Supplementary Information

Table of Contents

Table S1. ¹H (600 MHz) and ¹³C (150 MHz) NMR chemical shifts (DMSO- d_6 and CD₃OD), NOESY and HMBC correlations of compound **1**.

Table S2. ¹H (600 MHz) and ¹³C (150 MHz) NMR chemical shifts (DMSO- d_6 and CD₃OD), NOESY and HMBC correlations of compound **2**.

Table S3. Conformational Analysis of (24*S*,30*S*)-1 at the B3LYP/6-31G** Level in the Gas Phase.

Table S4. Important Transition States, Related Rotatory Strengths, and Oscillator Strengths of (24*S*,30*S*)-1 at the B3LYP/6-31G* Level in the Gas Phase.

 Table S5. Experimental and calculated NMR chemical shifts of 1.

Figure S1. Random conformational search of (24*S*,30*R*) and (24*S*,30*S*)-1 with an energy window of 130 kJ/mol.

Figure S2. Optimized geometries of predominant conformers **1** at the B3LYP/6-31G** level in the gas phase.

Figure S3. Molecular orbitals involved in the key transitions in the calculated ECD spectrum of (24S,30S)-1 at the B3LYP/6-31G** level in the gas phase.

Figure S4. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound **1**.

Figure S5. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of compound 1.

Figure S6. ¹H NMR spectrum (600 MHz, CD₃OD) of compound 1.

Figure S7. ¹³C NMR spectrum (150 MHz, CD₃OD) of compound 1.

Figure S8. 1 H- 1 H COSY spectrum (DMSO- d_{6}) of compound **1**.

Figure S9. HSQC spectrum (DMSO-*d*₆) of compound 1.

Figure S10. HMBC spectrum (DMSO-*d*₆) of compound 1.

Figure S11. NOESY spectrum (DMSO-*d*₆) of compound 1.

Figure S12. ¹H-¹H COSY spectrum (CD₃OD) of compound **1**.

Figure S13. HSQC spectrum (CD_3OD) of compound 1.

Figure S14. ESIMS spectrum of compound 1.

Figure S15. IR spectrum of compound 1.

Figure S16. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of compound **2**.

Figure S17. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of compound 2.

Figure S18. ¹H NMR spectrum (600 MHz, CD₃OD) of compound 2.

Figure S19. ¹³C NMR spectrum (150 MHz, CD₃OD) of compound 2.

Figure S20. ¹H-¹H COSY spectrum (CD₃OD) of compound **2**.

Figure S21. HSQC spectrum (CD₃OD) of compound 2.

Figure S22. HMBC spectrum (CD₃OD) of compound 2.

Figure S23. NOESY spectrum (CD₃OD) of compound 2.

Figure S24. HSQC spectrum (DMSO-*d*₆) of compound 2.

Figure S25. ESIMS spectrum of compound 2.

Figure S26. IR spectrum of compound 2.

	DMSO-d ₆		CD ₃ OD			DMSO-d ₆	CD ₃ OD		HMBC
No.	¹ Η (δ)	m (J)	¹ Η (δ)	m (J)	- NOESY	¹³ C (δ)	¹³ C (δ)	Туре	$(^{13}C \rightarrow ^{1}H)$
	β 1.59	m	β 1.73	m	11β	25.0	07.4	CU	10
1	α 1.03	m	α 1.18	m	2α, 3	35.8	37.4	CH_2	19
2	α 2.10	m	α 2.26	m	1α, 1β, 3	20.2	20.4	CU	
2	β 1.28	m	β 1.56	m	19	28.2	29.4	CH_2	
3	3.53	ddd 10.9, 10.9, 4.4	3.86	ddd 11.0, 10.6, 4.8	1α, 2α, 5, 29	80.1	85.2	СН	4, 29
4	1.21	m	1.44	m	6β, 19	37.2	38.9	CH	29
5	0.87	m	0.97	m	3, 9	50.7	52.6	СН	1β, 4, 6β, 7β, 19, 29
6	α 1.65 β 0.90	m m	α 1.77 β 1.02	m m	4 76	24.7	26.2	CH_2	5, 7α
7	β 2.32 α 1.65	br. dd 12.6, 3.7 m	β 2.44 α 1.73	m m	6β, 15α, 15β 15α	29.2	30.7	CH ₂	
8	-		-			125.9	127.4	С	6α, 7β, 9, 15β
9	1.61	m	1.08	m	5, 12α	48.7	50.7	СН	7β, 11α, 12β, 19
10	-		-			36.9	38.7	С	6β, 9, 19
11	α 1.55 β 1.41	m m	α 1.61 β 1.51	m m	12α, 12β 1β, 12β, 18	19.5	21.1	CH_2	9
12	β 1.87 α 1.04	ddd 12.2, 3.2, 3.2 m	β 1.93 α 1.09	ddd 12.2, 3.4, 3.3 m	11α, 11β, 12α, 17, 21 9, 11α	36.9	38.3	CH ₂	9, 18
13	-		-			42.2	43.8	С	11β, 15β, 16α, 17, 18
14	-		-			141.4	143.3	С	7α, 9, 12β, 15α, 15β, 16α, 16β, 18
15	α 2.18 β 2.11	br. dd 16.7, 10.2 m	2.19	m m	7α, 7β, 16α, 16β 7β, 16α, 16β	25.3	26.6	CH ₂	
16	α 1.71 β 1.28	dddd 13.1, 9.6, 7.3, 2.3 m	α 1.74 β 1.32	m m	15α, 15β, 17 15α, 15β	26.6	28.1	CH ₂	15β
17	1.02	m	1.03	m	12α, 16α, 21	56.3	58.2	СН	15α, 18, 20, 21
18	0.78	S	0.82	S	11β, 19, 20	18.1	18.7	CH ₃	17
19	0.64	S	0.74	S	2β, 4, 18	13.7	14.4	CH ₃	
20	1.37	m	1.39	m	18	34.1	35.9	СН	21, 23a
21	0.86	d 6.6	0.88	d 6.7	12β, 17	19.0	19.6	CH ₃	23b
22	1.33 0.98	m m	a 1.41 b 1.02	m m	24	32.5	34.1	CH_2	21

Table S1. ¹H (600 MHz) and ¹³C (150 MHz) NMR chemical shifts (DMSO- d_6 and CD₃OD), NOESY and HMBC correlations of compound **1**.

		dddd 12.4,							
23	1.48	12.0, 6.7, 4.3	a 1.51	m	24, 26b	31.3	33.4	CH	24 28
23	1.15	dddd 12.0,	b 1.19	m	24	51.5	55.4		24, 20
		10.6, 6.6, 4.8							
24	2.50	m	2.62	ddq 7.0, 7.0, 7.0	22a, 23a, 23b	35.0	36.6	CH	23b, 26a, 26b, 28
25	-		-			151.4	152.7	C	23a, 23b, 24, 26a, 26b, 28
26	5.53	S	a 5.68	S	NH	113.0	115.8	CH.	24
20	5.17	S	b 5.26	br. s	23a, 28	115.9	115.0		24
27	-		-			166.7	170.3	С	24, 26a, 26b, 30,
									NH
28	0.99	d 6.9	1.08	d 6.9	26b	19.7	19.8	CH_3	23a, 23b, 24
29	0.87	d 6.3	1.02	d 6.3	3	15.5	16.0	CH_3	
30	4.60	d 5.8	5.25	S	37	58.2	59.9	CH	33, 37, NH
31	-		-			170.4	173.3	С	30, NH
32	-		-			134.9	132.9	С	
33	7.18	d 8.6	7.36	d 8.7		127.5	129.4	CH	30, 37
34	6.74	d 8.6	6.82	d 8.7	38	112.7	114.6	CH	33, 36
35	-		-			157.5	160.3	С	33, 34, 36, 37, 38
36	6.74	d 8.6	6.82	d 8.7	38	112.7	114.6	CH	34, 37
37	7.18	d 8.6	7.36	d 8.7	30, NH	127.5	129.4	CH	30, 33
38	3.67	S	3.75	S	34, 36	55.0	55.7	CH_3	
NH	7.78	d 5.8			26a, 37		-		

 Table S1. Cont.

Table S2. ¹H (600 MHz) and ¹³C (150 MHz) NMR chemical shifts (DMSO- d_6 and CD₃OD), NOESY and HMBC correlations of compound **2**.

N	DM	SO-d6		CD ₃ OD	NOPON	DMSO-d6	CD ₃ OD		HMBC
No.	¹ Η (δ)	m (J)	¹ Η (δ)	m (J)	NUESY	¹³ C (δ)	¹³ C (δ)	Туре	$(^{13}C \rightarrow ^{1}H)$
1	β 1.56	m	β 1.71	ddd 13.3, 3.5, 3.5	2α, 2β, 19	25.6	27.2	CU	210
1	α 1.02	m	α 1.17	m	2α, 3, 5	33.0	37.2	CH ₂	2α, 19
2	α 2.09	dm 12.2	α 2.27	m	1α, 1β, 3	20.1	20.2	CU	1β
2	β 1.28	m	β 1.56	m	1β, 19	20.1	29.3		
3	3 50	ddd 11.2,	3 85	ddd 11 2 100 4 8	1a 2a 5 20	80.2	85 1	СЦ	18 20
3	3.50 10.0, 4	10.0, 4.8	5.85	uuu 11.2, 10.0, 4.8	10, 20, 5, 29	80.2	05.1	CII	1p, 29
4	1.20	m	1.42	m	6β, 19, 29	36.8	38.4	CH	6β, 29, 5
5	1.22	m	1.38	ddd 11.5, 9.0, 2.5	1α, 3, 6α, 9, 29, 39	44.1	45.7	CH	1α, 4, 7, 19, 29
6	α 1.83	m	α 1.98	ddd 14.6, 2.9, 2.5	5, 39	20.4	31.4	CH ₂	5,7
0	β 1.07	m	β 1.20	m	4, 7, 19	50.4	51.4		
7	3.94	br. s	4.08	dd 2.9, 2.8	6β, 15β	73.3	75.6	CH	6α, 9, 39
8	-		-			124.5	125.8	С	6α, 9, 11β, 15α
9	1.87	m	1.95	m	5, 11α, 39	43.4	45.3	CH	1β, 7, 12β, 19
10	-		-			37.1	38.6	С	5, 6α, 9, 19
	a 1 <i>50</i>	m	a 1.63	dddd 13.9, 7.5, 3.4,	9 12a 12B				
11	ß 1.30	m	ß 1.05	3.4	$\frac{9}{120}$, 120 , $12p$	19.8	20.5	CH ₂	9, 12β
	р 1.36	111	p 1.48	m	12p, 10, 19				

 Table S2. Cont.

12	β 1.89 α 1.04	m m	β 1.96 α 1.12	m m	11α, 11β, 18, 21 11α, 39	36.6	38.2	CH ₂	9, 18
13	-		-			42.8	44.6	С	11β, 12α, 15α, 17, 18
14	-		-			147.9	150.6	С	7, 9, 12 β , 15 α , 15 β , 16 α , 16 β
15	α 2.37 β 2.21	ddd 17.6, 9.5, 8.7 br. dd 17.6, 12.4	α 2.43 β 2.25	ddd 17.6, 9.5, 8.7 m	16α, 17, 39 7, 16β, 18	25.0	26.4	CH ₂	
16	α 1.76 β 1.31	m m	α 1.80 β 1.34	dddd 13.0, 9.5, 7.1, 2.3	15α, 17, 22a, 22b 15β, 18	26.4	27.9	CH ₂	15α, 17
17	1.05	m	1.10	m	15α, 16α, 21	56.6	58.4	СН	16β, 18, 21, 20, 22a, 22b
18	0.80	S	0.85	S	11β, 12β, 15β, 16β, 20	17.4	18.1	CH ₃	12α
19	0.63	S	0.74	S	1β, 2β, 4, 6β, 11β	12.9	13.6	CH ₃	1α
20	1.38	m	1.41	m	18, 21	34.1	35.8	CH	21, 22b, 23a
21	0.89	d 6.4	0.91	d 6.6	12β, 17, 20, 23b	19.0	19.6	CH ₃	
22	a1.36	m m	a1.41 b1.02	m m	$16\alpha, 24, 28$	32.5	33.9	CH ₂	20, 21, 23b, 24
23	a1.49	m	a1.53	m	22b, 24, 26b, 28	31.5	33.3	CH ₂	24, 28, 20, 22a
24	2.50	m	2.62	ddq 6.5, 6.5, 6.5	22a, 23a, 23b, 26b, 28	35.0	36.5	СН	23a, 23b, 26a, 26b, 28
25	-		-			151.3	152.6	С	23a, 23b, 24, 26a, 26b, 28
26	a5.53 b5.17	s br. s	a5.69 b5.27	s br. s	23a, 23b, 24, 28	114.0	116.0	CH ₂	24
27	-		-			166.7	170.9	С	26a, 26b, NH
28	1.00	d 6.9	1.08	d 6.9	22a, 23a, 24, 26b	19.0	20.0	CH ₃	24
29	0.84	d 5.8	1.01	d 6.0	3, 4, 5	15.4	15.8	CH ₃	5
30	4.57	d 5.0	5.24	S	33, 37	58.2	59.9	CH	33, 37, NH
31	-		-			170.5	176.8	С	30, NH
32	-		-			134.9	134.0	С	30, 34, 36
33	7.18	d 8.4	7.36	d 8.7	30, 34	127.5	129.4	CH	30, 37
34	6.74	d 8.4	6.83	d 8.7	33, 38	112.7	114.6	CH	36
35	-		-			157.5	160.3	С	33, 34, 36, 37, 38
36	6.74	d 8.4	6.83	d 8.7	37, 38	112.7	114.6	CH	34
37	7.18	d 8.4	7.36	d 8.7	30, 36	127.5	129.4	CH	30, 33
38	3.69	S	3.75	S	34, 36	55.0	55.7	CH ₃	
39	3.03	S	3.16	S	5, 6α, 9, 12α, 15α	53.5	54.6	CH ₃	
NH	7.78	d 5.0					-		

# ^a	ΔE ^b	P% ^c
1	10.20	1.6
2	11.63	0.9
3	34.93	0.0
4	26.12	0.0
5	32.90	0.0
6	26.12	0.0
7	0.00	97.5
8	26.12	0.0
9	27.92	0.0

Table S3. Conformational analysis of (24*S*,30*S*)-1 at the B3LYP/6-31G** level in the gas phase.

^a: conformer number; ^b: relative energy, zero point vibrational energy was included; ^c: conformational distribution.

Table S4. Important transition states, related rotatory strengths, and oscillator strengths of (24S, 30S)-1 at the B3LYP/6-31G* level in the gas phase.

Transitions	$\Delta E^{a} (eV)$	λ^{b} (nm)	f^{c}	$R_{\text{len}}{}^d$
183→186, 180→186	4.82	257.0	0.005	-12.58
182→187, 183→188	5.37	230.9	0.049	38.82
183→188, 182→187	5.39	230.2	0.110	60.84
182→188	5.57	222.5	0.027	9.35
178→186, 176→186, 180→187, 179→186	5.72	216.9	0.022	5.06
180→187, 178→186, 176→186	5.75	215.6	0.039	-24.97
181→188, 183→189, 180→188, 180→187	5.82	212.9	0.004	-14.31
183 →189, 180→188	5.88	210.8	0.010	-7.00
178→188, 179→188, 179→186, 176→188	6.04	205.2	0.006	-12.20
182→189, 176→188	6.15	201.6	0.198	83.36
182→189	6.16	201.3	0.172	-136.69
184→190	6.17	200.9	0.005	-5.32

^{*a*} Excited energy; ^{*b*} Wavelength; ^{*c*} Oscillator strength; ^{*d*} Rotatory strength in length form (10⁻⁴⁰cgs).

NT- 9	A A b	2 (24 <i>S</i> ,	30 <i>S</i>	24 <i>R</i> ,	e f	
N0."	Atom ^a	0c ^c	$\delta_c{}^d$	Δ ^e	$\delta_c{}^d$	Δe	0 i ¹
1	С	35.8	40.1	4.3	40.5	4.7	0.4
2	С	28.2	31.9	3.7	32.5	4.3	0.6
3	С	80.1	75.6	4.5	76.0	4.1	0.4
4	С	37.2	40.7	3.5	41.0	3.8	0.3
5	С	50.7	51.4	0.7	51.6	0.9	0.2
6	С	24.7	24.8	0.1	25.0	0.3	0.1
7	С	29.2	31.8	2.6	31.8	2.6	0.0
8	С	125.9	131.2	5.3	132.6	6.7	1.4
9	С	48.7	55.9	7.2	56.6	7.9	0.6
10	С	36.9	39.7	2.8	39.5	2.6	0.2
11	С	19.5	23.3	3.8	24.4	4.9	1.1

Table S5. Experimental and calculated NMR chemical shifts of 1.

12	С	36.9	40.0	3.1	41.4	4.5	1.5			
13	С	42.2	47.5	5.3	47.7	5.5	0.2			
14	С	141.4	136.7	4.7	136.9	4.5	0.2			
15	С	25.3	27.4	2.1	27.5	2.2	0.2			
16	С	26.6	32.4	5.8	31.6	5.0	0.8			
17	С	56.3	54.2	2.1	52.0	4.3	2.2			
18	С	18.1	20.5	2.4	20.3	2.2	0.1			
19	С	13.7	17.0	3.3	17.5	3.8	0.5			
20	С	34.1	39.7	5.6	39.4	5.3	0.2			
21	С	19.0	16.9	2.1	19.3	0.3	2.4			
22	С	32.5	36.5	4.0	35.0	2.5	1.5			
23	С	31.3	33.0	1.7	34.9	3.6	1.9			
24	С	35.0	43.1	8.1	48.4	13.4	5.3			
25	С	151.4	155.0	3.6	152.6	1.2	2.3			
26	С	113.9	106.2	7.7	107.4	6.5	1.2			
27	С	166.7	161.2	5.5	159.9	6.8	1.3			
28	С	19.7	22.7	3.0	18.0	1.7	4.7			
29	С	15.5	15.6	0.1	16.0	0.5	0.4			
30	С	58.2	59.6	1.4	61.4	3.2	1.8			
31	С	170.4	163.2	7.2	164.8	5.6	1.5			
32	С	134.9	128.6	6.3	130.9	4.0	2.2			
33	С	127.5	125.8	1.7	126.5	1.0	0.8			
34	С	112.7	103.6	9.1	103.8	8.9	0.2			
35	С	157.5	150.8	6.7	151.3	6.2	0.5			
36	С	112.7	110.8	1.9	111.7	1.0	0.9			
37	С	127.5	119.5	8.0	120.3	7.2	0.8			
38	С	55.0	52.0	3.0	52.0	3.0	0.1			

 Table S5. Cont.

^a Atom numbering; ^b atom name; ^c Experimentally and ^d Theoretically observed chemical shifts; ^e Difference between experimentally and theoretically observed chemical shifts; ^f Difference between calculated chemical shifts of two configurations. Calculation was performed at the B3LYP/6-31G** level in the gas phase.

Figure S1. Random conformational search of (24*S*,30*R*) and (24*S*,30*S*)-**1** with an energy window of 130 kJ/mol.

Figure S2. Optimized geometries of predominant conformers of **1** at the B3LYP/6-31G** level in the gas phase.

Figure S3. Molecular orbitals involved in the key transitions in the calculated ECD spectrum of (24*S*,30*S*)-1 at the B3LYP/6-31G** level in the gas phase.

Figure S4. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound **1**.

Figure S5. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound **1**.

Figure S6. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 1.

Figure S7. ¹³C NMR spectrum (150 MHz, CD₃OD) of compound 1.

Figure S8. ¹H-¹H COSY spectrum (DMSO-*d*₆) of compound **1**.

Figure S9. HSQC spectrum (DMSO-*d*₆) of compound 1.

Figure S10. HMBC spectrum (DMSO-*d*₆) of compound 1.

Figure S11. NOESY spectrum (DMSO-*d*₆) of compound 1.

Figure S12. ¹H-¹H COSY spectrum (CD₃OD) of compound **1**.

Figure S13. HSQC spectrum (CD₃OD) of compound 1.

Qualitative Compound Report

Figure S14. ESIMS spectrum of compound 1.

Figure S15. IR spectrum of compound 1.

Figure S16. ¹H-NMR spectrum (600 MHz, DMSO-*d*₆) of compound **2**.

Figure S17. ¹³C-NMR spectrum (150 MHz, DMSO-*d*₆) of compound **2**.

Figure S18. ¹H-NMR spectrum (600 MHz, CD₃OD) of compound 2.

Figure S19. ¹³C-NMR spectrum (150 MHz, CD₃OD) of compound 2.

Figure S20. ¹H-¹H COSY spectrum (CD₃OD) of compound 2.

Figure S21. HSQC spectrum (CD₃OD) of compound 2.

Figure S22. HMBC spectrum (CD₃OD) of compound 2.

Figure S23. NOESY spectrum (CD₃OD) of compound 2.

Figure S24. HSQC spectrum (DMSO-*d*₆) of compound 2.

Qualitative Compound Report

Figure S25. ESIMS spectrum of compound 2.

Figure S26. IR spectrum of compound 2.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).