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Abstract: The effects of temperature on growth and production of Lipophilic Toxins (LT) by a
monoclonal culture of Dinophysis caudata was studied. The cell density of D. caudata increased
significantly with increasing temperature, and was the highest under 27, 30, and 32.5 ˝C.
Temperature affected the average specific growth rate (µ) during the exponential growth phase (EG),
which increased from 15 ˝C to 30 ˝C, and then decreased at 32.5 ˝C. Liquid chromatography-tandem
mass spectrometry (LC-MS/MS) revealed that this strain of D. caudata produced only pectenotoxin-2
(PTX-2) whose concentration increased significantly with incubation period, except at 32.5 ˝C.
It was significantly different between temperatures ď18 ˝C, ě21 ˝C, and 32.5 ˝C. The cellular toxin
production (CTP, pg¨ cell´1¨day´1) showed variation with growth phase and temperature, except
at 32.5 ˝C. The average net toxin production (Rtox) was not affected by temperature. During EG,
the average specific toxin production rate (µtox) increased significantly with increase in temperature,
reaching a peak of 0.66 ˘ 0.01 day´1 at 30 ˝C, and then decreased. Over the entire growth span,
µtox was significantly correlated to µ, and this correlation was most significant at 27 and 30 ˝C.
During EG, µtox was affected by both temperature and growth. This study shows that temperature
affects growth and toxin production of this strain of D. caudata during EG. In addition, a positive
correlation was found between toxin production and growth.
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1. Introduction

The human seafood-borne intoxication known as diarrheic shellfish poisoning (DSP) was
first identified in Japan in the 1970s [1]. It is associated with the consumption of bivalve
molluscs contaminated with lipophilic, polyether, diarrheic shellfish toxins (DST) produced by
marine microalgae. Originally, the DST complex comprised three groups of lipophilic toxins that
often co-occur in natural samples of plankton and shellfish, and are detected all together by the
conventional mouse bioassay (MBA): the okadaic acid (OA) and its analogues the dinophysistoxins
(DTX), the yessotoxins (YTX), and the pectenotoxins (PTX) [2,3].
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OA and its analogues, especially DTX-1 and DTX-2, are the most important DST toxins and cause
inflammation of the intestinal tracts and diarrhea [4]. They are specific inhibitors of serine/threonine
protein phosphatases 1 (PP1) and 2A (PP2A), two enzymes involved in the regulation of many cellular
processes by modulation of protein phosphorylation/dephosphorylation degree [5,6]. In addition,
OA and its analogues, including DTX-3, were also shown to have tumor promoting activity [7], and to
exhibit several cellular effects both in vitro and in vivo (reviewed in [8]). Several toxicological studies
showed that YTX exhibit lower potency for the inhibition of PP2A than OA and its analogues when
administered orally [9,10]. Although YTX were also found to cause adverse pharmacological effects
on cellular calcium regulation and phosphodiesterase coordination [11], they are no longer considered
diarrheagenic and were removed from the original DST complex due to the fact that no related
human intoxication has been reported to date [12]. Likewise, PTX, which are polyether-lactones,
are no longer considered part of the DST complex [12], in spite of showing hepatotoxicity to mice
following intraperitonial injection [4,13,14], and cytotoxicity in several mammalian cells [15] with
antitumorigenic properties (reviewed in [16]). The PTX analogues, PTX secoacid (PTXSA) are not
toxic to mice when administered orally [14,17,18]. YTX and its analogues are produced by the
microalgae Protoceritium reticulatum [11], Lingulodinium polyedrum [19,20], and Gonyaulax spinifera [21].
OA and its derivatives are produced by some benthic species of the genus Prorocentrum, but mainly
by species of the genus Dinophysis which also produce PTX [22].

The genus Dinophysis regroups over a 100 species of pigmented dinoflagellates, some of which
have been shown to be mixotrophic [23,24]. Among these species of cosmopolitan, polymorphic, and
mostly rare marine protists, typically exhibiting low cell densities of 10–102 cells¨L´1 and atypically
occurring at 104–105 cells¨L´1 in coastal waters [22,23,25], 12 have been found to produce OA, DTX,
and/or PTX, and seven have been associated with DSP events (D. acuminata, D. acuta, D. caudata,
D. fortii, D. miles, D. ovum, and D. sacculus) [26]. Species of Dinophysis form a small fraction of
the microplankton community (1%–5%) and tend to aggregate in patchy thin layers, exceptionally
forming red tides of more than 106 cells¨L´1 [26–33]. Nonetheless, DSP events associated with the
toxins of Dinophysis spp. can emerge in any bivalve cultivation area covered by monitoring programs
of both the cells and the toxins of Dinophysis [33].

The cellular toxic profile and content of Dinophysis spp. affect the magnitude of contamination
of bivalves with LT. However, DSP events often occur in areas where several Dinophysis species with
different toxin profiles are reported [26]. For instance, the contributions of blooms of D. caudata,
co-occurring with or occurring after blooms of other toxigenic species such as D. acuminata,
D. sacculus and D. miles, to the associated DSP events in Southern Europe, Northern Africa, Mexico,
the Gulf of Mexico, South America, Southeast Asia, and Australia remain controversial [34–48].
Information on toxin profiles and toxin content of D. caudata, and other species of Dinophysis, is mainly
available from cell concentrates and/or picked cells, due to difficulties to establish and maintain
cultures of Dinophysis spp. [26,48]. Analyses of picked cells of D. caudata, from different locations, by
HPLC-FLD and LC-MS showed the presence of OA and DTX-1 at moderate to high values [49], traces
of OA and/or DTX-2 with high levels of PTX-2 [37], or only high levels of PTX-2 [50]. In addition,
inter-annual variability in the toxin content of D. caudata picked from the same location was also
found [37,50,51]. Red tides of D. caudata with associated fish mortality were reported in the Seto
Inland Sea, Japan [52], and caused major DSP contamination in Singapore [53]. In a recent study, a
monoclonal culture of D. caudata, isolated from western Japan, was found to be highly lethal, under
controlled laboratory conditions, to Japanese scallops, Patinopecten yessoensis, and noble scallops,
Mimachlamys nobilis, raising further questions regarding the toxicity of Dinophysis [54]. The recent
successful cultivation of D. caudata [55] was crucial to understand the physiology and toxicology
of this species, and other species that were also successfully cultured, namely D. acuminata [56],
D. fortii [57], D. infundibulus [58], D. tripos [59,60], D. acuta [61], D. cf. ovum [62], and D. sacculus [63].
The production and accumulation of toxins in microalgal cells is controlled by several intrinsic and
extrinsic factors [64,65], and temperature could be one of them, especially for D. caudata which is
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widely distributed in tropical and temperate neritic waters [33]. The present study considers the
effect of seven experimental temperatures, covering the natural range of geographical distribution of
D. caudata, on the growth and toxin production of a strain isolated from western Japan and maintained
in a monoclonal culture.

2. Results and Discussion

2.1. Growth under Different Temperatures

Cell densities of Dinophysis caudata increased significantly (Kruskal Wallis ANOVA, p < 0.05)
under all experimental temperatures (Figure 1), reaching the highest final yield at 32.5 ˝C.
Cell densities of Mesodinium rubrum, on the other hand, decreased rapidly with incubation
time and increasing temperature, in a trend much similar to previous observations for similar
temperatures [55], i.e., its exponential decline occurred more rapidly at temperatures >27 ˝C.
Maximal yield in D. caudata cultures was significantly higher at temperatures above 21 ˝C (Table 1).

Mar. Drugs 2015, 13 4 

 

 

a b 

Figure 1. Changes in cell density of Dinophysis caudata (a), fed with Mesodinium rubrum 

(b), grown under different temperatures. Vertical bars denote the standard deviation (SD) 

of the mean (n = 3). 

Table 1. Results of the multiple comparisons test H (Kruskal Wallis Anova) for the effects 

of temperature (°C) on cell density of Dinophysis caudate. 

 Temperature (°C) 

 15 18 21 24 27 30 32.5

15        
18 NS       
21 * NS      
24 *** NS NS     
27 *** *** * NS    
30 *** *** * NS NS   

32.5 *** NS NS NS NS NS  

NS: Non-significant, * p < 0.05; *** p < 0.001. 

During exponential growth phase (EG), the specific growth rate (µ) of D. caudata showed significant 

difference in response to different temperatures (Figure 2). It ranged from 0.21 ± 0.01 day−1 at 15 °C to 

0.67 ± 0.00 day−1 at 30 °C; increasing significantly from 15 °C to 30 °C, and then decreasing at 32.5 °C. 

The specific growth rate of D. caudata was within the range of specific growth rates reported in previous 

studies for the same species isolated from Japan, and other Dinophysis species (D. acuminata, D. acuta, 

D. fortii, D. infundibulus, D. norvegica, D. tripos, and D. sacculus), from both in situ and culture 

estimates (reviewed in [66]). It was optimal under 24, 27, and 30 °C, which reflects the natural distribution 

of D. caudata in tropical and warm sub-tropical areas, with higher cell density, and exceptional blooms, 

occurring in warmer tropical areas [33]. Temperatures lower than 21 °C and above 30 °C seem to be 

outside the lower and higher boundaries of optimal growth of D. caudata, although insufficient acclimation 

at the lowest and the highest temperatures should not be excluded. In a previous study, increasing 

temperature was shown to enhance maximal yield and specific growth of D. acuminata in culture 

experiments, also reflecting its cosmopolitan geographical distribution [67,68]. 

Figure 1. Changes in cell density of Dinophysis caudata (a), fed with Mesodinium rubrum (b), grown
under different temperatures. Vertical bars denote the standard deviation (SD) of the mean (n = 3).

Table 1. Results of the multiple comparisons test H (Kruskal Wallis Anova) for the effects of
temperature (˝C) on cell density of Dinophysis caudate.

Temperature (˝C)

15 18 21 24 27 30 32.5

15
18 NS
21 * NS
24 *** NS NS
27 *** *** * NS
30 *** *** * NS NS

32.5 *** NS NS NS NS NS

NS: Non-significant, * p < 0.05; *** p < 0.001.

During exponential growth phase (EG), the specific growth rate (µ) of D. caudata showed
significant difference in response to different temperatures (Figure 2). It ranged from
0.21 ˘ 0.01 day´1 at 15 ˝C to 0.67 ˘ 0.00 day´1 at 30 ˝C; increasing significantly from 15 ˝C to
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30 ˝C, and then decreasing at 32.5 ˝C. The specific growth rate of D. caudata was within the range
of specific growth rates reported in previous studies for the same species isolated from Japan, and
other Dinophysis species (D. acuminata, D. acuta, D. fortii, D. infundibulus, D. norvegica, D. tripos, and
D. sacculus), from both in situ and culture estimates (reviewed in [66]). It was optimal under 24, 27,
and 30 ˝C, which reflects the natural distribution of D. caudata in tropical and warm sub-tropical
areas, with higher cell density, and exceptional blooms, occurring in warmer tropical areas [33].
Temperatures lower than 21 ˝C and above 30 ˝C seem to be outside the lower and higher boundaries
of optimal growth of D. caudata, although insufficient acclimation at the lowest and the highest
temperatures should not be excluded. In a previous study, increasing temperature was shown to
enhance maximal yield and specific growth of D. acuminata in culture experiments, also reflecting its
cosmopolitan geographical distribution [67,68].Mar. Drugs 2015, 13 5 

 

 

 

Figure 2. Average specific growth rates of Dinophysis caudata during the exponential 

growth phase under different experimental temperatures. Vertical bars denote the standard 

deviation (SD) of the mean (n = 3). Different letters indicate significant differences among 

treatments (ANOVA, Neuwman-Keuls, p < 0.05). 
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in increased food uptake and active cell division [69]. Temperature does also affect the feeding behavior 

of Dinophysis spp., and the swimming behavior and speed of both prey and predator resulting in higher 
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occurred within less than six days, coincident with EG of D. caudata. The difference in growth rates 

during EG should have been linked to active grazing sustaining the mixotrophic growth of Dinophysis 

through both photosynthesis, and essential nutrients and growth factors obtained via prey  

consumption [71–79]. The swimming speed of the prey M. rubrum decreases with decreasing 

temperature [75]. Therefore, the lower growth rates at lower temperatures in spite of the longer 

availability of the prey should have been related to the direct influence of temperature on the 

physiology of D. caudata and thus its growth. It should also be noted that growth rates are influenced 

by both extrinsic and intrinsic factors, including the experimental conditions but also genetic 

variability inherent to the strain of Dinophysis and to the prey itself [55]. 

2.2. Toxin Content and Production under Different Temperatures 

The strain of D. caudata used in this study produced only PTX-2 (Figure 3). The concentration of 

PTX-2 in the culture was affected by both incubation period (Mann-Whitney U test, p < 0.05) and 

temperature (Kruskal Wallis ANOVA, p < 0.05). 

There was a significant increase in the toxin content of the culture with increased incubation time 

(Mann-Whiney U Test, p < 0.05) associated with increased cell density of D. caudata. Within 22–24 days 

of incubation, the concentration of PTX-2 reached the highest value of 2.45 ± 0.25 × 103 ng·mL−1 at  
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decreased. The concentration of PTX-2 in the culture was significantly different under temperatures 
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Figure 2. Average specific growth rates of Dinophysis caudata during the exponential growth phase
under different experimental temperatures. Vertical bars denote the standard deviation (SD) of
the mean (n = 3). Different letters indicate significant differences among treatments (ANOVA,
Neuwman-Keuls, p < 0.05).

Temperature affects the physiology, notably the metabolic activity of phytoplankton, which
results in increased food uptake and active cell division [69]. Temperature does also affect the
feeding behavior of Dinophysis spp., and the swimming behavior and speed of both prey and predator
resulting in higher growth rates with increasing temperature [65,70]. The densities of the prey
M. rubrum decreased rapidly at temperatures >21 ˝C, especially at temperatures exceeding 27 ˝C
under which the rapid decrease occurred within less than six days, coincident with EG of D. caudata.
The difference in growth rates during EG should have been linked to active grazing sustaining the
mixotrophic growth of Dinophysis through both photosynthesis, and essential nutrients and growth
factors obtained via prey consumption [71–79]. The swimming speed of the prey M. rubrum decreases
with decreasing temperature [75]. Therefore, the lower growth rates at lower temperatures in spite
of the longer availability of the prey should have been related to the direct influence of temperature
on the physiology of D. caudata and thus its growth. It should also be noted that growth rates are
influenced by both extrinsic and intrinsic factors, including the experimental conditions but also
genetic variability inherent to the strain of Dinophysis and to the prey itself [55].

2.2. Toxin Content and Production under Different Temperatures

The strain of D. caudata used in this study produced only PTX-2 (Figure 3). The concentration
of PTX-2 in the culture was affected by both incubation period (Mann-Whitney U test, p < 0.05) and
temperature (Kruskal Wallis ANOVA, p < 0.05).

There was a significant increase in the toxin content of the culture with increased incubation time
(Mann-Whiney U Test, p < 0.05) associated with increased cell density of D. caudata. Within 22–24 days
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of incubation, the concentration of PTX-2 reached the highest value of 2.45 ˘ 0.25 ˆ 103 ng¨mL´1 at
30 ˝C. The lowest concentration of PTX-2 (0.45 ˘ 0.05 ˆ 103 ng¨mL´1) throughout the experimental
period was registered for incubation at 32.5 ˝C, a temperature under which PTX-2 concentration
decreased. The concentration of PTX-2 in the culture was significantly different under temperatures
ď18 ˝C and ě21 ˝C, but not significantly different under 21, 24, 27, and 30 ˝C. On the other hand, the
concentration of PTX-2 in the culture was significantly different under 32.5 ˝C, and 24, 27 and 30 ˝C
(Table 2). The PTX-2 cellular toxin production of D. caudata, which corresponds to the total toxin
production (particulate plus dissolved) per cell per mL of culture, showed variation with growth
phase and temperature (Figure 3). Except for the decreased cellular toxin production for incubation
at 32.5 ˝C, from 188.45˘ 5.16 pg¨ cell´1 to 39.84˘ 7.84 pg¨ cell´1, there was a decrease at the beginning
of the incubation period until day 6, corresponding to early to mid-exponential growth, a stabilization
between 6 and 18 days, corresponding to late-exponential to mid-stationary growth, and then an
increase between 18 and 24 days, corresponding to late stationary growth, to levels higher than the
ones registered during the first six days.
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effects of temperature (°C) on PTX-2 concentration of Dinophysis caudate. 

 Temperature (°C) 

 15 18 21 24 27 30 32.5

15        
18 NS       
21 * NS      
24 *** NS NS     
27 *** NS NS NS    
30 *** * NS NS NS   

32.5 NS NS NS * * *  

NS: Non-significant, * p < 0.05; *** p < 0.001. PTX = pectenotoxins. 

The average net toxin production (Rtox) of D. caudata (Figure 4) ranged from 35.16 ± 12.87 

pg·cell−1·day−1 at 15 °C to 16.29 ± 7.24 pg·cell−1·day−1 at 32.5 °C (Table 3). The Rtox was significantly 

affected by the incubation period (Kruskal Wallis ANOVA, p < 0.001) but not by temperature. Except 

Figure 3. Concentration of PTX-2 (ng¨ mL´1) and cellular production (particulate plus dissolved)
of PTX-2 (pg¨ cell´1) in cultures of Dinophysis caudata grown at different temperatures. Vertical bars
denote the standard deviation (SD) of the mean (n = 3). PTX = pectenotoxins.

Table 2. Results of the multiple comparisons test H (Kruskal Wallis ANOVA) for the effects of
temperature (˝C) on PTX-2 concentration of Dinophysis caudate.

Temperature (˝C)

15 18 21 24 27 30 32.5

15
18 NS
21 * NS
24 *** NS NS
27 *** NS NS NS
30 *** * NS NS NS

32.5 NS NS NS * * *

NS: Non-significant, * p < 0.05; *** p < 0.001. PTX = pectenotoxins.

The average net toxin production (Rtox) of D. caudata (Figure 4) ranged from
35.16 ˘ 12.87 pg¨ cell´1¨day´1 at 15 ˝C to 16.29 ˘ 7.24 pg¨ cell´1¨day´1 at 32.5 ˝C (Table 3).
The Rtox was significantly affected by the incubation period (Kruskal Wallis ANOVA, p < 0.001) but
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not by temperature. Except for the peak at 15 ˝C from day 16–24, the Rtox decreased with incubation
period. The increase in the concentration of PTX-2 in the culture medium with incubation period and
the variation of Rtox of PTX-2 with growth phase and temperature were, therefore, most probably
related to differential release of PTX-2 into the culture medium than to an actual differential cellular
production of PTX-2 with growth phase and temperature. The cellular toxin content (CTC) of PTX-2
and DTX-1 of D. acuminata in culture were also found to be unaffected by experimental temperature
whereas the CTC of OA increased significantly with increasing temperature [67].
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equal to the total amount of PTX-2 in culture experiments, whereas the intracellular amount of OA and 
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Early HPLC-FLD analyses, that did not search for PTX, showed very low CTC of OA  

(0.07–0.14 pg·cell−1) in D. caudata from Singapore [53,80], and moderate to high CTC of OA  
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Figure 4. Net toxin production (Rtox) of PTX2 by Dinophysis caudata grown at different temperatures.
Vertical bars denote the standard deviation (SD) of the mean (n = 3).

Table 3. Net toxin production (Rtox, pg¨ cell´1¨ day´1) of Dinophysis caudata during the entire
experimental growth under different temperatures.

Temperature (˝C)

15 18 21 24 27 30 32.5

Rtox

Min ´31.67 ´12.31 ´14.77 0 ´1.35 ´47.60 ´16.04
Max 152.04 103.32 115.33 81.39 72.86 112.30 60.65

Mean 35.16 33.98 29.46 22.93 32.06 35.79 16.29
SE 12.87 8.35 101.63 8.01 6.10 12.27 7.24

In another report, the intracellular amount of PTX-2 of D. acuminata and D. fortii were found to
be equal to the total amount of PTX-2 in culture experiments, whereas the intracellular amount of OA
and DTX-1 were different [66]. It seems that the production, retention/release of toxin, at least PTX-2,
varies among species of Dinophysis and/or strains of the same species.

Early HPLC-FLD analyses, that did not search for PTX, showed very low CTC of OA
(0.07–0.14 pg¨ cell´1) in D. caudata from Singapore [53,80], and moderate to high CTC of OA
(7.9–56.5 pg¨ cell´1) and DTX1 (7.2–53.9 pg¨ cell´1) from the Philippines [49]. Recent LC-MS analyses,
however, showed that PTX-2 is the dominant or the only toxin present in Northwest Spain with
CTC ranging from 50 to 120 pg¨ cell´1 accompanied by traces of OA and/or DTX-2 [42,50].
Differential variations of CTC of OA, DTX-1, and PTX-2 with growth phase were reported for
cultured D. acuminata from northeastern USA, with a significant decrease of PTX-2 as the culture
aged [68]. On the other hand, the average specific toxin production rate (µtox) during exponential
growth phase showed significant difference among temperature (Figure 5). While µtox was not
significantly different at the lower temperatures, 15 to 21 ˝C, it increased significantly from 24 ˝C,
reaching a peak of 0.66 ˘ 0.01 day´1 at 30 ˝C, and then decreased at 32.5 ˝C.
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Figure 5. Average specific toxin production rate (µtox) of PTX-2 by Dinophysis caudata during the
exponential growth phase, cultured under different temperatures. Vertical bars denote the standard
deviation (SD) of the mean (n = 3).

These results suggest that, during early exponential growth, temperature is a direct contributor
to the production of PTX-2, but that PTX-2 production is also related to growth. Indeed, µtox was
significantly correlated to µ in cultures of D. caudata during EG (Figure 6) but also over the entire
incubation period, all temperatures considered (r = 0.50, p <0.001). But this correlation was most
significantly contributed from the µtox at 27 ˝C (r = 0.80, p <0.01) and 30 ˝C (r = 0.82, p <0.01).
In a previous study, temperature was found to affect PTX-2 production of a strain of D. acuminata
from Japan [65], whereas another report showed that both temperature and light did not affect
the production of PTX-2 of another strain of D. acuminata form USA [68]. Several factors may
interactively influence the production of PTX-2 in D. caudata, including the prey organism, growth,
and temperature. In the light of these results, further studies should be considered to understand the
factors that influence toxin production in cultures of D. caudata.
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Dinophysis caudata during the exponential growth phase. Averaged values were plotted.

3. Experimental Section

3.1. Isolation and Maintenance of Clonal Strains

The cryptophyte Teleaulax amphioxeia and the marine ciliate Mesodinium rubrum were isolated
from Inokushi Bay, Oita Prefecture, Japan (32˝471 N, 131˝531 E), in 2007 [55,57]. Cultures of M. rubrum
were maintained at 18 ˝C, by weekly re-inoculations of 50 mL of the culture into a 100 mL of modified
f/2 medium [81–83], with the addition of 50 µL of T. amphioxeia culture as prey, under an irradiance
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of 100–150 µmol photons m´2¨ s´1 provided from cool white fluorescent lamps with a 12 h light:
12 h dark cycle. The culture medium was prepared with 1/3 nitrate, phosphate, and metals and 1/10
vitamins based on the enrichment of natural seawater collected from Hiroshima Bay (salinity adjusted
to 30). Cultures of T. amphioxeia were maintained under the same conditions as those of M. rubrum, by
re-inoculating 0.3 mL of the culture into 150 mL of the modified f/2 medium. Cultures of Dinophysis
caudata were established from single cells of D. caudata isolated from a seawater sample collected from
Nagasaki Prefecture. The cells did not have 2 tailing flagella (planozygotes), hence the established
cultures, from a 1n-cell, were monoclonal. Cultures of D. caudata were initiated by incubating
individual cells in a 12-well microplate in the culture medium with M. rubrum. Cultures were
maintained by incubation in 10 mL culture tubes under each experimental temperature, for 20 days.
The volume of the cultures was gradually increased to 150 mL through monthly re-inoculations into
M. rubrum cultures at 21–23 ˝C in a 250 mL carbonate Erlenmeyer flask [55].

3.2. Growth Experiments

The effects of temperature on toxin production were investigated at seven temperatures (15, 18,
21, 24, 27, 30, and 32.5 ˝C), under the same conditions specified for culture maintenance, except for
temperature. Both M. rubrum and D. caudata cultures were pre-conditioned to each experimental
temperature prior to growth and toxin measurements for 20 days. The M. rubrum cultures grown
at each temperature were collected at the late exponential growth phase (ca. 8.5 ˆ 103 cells¨mL´1),
and then diluted with the culture medium to an initial concentration of ca. 2 ˆ 103 cells¨mL´1.
Cultures of D. caudata for each temperature were added to the matching culture of M. rubrum for
a final concentration of 150 cell¨mL´1 of D. caudata. Every 2 days, the cultures were shaken and
samples collected for cell counts (0.5 mL, in triplicate), and DSP and lipophilic toxin analysis (1.0 mL,
in triplicate). Cells of M. rubrum and D. caudata were counted using an inverted microscope. Samples
for toxin analysis were kept at ´20 ˝C.

The specific growth rate (µ, day´1) of D. caudata was calculated from the exponential growth
phase (EG), between sampling intervals (t, 2 days), as follows [84]:

µ “
ln pN2{N1q

t
(1)

where, N1 and N2 are the cell densities of D. caudata at time 1 and time 2, respectively. t is the
experimental time (days), and µ is the specific growth rate (day´1). The mean specific growth rates
of D. caudata were determined from the slope of the linear regression of the natural logarithm of cell
density versus incubation time during the exponential growth phase.

3.3. Toxin Analyses

The solid phase extraction (SPE) procedure was used for toxin analysis [65,85]. Following a
2 min sonication, each sample was loaded on a Sep-Pak C18 cartridge column (Waters, Milford,
MA, USA), previously preconditioned with methanol (5 mL) and distilled water (10 mL). Sea salt
was then removed by washing the cartridge with 5 mL distilled water, and the toxins were eluted
with 5 mL methanol. Following evaporation, the residue was dissolved in 200 µL methanol, and an
aliquot of the solution was directly analyzed by liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis.

The LC-MS/MS analysis was carried out according to a previous method with slight
modifications [86]. The lowest detection limits for OA, DTX1, and PTX2 were 0.6, 0.6, and
1.6 ng¨mL´1, respectively. These levels are equivalent to 1.2 pg¨ cell´1 of OA/DTX1 and 3.2 pg¨ cell´1

of PTX2, when 100 cells of the toxic plankton were analyzed using our LC-MS/MS method.
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The specific toxin production rate (µtox, pg¨mL´1¨day´1) was calculated based on Equation (1),
by substituting N, the cell density, by T, the toxin concentration, between two consecutive sampling
points, during EG phase, as follows:

µtox “
ln pN2T2{N1T1q

t
(2)

To account for cell growth rates on toxin production, the net toxin production rate (Rtox;
pg¨ cell´1¨day´1) was determined from the following equation [81,87]:

Rtox “
pT2 ´ T1q

Nm ˆ t
, Nm “

pN2 ´ N1q

ln pN2{N1q
(3)

where, T1 and T2 are the toxin concentrations and N1 and N2 are the cell densities of D. caudata both
at the first and subsequent sampling time, respectively, and Nm is the geometric mean density of
D. caudata during the sampling period.

3.4. Data Analysis

Normality (Shapiro-Wilk) and homoscedasticity (Cochran test and Bartlett test) were checked a
priori. When the assumptions of the normal distribution were met, multivariate or factorial ANOVA
were used to test the effects of incubation period and temperature followed by the post-hoc test,
Fisher’s Least Significant Difference (LSD). Otherwise, the non-parametric Kruskal-Wallis ANOVA
was considered, followed by the multiple comparisons H test to assess the level at which the
significant effects occurred. The effects of incubation period and temperature on toxin concentration
and net toxin production were tested with Spearman rank order correlations followed by the
Mann-Whitney U test. Differences between replications, for all data sets, were not significant.
Three levels of significance were considered, α = 0.05, 0.01, and 0.001.

4. Conclusions

In conclusion, cell densities of D. caudata increased significantly with increasing temperature,
with the highest yields observed under 27, 30, and 32.5 ˝C. It is interesting that D. caudata only
produced PTX-2. Because PTX-2 is rapidly converted to non-toxic PTX-2 seco acid in many bivalve
species, except for Japanese scallops Patinopecten yessoensis [85,86,88], appearance of D. caudata even at
high densities could not be problematic for many bivalve species in terms of shellfish toxin regulation
by both mouth bioassay and LC-MS/MS. On the other hand, PTX-2 still has attracted attention for
toxicological and pharmacological reasons. Therefore, results obtained in the present study would be
very useful for optimization of mass production of PTX-2 through large scale cultures of D. caudata.
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