Supplementary Information

Table S1. Mean value (MV) and standard error of the mean (SEM) for locomotion behavior after 24 and 72 h of incubation. Additionally, significances (p) in relation to the control are shown.

Body Bends					
	24 h		72 h		
	$MV \pm SEM [min^{-1}]$	р	$MV \pm SEM [min^{-1}]$	р	
Control	62.46 ± 0.89		53.79 ± 1.05		
0.1 μM TPBB-A	66.7 ± 1.35	0.01	57.52 ± 0.77	0.01	
50 μΜ ΤΡΒΒ- Α	64.55 ± 1.79	0.31	52.1 ± 0.77	0.2	
50 µM DBAA	69.4 ± 1.39	< 0.001	56.19 ± 0.86	0.09	
0.1 μM TPBB-A + 50 μM DBAA	71.78 ± 1.79	< 0.001	52.22 ± 0.76	0.24	
50 µM TBBP-A + 50 µM DBAA	62.59 ± 0.94	0.94	47.50 ± 0.98	< 0.001	
	Relative Movelength i	n 20 s			
	24 h	72 h	24 h	72 h	
	MV ± SEM	р	$MV \pm SEM$	р	
Control	5.38 ± 0.17		5.18 ± 0.15		
0.1 μM TPBB-A	5.67 ± 0.20	0.263	5.50 ± 0.14	0.192	
50 μΜ ΤΡΒΒ- Α	5.52 ± 0.21	0.614	4.63 ± 0.13	0.002	
50 µM DBAA	5.86 ± 0.19	0.064	5.10 ± 0.14	0.461	
0.1 μM TPBB-A + 50 μM DBAA	5.48 ± 0.17	0.674	4.80 ± 0.16	0.035	
50 μM TBBP-A + 50 μM DBAA	5.57 ± 0.13	0.370	4.05 ± 0.09	< 0.001	

Table S2. Mean value (MV), standard error of the mean (SEM) and significance (p) relative to the control for the pharynx-pumping after different times of incubation.

Pumping-Frequency							
	24 h		72 h				
	$MV \pm SEM [min^{-1}] \qquad p \qquad MV \pm SEM [min^{-1}]$						
Control	281.38 ± 2.87		265.85 ± 3.9				
0.1 μΜ ΤΡΒΒ-Α	302.8 ± 5.78	0.002	295.49 ± 7.3	0.002			
50 μM TPBB-A	276.01 ± 6.41	0.461	273.86 ± 5.96	0.316			
50 µM DBAA	307.08 ± 3.11	< 0.001	311.73 ± 4.49	< 0.001			
0.1 μM TPBB-A + 50 μM DBAA	341.88 ± 6.75	< 0.001	323.48 ± 10.05	< 0.001			
50 μM TBBP-A + 50 μM DBAA	287.98 ± 2.93	< 0.001	287.47 ± 3.45	< 0.001			

Table S3. Time between two defecations. Listed are the mean values (MV), standard error of the mean (SEM) and significances (p).

Time between Defecation							
	24 h		72 h				
	$MV \pm SEM [s] \qquad p \qquad MV \pm SEM [s]$						
Control	51.04 ± 0.67		70.39 ± 1.89				
0.1 μM TPBB-A	51.83 ± 1.16	0.560	73.74 ± 2.61	0.306			
50 μM TPBB-A	47.73 ± 0.87	0.004	54.66 ± 2.04	< 0.001			
50 µM DBAA	45.93 ± 0.83	< 0.001	67.83 ± 1.08	0.260			
0.1 μM TPBB-A + 50 μM DBAA	48.39 ± 1.19	0.065	78.18 ± 2.60	0.019			
50 μM TBBP-A + 50 μM DBAA	44.90 ± 0.75	< 0.001	55.45 ± 1.55	< 0.001			

the control are shown.							
Percentage of Affirmative Responses to Mechanical Stimuli							
	24 h		72 h				
	MV ± SEM [%]	р	MV ± SEM [%]	р			
Control	84.33 ± 2.61		86.33 ± 2.56				
0.1 μM TPBB-A	82.00 ± 2.73	0.804	87.33 ± 2.03	0.761			
50 μΜ ΤΡΒΒ- Α	82.67 ± 2.44	0.643	79.63 ± 3.35	0.114			
50 μM DBAA	84.33 ± 2.48	1.000	83.00 ± 2.80	0.383			
0.1 μM TPBB-A + 50 μM DBAA	85.67 ± 2.28	0.702	84.14 ± 2.70	0.557			
50 μM TBBP-A + 50 μM DBAA	67.00 ± 4.82	0.004	73.00 ± 4.63	0.014			

Table S4. Percentage of affirmative responses to mechanical stimuli to the anterior part of *C. elegans*. Mean values (MV), standard error of the mean (SEM) and significance (p) to the control are shown.

Table S5. The table shows the mean value (MV) of the chemical indices, as well as the standard error of the means (SEM) and significances (p) in relation to the control.

Chemical Index Ci							
	24 h		72 h				
	$MV \pm SEM$	р	$MV \pm SEM$	р			
Control	0.28 ± 0.00		0.39 ± 0.00				
0.1 μΜ ΤΡΒΒ-Α	0.27 ± 0.02	0.665	0.30 ± 0.09	0.415			
50 μM TPBB-A	0.23 ± 0.05	0.007	0.26 ± 0.02	0.001			
50 µM DBAA	0.28 ± 0.04	0.945	0.29 ± 0.06	0.210			
0.1 μM TPBB-A + 50 μM DBAA	0.27 ± 0.06	0.736	0.12 ± 0.02	< 0.001			
50 μM TBBP-A + 50 μM DBAA	0.12 ± 0.07	0.035	0.22 ± 0.07	0.035			

Gene	Primer	Sequence 5' to 3'	GC	Primer	Tm	Ta Single	Ta	Primer	R ²	Product
Othe	1 mici	Sequence 5 to 5	[%]	Length [bp]	[°C]	[°C]	[°C]	Efficiency [%]	Λ	Length [bp]
act-1 act-1 fv	act-1 fw	TCCAAGAGAGGTATCCTTAC	45	20	55.25	53.75	52 0	100.0 0.002	0.002	1.00
<i>act-1</i>	act-1 rv	CGGTTAGCCTTTGGATTGAG	50	20	57.30	55.80	32.8	109.0	0.992	109
ada 17	cdc-42 fw	ATTACGCCGTCACAGTAATG	45	20	55.25	53.75	52.9	02.9	0.006	249
<i>cac-42</i>	cdc-42 rv	ATCCCTGAGATCGACTTGAG	50	20	57.30	55.80	32.8	95.8	0.996	248
	ace-1 fw	TCTGCCTTCGACGATATTAG	45	20	55.25	53.75	52.9	102.9	0.001	225
ace-1	ace-1 rv	AGTGTCCTCACTCTGAATAC	45	20	55.25	53.75	52.8	102.8	0.981	235
	casy-1_2 fw	CGAAGGCAGAAGAGACAGAG	55	21	60.90	59.40	50.4	00.7	0.000	207
casy-1	casy-1_2 rv	ACGAGCGTTCGTTGAGATGG	55	21	60.90	59.40	30.4	99.7	0.992	297
-1 - 12	che-12 fw	GAAGCATGCGATTTCACAAC	45	20	55.25	53.75	52.0	10(7	0.977	257
cne-12	che-12 rv	CTTATCCGCCCATTCATCAC	50	20	57.30	55.80	32.8	100.7		
1.4.1	dat-1_3 fw	CGAAGAGGGAAAGAGCAATG	50	20	57.30	55.8	52.0	101.2	0.000	102
aat-1	dat-1_3 rv	TGGTCAGAAGACGGAACAG	52	19	56.41	54.91	55.9	101.2	0.988	193
J 1	dop-1_2 fw	AGAAAGCACGTCTTACATTG	40	20	53.20	51.70	507	1144	0.005	2(2
aop-1	dop-1_2 rv	CTTATTTAGATCAGGCTCTTCC	40	22	56.15	54.65	50.7	114.4	0.995	263
1	dop-3_2 fw	ATTCGCATTCCTGTAAATCG	40	20	53.20	51.70	507	120.2	0.007	246
aop-3	dop-3_2 rv	ATTGTGAGCTTAGCAGTTTC	40	20	53.20	51.70	50.7	130.3	0.997	346
	eat-4 fw	CCCACAGCAAATGCAAGAAG	50	20	57.30	55.80	54.0	104.0	0.052	211
eat-4	eat-4 rv	CCGGAATCTGAGTGACTAAG	50	20	57.30	55.80	54.8	104.8	0.853	311
11 1	gbb-1 fw	TCACAACTCGCAGTGTCAAC	50	20	57.30	55.80	54.0	05.0	1	107
gbb-1	gbb-1 rv	CGCAGCTTCAGCAATTACAG	50	20	57.30	55.80	54.8	.8 85.0	1	127
1.10	grd-12 fw	CTCCGCAACAGCGATTCAAC	55	20	59.35	57.85	56.0	117.0	0.007	221
grd-12	grd-12 rv	CGGTGGAGGTCTAACGTAAG	55	20	59.35	57.85	56.8	117.0	0.997 221	

Table S6. Sequences for the primers for examined genes, fw: forward, rv: reverse; bp: base pairs; Tm: melting temperature, Ta: annealing temperature, R^2 : coefficient of determination.

unc-17

unc-47

unc-17 2 rv

unc-47 fw

unc-47 rv

GGGTTCCTTGAACCTTCTC

TTCAGGCAGCATGGAATGTCAC

ATCCGGCTTTGTCAACACTTGG

hda-4 fw 20 TTCCAGTTGGACAGGATCTC 50 57.30 55.80 54.8 113.9 0.988 269 hda-4 hda-4 rv TTCGCCTTCTGGATCTTCTC 50 20 57.30 55.80 hen-1 fw 47 21 GAGCATTTGGTCACGGAAATC 57.62 56.12 hen-1 55.1 111.3 0.991 223 hen-1 rv GTTGCGAGGGTCATTTATGTC 47 21 57.62 56.12 mec-10 fw ACAGAGCTGCATGGGTATTC 50 20 57.30 55.80 54.8 137.5 0.996 265 mec-10 mec-10 rv AATGCTTCCGAGCTGCTATC 50 20 57.30 55.80 srab-6 fw 55 20 ATGAGGAGCTGAGGGCTAAG 59.35 57.85 56.8 127.3 0.990 195 srab-6 srab-6 rv 55 20 59.35 57.85 TGAACGCGACATAGGTGGAG 50 57.30 tph-1 fw GGATCTGATGATGCGACAAC 20 55.80 tph-1 54.8 117.6 0.997 97 tph-1 rv GCCCTGCTCCATACATAATCAC 50 22 60.25 58.75 ttx-3 fw 60 20 AGCGGAAGCGTCTACCGATG 61.40 59.90 58.9 101.8 ttx-3 0.982 156 ttx-3 rv GCGGCTAGCTGCTTCAAGTC 60 20 61.40 59.90 unc-17 2 fw GAAATGCGTCCTGGTGATAG 52 19 56.41 54.91

19

22

22

56.41

60.25

60.25

54.91

58.75

58.75

52

50

50

53.9

57.8

85.9

96.9

0.992

0.967

205

336

Table S7. Corrected total cell fluorescence for the different *C. elegans* strains marked with GFP. Shown are the mean values \pm standard error of the mean, as well as significances with * p < 0.05 and ** p < 0.001.

EG1285	24 h	72 h
Control	$183,839 \pm 10,650$	259,351 ± 19,644
0.1 μΜ ΤΒΒΡ-Α	135,114 * ± 12,707	207,184 * ± 12,131
50 μM TBBP-A	$213,880 \pm 12,550$	299,439 ± 16,138
50 μΜ DBAA	$159,973 \pm 9090$	$213,449 \pm 13,160$
0.1 μM TBBP-A + 50 μM DBAA	$210,991 \pm 8948$	$274,663 \pm 12,422$
50 μM TBBP-A + 50 μM DBAA	219,156 * ± 8983	$285,905 \pm 28,598$
BZ555	24 h	72 h
Control	$119,346 \pm 8832$	$176,944 \pm 19,205$
0.1 μM TBBP-A	$105,338 \pm 8007$	$156,333 \pm 26,699$
50 µM TBBP-A	146,758 * ± 8579	$215,\!485 \pm 19,\!607$
50 μΜ DBAA	$126,570 \pm 8940$	$176,236 \pm 31,027$
0.1 μM TBBP-A + 50 μM DBAA	146,494 * \pm 7074	$207,074 \pm 13,680$
50 μM TBBP-A + 50 μM DBAA	$144,842 * \pm 6608$	$206,656 \pm 10,525$
DA1240	24 h	72 h
Control	$81,409 \pm 4906$	$297,624 \pm 14,638$
0.1 μΜ ΤΒΒΡ-Α	$83,751 \pm 10,186$	196,252 ** ± 17,541
50 µM TBBP-A	69,415 * ± 5332	$255,222 \pm 14,992$
50 μΜ DBAA	$64,218 \pm 5198$	256,876 * ± 27,374
0.1 μM TBBP-A + 50 μM DBAA	$73,585 \pm 5941$	$233,562 \pm 20,874$
50 μM TBBP-A + 50 μM DBAA	101,324 * ± 7177	$335,110 \pm 23,297$
LX929	24 h	72 h
Control	$236,746 \pm 14,116$	$315,214 \pm 11,903$
0.1 μΜ ΤΒΒΡ-Α	308,748 * ± 15,462	357,166 * ± 21,528
50 μΜ ΤΒΒΡ-Α	275,864 * ± 10,755	$362,078 \pm 19,764$
50 μΜ DBAA	$249,282 \pm 11,207$	$323,964 \pm 12,539$
0.1 μM TBBP-A + 50 μM DBAA	355,086 ** ± 10,842	362,292 * ± 15,940
50 μM TBBP-A + 50 μM DBAA	342,870 ** ± 17,143	390,778 * ± 19,565
GR1366	24 h	72 h
Control	$110,876 \pm 8678$	$167,014 \pm 10,928$
0.1 μΜ ΤΒΒΡ-Α	$99,574 \pm 17,346$	$149,276 \pm 11,013$
50 μΜ ΤΒΒΡ-Α	$120,510 \pm 8529$	$183,670 \pm 10,933$
50 μΜ DBAA	$99,341 \pm 9685$	$143,921 \pm 19,431$
0.1 μM TBBP-A + 50 μM DBAA	156,732 ** ± 5764	221,663 * ± 22,235
50 μM TBBP-A + 50 μM DBAA	$107,262 \pm 8587$	$172,394 \pm 16,767$

Table S8. Relative gene transcription after chronic exposure. Mean value \pm standard error of the mean are shown, as well as significances with p < 0.05 (*) und p < 0.001 (**). 1: 0.1 µM TBBP-A; 2: 50 µM TBBP-A; 3: 50 µM DBAA; 4: 0.1 µM TBBP-A + 50 µM DBAA; 5: 50 µM TBBP-A + 50 µM DBAA.

Developmental stage	Gene	casy-1	dat-1	eat-4	thp-1	unc-17	unc-47
	1	$0.00 ** \pm 0.00$	7.75 ± 3.40	$0.04 ** \pm 0.02$	1.59 ± 0.47	1.23 ± 0.09	0.65 ± 0.08
age	2	0.91 ± 0.23	2.67 ± 0.56	0.89 ± 0.24	0.60 ± 0.20	1.46 ± 0.05	0.96 ± 0.11
-St	3	1.31 ± 0.18	0.90 ± 0.33	1.20 ± 0.08	1.50 ± 0.73	1.19 ± 0.65	0.97 ± 0.24
L1	4	$0.07 * \pm 0.01$	1.26 ± 0.90	$0.03 \ * \pm 0.01$	1.53 ± 0.28	0.54 ± 0.06	$1.49 * \pm 0.06$
	5	$0.00 * \pm 0.00$	1.14 ± 0.29	0.66 ± 0.44	0.51 ± 0.08	1.39 ± 0.06	0.69 ± 0.08
e	1	1.80 ± 0.41	0.94 ± 0.01	0.86 ± 0.30	1.06 ± 0.17	1.44 ± 0.06	1.80 ± 0.26
Stag	2	1.09 ± 0.25	1.30 ± 0.37	1.19 ± 0.09	0.55 ± 0.23	1.11 ± 0.17	1.14 ± 0.34
5	3	0.85 ± 0.03	2.46 ± 1.13	1.17 ± 0.38	0.20 ± 0.05	2.14 ± 0.11	1.00 ± 0.11
/7/	4	0.04 ± 0.02	2.35 ± 0.78	0.87 ± 0.23	1.11 ± 0.94	1.38 ± 1.31	1.15 ± 0.26
Π	5	0.16 ± 0.0	1.41 ± 0.13	3.07 ± 1.89	1.93 ± 0.32	3.81 ± 0.82	$1.89 * \pm 0.15$
	1	$3.29 * \pm 0.26$	3.37 ± 1.68	$2.19 * \pm 0.19$	1.38 ± 1.07	0.74 ± 0.07	0.69 ± 0.33
age	2	0.87 ± 0.41	1.32 ± 0.19	1.09 ± 0.51	0.98 ± 0.26	1.16 ± 0.48	$0.41 ** \pm 0.00$
-St	3	1.08 ± 0.00	1.00 ± 0.39	1.05 ± 0.56	0.93 ± 0.77	0.68 ± 0.09	0.89 ± 0.21
L4	4	1.55 ± 0.27	1.48 ± 0.46	1.54 ± 0.48	1.17 ± 0.37	1.42 ± 0.09	0.62 ± 0.17
	5	0.62 ± 0.57	$3.29 * \pm 0.04$	1.48 ± 0.23	0.62 ± 0.21	1.75 ± 0.15	$3.98 * \pm 0.62$
	1	1.14 ± 0.15		1.78 ± 0.42	1.35 ± 0.13	0.63 ± 0.12	$2.33 * \pm 0.27$
age	2	1.00 ± 0.12		0.68 ± 0.06	1.04 ± 0.21	0.66 ± 0.20	0.61 ± 0.07
-St	3	1.59 ± 1.29		0.60 ± 0.09	0.70 ± 0.24	0.46 ± 0.25	1.12 ± 0.09
A1	4	1.05 ± 0.22		1.14 ± 0.23	0.67 ± 0.21	1.65 ± 0.21	$1.21 \ * \pm 0.01$
	5	0.84 ± 0.06		1.24 ± 0.34	0.94 ± 0.27	1.81 ± 0.30	1.18 ± 0.06

Table S9. Corrected total cell fluorescence after chronic exposure. Mean value (MV) and standard error of the mean (SEM) are shown, as well as significances to the control with * p < 0.05 und ** p < 0.001; c: Control; 1: 0.1 µM TBBP-A; 2: 50 µM TBBP-A; 3: 50 µM DBAA; 4: 0.1 µM TBBP-A + 50 µM DBAA; 5: 50 µM TBBP-A + 50 µM DBAA

	L1-Stage			L2/L3-Stage	
	MV	SEM		MV	SEM
c	462,578	78,058	c	917,722	171,419
1	458,555	76,725	1	971,382	140,736
2	531,912	87,496	2	890,164	101,965
3	493,932	57,382	3	1,195,461	192,830
4	228,259 *	30,333	4	854,931	138,951
5	374,019	59,387	5	2,043,737 **	261,800
	L4-Stage			A1-Stage	
	MV	SEM		MV	SEM
c	259,329	27,013	c	655,308	61,421
1	223,983	25,529	1	534,365	38,603
2	241,976	23,987	2	528,781	67,757
3	257,369	28,545	3	469,529 *	47,949
4	434,010	90,630	4	1,059,589 **	95,526
5	374,167 *	51,529	5	1,131,099 *	104,469

Supplements Thermotaxis

Methods

Thermotaxis Assay

Isothermal behavior was examined as described by Kuhara *et al.* [84]. 24 h prior to the experiment 96 mm bacteria-lacking assay plates were prepared using 8 mL thermo-agar (2.6 g/L NaCl [0.4 M NaCl], 25 mM potassium phosphate, 20 g/L agar). A gradient from 17 to 25 °C was established using a vial of frozen acetic acid (constant humidity of 40%–80%), placed 20 min bevor starting on the bottom of the plate. Afterwards a single worm was transferred to the 20 °C area to crawl freely for 1 h. The received trace was anayzed and categorisized. Preference to one temperature was categorisized as 17 °C, 20 °C or 25 °C, animals that moved between two areas were classified as 17 °C/20 °C and 20 °C/25 °C, respectively. The relative share for every substance and category was analyzed. The assay was repeated four times using 4–5 worms per group.

Results

Thermal sensory allows the nematode to seek out optimal temperature and decreased perception may lead to suboptimal enzyme activity. As the nematodes were fed *ad libitum* during pre-experimental cultivation, they show isothermal behavior to their breeding temperature. Therefore, when exposed to a temperature gradient, they crawl towards that temperature during the assay. A decreased isothermal behavior, seen by a more scattered distribution among the different temperatures, reflects a limited ability to percept temperature. The control group showed a distinct isothermal behavior after both incubation periods to its cultivation temperature (20 °C). Exposure to all substances changed the behavior as shown in Figures T1 and T2 and Table T1. The nematodes were attracted to both, higher and lower temperatures; however, no statistical difference could be detected. Due to the design of the thermotaxis assay a total number of only 16 to 20 nematodes were tested per substances. To gain more significant results, the assay should be repeated in a large scale than it was possible during this study.

Figure T1. Thermotaxis after 24 h of incubation. 1: Control, 2: 0.1 μ M TBBP-A, 3: 50 μ M TBBP-A, 4: 50 μ M DBAA, 5: 0.1 μ M TBBP-A + 50 μ M DBAA, 6: 50 μ M TBBP-A + 50 μ M DBAA. Bars represent mean value ± SEM (One way ANOVA (Holm-Sidak-method)). No value reached the significance limit of p < 0.05.

Figure T2. Thermotaxis after 72 h of incubation. 1: Control, 2: 0.1 μ M TBBP-A, 3: 50 μ M TBBP-A, 4: 50 μ M DBAA, 5: 0.1 μ M TBBP-A + 50 μ M DBAA, 6: 50 μ M TBBP-A + 50 μ M DBAA. Bars represent mean value \pm SEM (One way ANOVA (Holm-Sidak-method)). No value reached the significance limit of p < 0.05.

24.1	17 °C	17 °C/20 °C	20 °C	20 °C/25 °C	25 °C
24 n	$MV \pm SEM(p)$				
Control	0.00 ± 0.00	0.00 ± 0.00	0.68 ± 0.20	0.28 ± 0.16	0.05 ± 0.05
	0.05 ± 0.05	0.16 ± 0.10	0.35 ± 0.24	0.44 ± 0.26	0.00 ± 0.00
0.1 μM 1PBB-A	(0.356)	(0.151)	(0.332)	(0.611)	(0.356)
50 M TDDD A	0.00 ± 0.00	0.13 ± 0.08	0.37 ± 0.16	0.45 ± 0.22	0.05 ± 0.05
50 μΝΙ ΤΡΒΒ-Α	(1.000)	(0.153)	(0.267)	(0.546)	(1.000)
50M DD 4 4	0.06 ± 0.06	0.26 ± 0.12	0.34 ± 0.07	0.24 ± 0.18	0.10 ± 0.10
50 μΜ ΟΒΑΑ	(0.356)	(0.080)	(0.158)	(0.880)	(0.670)
0.1 µM TPBB-A +	0.06 ± 0.06	0.19 ± 0.12	0.25 ± 0.18	0.50 ± 0.29	0.00 ± 0.00
50 µM DBAA	(0.356)	(0.168)	(0.160)	(0.521)	(0.356)
50 µM TBBP-A +	0.00 ± 0.00	0.16 ± 0.10	0.45 ± 0.13	0.34 ± 0.20	0.05 ± 0.05
50 µM DBAA	(1.000)	(0.151)	(0.382)	(0.814)	(1.000)
70 h	17 °C	17 °C/20 °C	20 °C	20 °C/25 °C	25 °C
/2 11	$MV \pm SEM(p)$				
Control	0.06 ± 0.06	0.06 ± 0.06	0.78 ± 0.06	0.11 ± 0.06	0.00 ± 0.00
A 1M TODD A	0.00 ± 0.00	0.28 ± 0.15	0.44 ± 0.20	0.28 ± 0.11	0.00 ± 0.00
υ.1 μΝΙ 1 ΓΔΔ -Α	(0.374)	(0.230)	(0.184)	(0.251)	(1.000)
50M TDDD A	0.00 ± 0.00	0.17 ± 0.10	0.44 ± 0.20	0.39 ± 0.11	0.00 ± 0.00
	(0.374)	(0.374)	(0.184)	(0.089)	(1.000)
50M DD 4 A	0.00 ± 0.00	0.17 ± 0.17	0.39 ± 0.22	0.44 ± 0.20	0.00 ± 0.00
30 μΝΙ DDAA	(0.374)	(0.561)	0.165)	(0.184)	(1.000)
0.1 μM TPBB-A +	0.00 ± 0.00	0.11 ± 0.11	0.61 ± 0.06	0.28 ± 0.06	0.00 ± 0.00
50 µM DBAA	(0.374)	(0.678)	(0.101)	(0.101)	(1.000)
50 µM TBBP-A +	0.00 ± 0.00	0.00 ± 0.00	0.44 ± 0.20	0.56 ± 0.20	0.00 ± 0.00
50 µM DBAA	(0.374)	(0.374)	(0.184)	(0.099)	(1.000)

Table T1. The mean value (MV), standard error of the mean (SEM) and significances (p) are shown for the thermotaxis experiments after 24 h and 72 h of incubation.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).