis by regulating Bax-induced cell death throughout the suggested mechanism 

presented in Figure 5. Apoptosis has been recognized to be an essential defense mechanism in oysters 

against invasion of pathogens [50]. Further studies should investigate whether the control of apoptosis 

in the DG related to PST contamination may promote the microbial pathogens (e.g., Vibrio sp.) 

invasion and, thereby, increase the susceptibility of oysters to disease. 

Figure 5. BI.1 regulates apoptosis induce by PST accumulation. In oyster stress cells, 

CYP1A can directly or indirectly neutralize and convert PST to ROS. ROS induces the 

expression of the protein Bax, which promote the intrinsic apoptotic pathway. BI-1 can 

inhibit Bax and could limit CYP1A production of ROS preventing the apoptosis. 
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2.4. PSTs Accumulation and Correlations with Natural Exposure to Alexandrium catenella  

The toxin content of Alexandrium catenella (ACT03 strain) was 5.3 ± 0.4 pg toxins/cell. The 

following toxins were found in decreasing proportion: N-sulfocarbamoyltoxins 1 + 2 (50.9%), 

Gonyautoxins 5 (35%), Gonyautoxins 4 (12%), Gonyautoxins 1 (1%) and neo-Saxitoxin (1%) with  

N-sulfocarbamoyltoxins 3 + 4, Gonyautoxins 3, Saxitoxin and decarbamoyl-Saxitoxin present as trace 

amounts (not shown). No PSTs were detected in Alexandrium tamarense (ATT07) strain. During the 

48-h experiment, PSTs accumulated in the digestive gland of oysters fed A. catenella (Figure 6).  

Figure 6. Evolution of the paralytic shellfish toxin (PST) content (µg/g DG wet  

weight) in the digestive gland of Crassostrea gigas individuals experimentally exposed to 

Alexandrium catenella (left) and to the natural toxic event occurring in may 2011 in Thau 

lagoon (right). The bar charts represent (in %) the temporal toxin.  

  

The toxicity level reached 1.26 (0.17) and 1.56 (0.18) µg/g DG wet weight (µg Saxitoxin diHCl 

equivalent/g DG wet weight) at 29 and 48 h, respectively. The following toxins at 48 h were found in 

decreasing proportion: N-sulfocarbamoyltoxins 1 + 2 (69.1%), Gonyautoxin 5 (21%), Gonyautoxin 1 

(2.8%), Gonyautoxin 2 (2.5%), decarbamoyl-Gonyautoxin 2 (1.4%), neo-Saxitoxin (1.6%) and  

N-sulfocarbamoyltoxins 3 + 4 (0.9%), with Gonyautoxins 3 and 4 present as trace amounts. This 

profile differs from A. catenella (ACT03) by an increase of the proportion of N-sulfocarbamoyltoxins 

1 + 2 and a decrease in the proportion of Gonyautoxins 4 and 5 indicating that biotransformation 

occurred [51]. The rate of accumulation of PST in the tissues of marine bivalves is influenced not only 

by their feeding behavior (toxins intake rate), but also by the different chemical processes that take 

place in the bivalve tissues. Changes between the PST profile of A. catenella and the profile observed 

in DG of oysters may arise from epimerization of the accumulated toxins, chemical or enzymatic 

transformations and/or selective retention of the individual toxins [52–54].  
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PSTs accumulation in oysters exposed to toxic event in Thau lagoon reached 0.47 (0.26), 0.91 

(0.34), 0.92 (0.33) and 0.63 (0.28) µg/g DG wet weight (µg Saxitoxin diHCl equivalent/g DG wet 

weight) on 3, 9, 16 and 23 May, 2011, respectively (Figure 6). PST profiles were characterized by the 

dominance of the Gonyautoxins 4 (14% to 53%) and low concentration of N-sulfocarbamoyltoxins  

1 + 2 (0% to 12%). Similarly to experimental exposure BI.1, Bax and CYP1A transcripts levels were 

significantly over-expressed in DG of wild oysters collected on 9 and 16 May 2011, corresponding to 

toxin concentration 0.91 µg·g−1 and 0.92 µg·g−1 respectively (Figure 7). However, no modulation was 

detected in oysters collected on 3 and 23 May 2011, which corresponds to PSTs concentration of  

0.47 µg·g−1 and 0.63 µg·g−1, respectively (Figure 7). 

Figure 7. Relative expression of cg-CYP1A (grey), cg-BI.1 (dark-grey) and cg-Bax (black) 

transcripts (normalized to ribosomal protein F40) in the digestive gland of Crassostrea gigas 

exposed to a PST event occurring in May 2011 in Thau lagoon. Bars represent mean ± 

standard errors (N = 5 animals).* p < 0.01.  

 

CYP1A have been described as a microsomal monooxygenase catalyzing the first step in 

biotransformation of many organic xenobiotics such as Polycylic Aromatic Hydrocarbon (PAH), 

Polychlorinated Biphenyl (PCB), dioxins, acrylamines, nitroaromatics [55]. Moreover, CYP1A 

regulation appears to be conserved in divergent groups of vertebrates and the elevation of CYP1A 

protein levels was demonstrated to be preceded by an increase in CYP1A mRNA levels following PAH 

exposure [56]. Our results show that CYP1A was up-regulated in DG of oysters exposed to  

A. catenella. Moreover, modulation of mRNA expression was demonstrated to depend directly on 

PSTs concentration (Figure 8).  

Such positive correlations have been found in feral fish between organic xenobiotics concentration 

and CYP1A expression level [57]. Although PSTs biotransformation associated to CYP1A activity has 

not been described yet, it could explain the difference between PST profile of A. catenella and that 

observed in DG of oyster exposed to A. catenella.  
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Figure 8. Correlation between the expression of cg-CYP1A transcripts (normalized to 

ribosomal protein F40) and PST concentration in digestive gland of Crassostrea gigas 

experimentally exposed (red) and in situ exposed (blue). 

 

Presently the mouse bioassay (MBA) still forms the basis of most shellfish toxicity monitoring 

programs. The procedure was developed more than half a century ago and has been refined and 

standardized by the Association of Official Analytical Chemists [58]. However, MBA holds a number 

of recognized disadvantages such as low sensitivity with a detection limit of 40 µg STX/100 g of 

shellfish tissue with a precision of ±15–20 percent. This test suffers from high variability, non-specific 

response, and the procedure raises ethical issues due to the use of laboratory animals. There are 

growing concerns about the continued use of mammals for bioassay. Alternative methods are developed 

such as chemical analyses using high performance liquid chromatography coupled to fluorescence 

detection (HPLC–FLD) and liquid chromatography/mass spectrometry (LC/MS) which are more specific 

and sensitive (detection limit of 3 µg/g STXeq 100 g−1) [59]. However, these methods require a high 

maintenance cost and skilled operators. Alternatively, immunoassay and open-sandwich immunoassay 

(OS-IA) methods are more sensitive than MBA and less expensive, but detect only specific PSTs of 

the 24 Saxitoxin (STX)-like identified [60,61]. When considered individually, the expression of genes 

related to detoxification (CYP1A) and apoptosis (Bax and BI-1) was not specific to the presence of 

PSTs in C. gigas. However, when these genes are considered together and knowing their potential role 

in the control of stress in oysters, their expression level could be a valuable biomarker to detect the 

stress induced by accumulated PSTs. Nevertheless, the use of CYP1A, BI.1 and Bax genes expression 

as accurate biomarkers requires further investigation because chemical and biological pollutants present 

in certain anthropized marine ecosystems could potentially modulate the expression of these genes.  
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3. Experimental Section  

3.1. In Situ Contamination 

Wild adult Pacific oysters Crassostrea gigas individuals (≥60 mm, shell length) were collected 

from natural beds in Thau lagoon (N 43°26.058′ and E 003°39.878′, Bouzigues, Languedoc-Roussillon, 

France) in May 2011 when PSTs contamination of oysters was observed. Digestive gland tissues from 

5 oysters were randomly taken at each sampling date, during 3rd, 9th, 16th and 23rd days of the month 

to perform genes expression and toxin analyses.  

3.2. Experimental Exposure to the Neurotoxic Alexandrium catenella 

3.2.1. Oysters and Microalgae 

Adult Pacific oyster C. gigas were collected in November 2011 from an oyster farm in the Thau 

lagoon (Masson SARL, Languedoc-Roussillon, France) during periods when toxic events did not 

occur. The average total oyster fresh weight was 13.0 ± 2.9 g (average ± SD), average digestive gland 

weight was 1.8 ± 0.5 g and average shell length was 11.0 ± 1.0 cm. Before the experiments, oysters 

were exposed to a continuous flow of filtered (10 µm) Mediterranean seawater maintained in partial 

starvation, having only bacteria and nanoplankton to feed, at a constant temperature of 20 ± 1 °C 

during two weeks for acclimatization.  

The experiments were carried out with a toxic A. catenella (ACT03 strain) and a non-producer of 

PSTs, A. tamarense (ATT07 strain), isolated from the Thau lagoon in 2003 and 2007, respectively. 

The enriched natural sea water [62] culture medium was used to cultivate these two species and  

was characterized by a salinity of 35 PSU. The two dinoflagellates were grown in batch cultures at  

20 ± 1 °C, under a cool-white fluorescent illumination (100 µM photons/m2/s) and a 12 h:12 h 

light:dark cycle. For the feeding experiments, we used algae in their exponential growth phase. 

3.2.2. Experiments 

Two independent experimental exposures were carried out. For each experiment, after two weeks  

of acclimatization, 180 oysters were randomly placed into six tanks (30 individuals per tank) 

containing 10 L of filtered (0.2 µm) seawater. The experiments were conducted at a constant 

temperature of 20 ± 1 °C. Cells of A. catenella (two tanks) or A. tamarense (two tanks) were added 

into tank water regularly to maintain cell concentration (≥1 × 106 cells/L) equivalent to that observed 

during a natural bloom in Thau lagoon [2]. In two control tanks, oysters were incubated in filtered  

(0.2 µm) sea water without microalgae. The mean concentrations in the tank water of the  

experiments for toxic A. catenella and non-toxic A. tamarense were (1.35 ± 0.02) × 106 cells/L and  

(2.20 ± 0.23) × 106 cells/L, respectively. Fresh cells were regularly added at 3, 6, 21 and 29 h to 

approach the initial cell concentrations. However, during the 48-h experiment, concentrations in tank 

water ranged between 1 × 106 cells/L and 2.5 × 106 cells/L. To estimate the concentration of cells in 

tanks during the experiment, triplicates of 1 mL of water were collected, and cells were fixed with 

Formalin (2%), and then counted in a Nageotte counting chamber using a photonic microscope 

(Cardinal Health, Dublin, Ireland). 



Mar. Drugs 2014, 12 5046 

 

 

3.2.3. Tissue Sampling 

Digestive gland tissues from 5 oysters randomly removed from tanks (containing 30 individuals 

each) were collected at time 0 (control), 29 and 48 h for gene expression analysis, apoptotic cells 

detection, caspase-3/7 activity and ROS production measurements. The remaining digestive gland were 

pooled and stored at −20 °C until the toxin extraction was performed. Hemocytes from oysters were also 

randomly taken from tanks at time 0 (control), 3, 6, 21, 29 and 48 h. 

3.3. Genes Expression Analysis  

The expression level of putative detoxification and putative apoptotic-related genes was measured in 

C. gigas exposed to toxic A. catenella or to the non-toxic A. tamarense at 29 and 48 h after the 

beginning of the experiment. In order to quantify the relative transcript levels of the selected 

detoxification-relative genes (CYP1A, TransG, STrans1C1, GST and MT4) and the apoptotic-related 

genes (Bax, BI-1, Bcl2, caspase-3 and caspase-7, IAP1 and IAP-7B and FADD), digestive gland tissues 

were collected and placed in 0.5 mL of Trizol buffer and conserved at −20 °C. Total RNA was isolated 

from the oyster digestive gland using the standard Trizol method (Invitrogen Life Technologies SAS, 

Saint Aubin, France), then treated with DNAse (Invitrogen) to eliminate the contamination of genomic 

DNA. After sodium acetate precipitation, the quantity and quality of total RNA was determined using 

a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and agarose gel 

electrophoresis, respectively. Following heat denaturing (70 °C for 5 min), reverse transcription was 

performed using 1 μg of DG RNA prepared with 50 ng/μL oligo-(dT) 12 mer–18 mer in a 20-μL reaction 

volume containing 1 mM dNTPs, 1 unit/μL of RNAseOUT and 200 units/μL Moloney Murine 

Leukemia Virus Reverse Transcriptase (M-MLV RT) in reverse transcriptase buffer, according to the 

manufacturer’s instructions (Invitrogen Life Technologies SAS, Saint Aubin, France).  

The primer pairs used to quantify the expression level of apoptotic-related genes were designed 

according to the sequence available in GenBank. The expression of the ribosomal protein, F40, was 

used as the housekeeping gene control. All sequences of primers used for the amplification of 

apoptotic-related genes were published by Medhioub [20]. Sequences of primers used for the 

amplification of putative detoxification related genes are shown in Table 1.  

Table 1. Primers sequences for amplification, and size of the obtained products. 

Gene Primers Sequences 5′→3′ Product Size (bp) GenBank ID 

Cg-CYP1A 
GACCGGAATCCAAGACTC 

GCAGTGTTTCCATGACGAC 
70 CB 617404 

Cg-TransG 
AATCTACATCAAGAGTGACG 

AGGCTGCATTTCGTAAGAGG 
144 EE 677859 

Cg-STrans1C1 
GGATGTCGAGTGTTCAGATG 

TTCTGTAGTGCTGGACTTTAG 
119 CB 617550 

Cg-GSTO 
CTGTCCGTATGCTCAACGAG 

CTGCTGTGACTATTTGGACC 
188 CB 617512 

Cg-MT4 
CAGCTCACACAGTCCCTTC 

CATGTACAGTTACACGATGC 
143 AM 265551 
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Real-time PCR amplifications were performed in the Light Cycler 480 (Roche Diagnostics  

GmbH, Mannheim, Germany). In short, the following components were mixed to the indicated  

end-concentration: 5 mM MgCl2, 0.5 µM of each primer, 2.5 μL of reaction mix (Light Cycler® 480 

SYBR® Green I Master mix, Roche Diagnostics GmbH, Mannheim, Germany) in a final volume of  

5 μL. Reverse transcribed RNA (1 μL) diluted 1/10 was added as the PCR template to the Light-Cycler 

master mix, and the following run protocol was used: initial denaturing at 95 °C for 5 min; 95 °C for 10 s; 

10 s at 58 °C; 72 °C for 10 s with a single fluorescence measurement; a melting curve program  

(65–97 °C) with a heating rate of 0.11 °C/s; a continuous fluorescence measurement; and a cooling 

step to 40 °C. Each PCR was performed in triplicate. To determine the qPCR efficiency of each primer 

pair used, standard curves were generated using six serial dilutions (1:1, 1:3, 1:7, 1:15, 1:31, 1:63) of a 

unique cDNA sample constituted from a pool of all cDNAs obtained from each condition; qPCR 

efficiencies of the tested genes varied between 1.85 and 1.99. Moreover, the real-time PCR product 

analysis on agarose gel and by melting curve revealed a unique lane and a unique peak, respectively, 

indicating the formation of a single PCR product with no artefacts (data not shown). For further 

expression level analysis, the Crossing Points (CP) were determined for each transcript using the Light 

Cycler software (Roche Diagnostics GmbH, Mannheim, Germany). The amount of apoptotic-related 

genes expressed was calculated relative to the amount of the ribosomal protein F40 housekeeping gene 

(because of its lower coefficient of variation) using the delta-delta threshold cycle (∆∆Ct) method [63]. 

3.4. Apoptotic Cells Detection Assay 

A 5-mm cross-section including the digestive gland was taken from 10 oysters exposed for 48 h to 

the toxic dinoflagellates A. catenella. The dissected tissues were fixed in Davidson’s fixative [64] for  

48 h. Cross sections were dehydrated in ascending ethanol solution (70°, 95° and 100°), cleared with 

LMR then embedded in paraffin. Then, 5 µm thick sections were cut, mounted on glass slides, paraffin 

was removed with LMR and tissues rehydrated in decreasing ethanol solution (70°, 50° and 25°) then 

wash with phosphate buffer saline (PBS).  

For each individual, two serial thick sections were performed from the DG cross section. One 

section was stained with Trichrome de Masson [65]. The DNA fragmentation that occurs at the early 

stages of apoptosis was detected by the red fluorescent label of DNA fragmentation (In Situ Cell Death 

Detection Kit, TetraMethylRhodamine (TMR) red, Roche Diagnostics GmbH, Mannheim, Germany) 

on the second section according to the manufacturer’s recommendations. Briefly, tissues were 

permeabilized for 8 min in PBS buffer containing 0.1% Triton X-100 and 0.1% sodium citrate. TMR 

red was added; then cells were incubated in the dark for 60 min at 37 °C. After three washes with PBS 

buffer, slides were cover with, 4′,6′-diamidino-2-phénylindole (DAPI) and incubated in the dark for  

10 min. Upon staining, the fluorescent products generated by the two dyes can be visualized using a 

wide-field fluorescence microscope Olympus AX70 (Olympus corporation, Tokyo, Japan) equipped 

with standard red (540 nm–580 nm, TMRred) and blue (358 nm–461 nm, DAPI) filter sets. 

3.5. Caspase-3/7 and ROS Activities Assays 

An amount of 100 mg of digestive gland from 10 oysters (two tanks) non-exposed or exposed for  

29 h and 48 h to the PST producer A. catenella, or the non toxic A. tamarense were crushed and 
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homogenized in 0.5 mL of PBS buffer (Digestive gland suspension solution). The caspase-3/7 activity 

was performed by the AFC SensoLyte Homogeneous AFC caspases-3/7 assay kit (Anaspec). Briefly,  

50 µL of the DG solution was mixed with 50 μL of caspases solution (50 µL caspases-3/7 substrate  

Ac-DEVD-AFC, 200 µL of DTT and 4.75 mL of assay buffer) then drop in black flat bottom 96-well 

plate. Upon caspases-3/7 cleavage, Ac-DEVD-AFC generates the AFC fluorophore which has bright 

blue fluorescence and can be detected at excitation/emission = 300 nm/500 nm. Fluorescence intensity 

of the samples is determined using the spectrometer TECAN® (Tecan Group Ltd, Männedorf, Swiss). 

The kinetics of caspase-3/7 activity was determined in a continuous manner by recording the data 

every 5 min for 60 min. The ROS activity was performed by Total ROS/superoxide detection Kit 

(Enzo Life Sciences, Villeurbanne, France). Briefly, 50 µL of the DG suspension was mixed with  

50 µL of 1 mM solution of 2′,7′-dichlorfluorescein-diacetate (DCFH-DA) then drop in black flat 

bottom 96-well plate. This molecule will penetrate through the cell membrane and the presence of 

intracellular ROS will cleave to release the fluorophore molecule DCF that can be detected by 

measuring the fluorescence at excitation/emission = 480 nm/530 nm. To assess specific activity of 

caspase-3/7 and ROS production, total proteins contents was determined by the BCA Protein assay 

(Bio-Rad, Marnes-la-Coquette, France) according to the manufacturer protocol. Samples were 

compared to a standard curve of bovine serum albumin (BSA). Results are expressed for ROS 

production and for caspases activities in relative fluorescence unit (RFU) per second per mg of protein.  

3.6. Chemical Analysis of PSPs by Liquid Chromatography/Fluorescence Detection (LC/FD) 

The pooled digestive gland tissues were frozen at −20 °C until further processing. To extract the 

toxins, 5 mL of 0.1 N hydrochloric acid were added and the samples were mixed for 2 min with a  

high-speed homogenizer (15,000 rpm). The pH of the mixture was adjusted between 2.0 and 4.0 and 

the samples were centrifuged at 4200 g for 10 min at 4 °C [66]. The supernatants were filtered on  

10 KDa PES filters and analyzed using the LC/FD PSP toxin analyses method of Van De Riet [59]. 

The toxins as GTXs, dc-GTXs, dc-STXs and STXs were separated by reverse chromatography using a 

RP column (Zorbax Bonus RP, 3.5 µM, 4.6 × 150 mm, Agilent Technologies, Massy, France) with a 

flow rate of 0.8 mL/min. The eluent pH and/or column temperature were optimize for the separation of 

some toxins (dc-GTX3/GTX5/dc-GTX-2 & C1/C2). The toxins were quantified using certified 

standards provided by CNRC (Halifax,Canada). An acid hydrolysis (HCl 0.4 N at 97 °C for 5min) was 

used to confirm the presence of GTX6 [67]. The C-toxins were separated by a Thermo Beta Basic  

8 column (5 µm, 4.6 × 250 mm) with a flow rate of 0.8 mL/min. Triplicates of 10 mL batch cultures 

(cell concentration ≥ 107cells/L) were sampled during the exponential growth phase of the cultivated 

dinoflagellates. After centrifugation (3000 g, 15 min, 4 °C), the cells were suspended in 1 mL of 0.1 N 

acetic acid and frozen at −20 °C. To release the toxins, the samples were sonicated for 60 min, and 

then centrifuged at 17,000 g for 10 min at 4 °C. The toxins analyses of filtered supernatants were 

performed as explained above. 
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3.7. Statistics 

Data were analyzed using one-way ANOVA followed by Tukey test (Statistica 10.0 software, 

StatSoft, Maison-Alfort, France). Values are mean ± SD of 10 individuals from two independent 

experiments and 5 individuals from in situ sampling. * p < 0.01.  

4. Conclusions 

This study is the first examine the relationships between PSTs accumulation and metabolic process 

that occur in the digestive gland of oysters exposed to toxic dinoflagellates. Results show that a 

feedback mechanism to control apoptosis and detoxification process occurs in the digestive gland of 

Crassostrea gigas experimentally exposed to the PSTs producer Alexandrium catenella. Moreover 

when considered together the expression level of genes implicated in those processes could be used as 

biomarker to assess stress caused by PSTs accumulation. 
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