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Abstract: The nutritional and functional characteristics of dietary fat are related to the fatty 

acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. 

Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, 

eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid 

sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. 

The present study determines the effect of feeding salmon with blends of palm, rapeseed, 

and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and 

low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA 

in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% 

of the EPA and around 80% of DHA was located in the sn-2 position. The positional 

distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and 

around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher 

EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but 
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similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA 

concentrations does not affect their positional distribution in the fillet TAG. 

Keywords: salmon (Salmo salar); omega 3 fatty acids; positional distribution; functional foods 

 

1. Introduction 

Regiospecificity refers to the positioning of a single fatty acid in the glycerol backbone to conform 

triacylglycerols (TAG) and phospholipids (PL) [1]. In human nutrition there is increasing interest in 

studying the regiospecificity of fatty acids in foods as it plays an important role in their function and 

availability [2,3]. Fish oil (FO) is a rich source of long chain omega 3 fatty acids with proven beneficial 

cardiovascular effects [4,5]. Both eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid 

(DHA; C22:6n-3) are key fatty acids for the functional effects of FO [6]. Recently it has been shown that 

the lipid-lowering effects of FO are related to the positional distribution of EPA and DHA in TAG [7]. 

Moreover, it seems that DHA bound in the sn-2 position of the TAG can decrease serum cholesterol and 

TAG levels in mice [7]. Oily fish such as Atlantic salmon are an important source of EPA and DHA for 

consumers [8]. The dietary fatty acid profile is the main factor determining fatty acid composition in 

farmed salmon [8,9]. Therefore, EPA and DHA concentrations in salmon tissues are proportional to the 

amount of dietary FO [8,9]. However, because of market pressure on this raw material and sustainability 

issues, inclusion levels of FO in commercial salmon feeds have decreased in favor of vegetable  

oils (VO) [10]. Although VO-based diets have been shown to have no detrimental effect on salmon 

growth or health, their use results in decreased flesh EPA + DHA concentrations, lowering the nutritional 

quality of the fillet [9–11]. However, to our knowledge, there is a lack of studies in salmon assessing the 

effects of dietary oil sources on the positional distribution of fatty acids in TAG and PL.  

The positional distribution of fatty acids in TAG can be analyzed by enzymatic hydrolysis, chemical, 

Nuclear Magnetic Resonance (NMR) spectroscopic, and spectrometric methods [12]. Both enzymatic 

methods with lipases and 13C NMR have been used for FO TAG analysis [13,14]. However, the 

enzymatic method with pancreatic lipase may give rather unreliable results in FO with high DHA (30%) 

concentrations because of incomplete hydrolysis [14]. Both methods offer some advantages and 

disadvantages, but enzymatic methods are widely used as they are relatively simple, inexpensive, and 

do not need any special equipment [12]. The present study aims to determine the impact of feeding 

salmon with blends of palm, rapeseed, and FO providing two EPA + DHA concentrations  

(high EPA + DHA: H-ED 10.3% and low EPA + DHA: L-ED 4.6%) on the positional distribution of 

fatty acids in TAG and PL. In addition, the two methods for FO analysis, enzymatic with pancreatic 

lipase and 13C NMR, are compared. 
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2. Results and Discussion  

Fish performance was good and not affected by dietary treatments. Overall the specific growth rate 

and feed conversion ratio were 1.55 and 0.83, respectively. A lack of effect of dietary VO in farmed 

salmon productive performance has been extensively reported, as reviewed in [11]. 

2.1. Lipid Content and Fatty Acid Compositions of Fillets  

No effect of dietary oil was observed on the fillet’s total fat content (Table 1). As expected, the fatty 

acid composition of the salmon fillet reflected that of the diet, with significantly higher concentration of 

the characteristic fatty acids from FO, C14:0, EPA, C22:1 and DHA in fish fed the H-ED diet (Table 1).  

It is well known that fatty acid composition is influenced by dietary oil source; therefore, our results are 

in agreement with previous studies [8,9,11]. As a result, fish fed the H-ED diet accumulated about 8.1% 

of DHA and 3.1% of EPA of total fatty acids; however, fish fed L-ED accumulated about 4.9% and 1.5% 

of these fatty acids, respectively. 

Fillet lipid contents have been shown to decrease in salmon fed with VO depending on the specific 

oil source or VO blend used [15], the genetic background of the fish (i.e., lean or fat) [16], and the level 

of plant protein included in the diet [17]. In the present study, diets contained low fish meal (10% in 

final feed formulations) and FO levels (around 12% and 2% of total added oil in the H-ED and L-ED 

diets, respectively) blended with palm and rapeseed oils. These two vegetable oils have been shown to 

decrease fillet lipid contents when replacing 50% of the added FO [18,19]. In the present study both 

vegetable oils replaced around 70% of the FO compared with the H-ED diet, with no effects on flesh 

adiposity or lipid class composition. 

Table 1. Fatty acid compositions (percentage of total fatty acids) of total lipids and lipid 

content (percentage of fresh weight FW) of fillets of salmon fed diets with high (H-ED) and 

low (L-ED) levels of EPA and DHA fatty acids. 

 H-ED L-ED p-Value a 

C14:0 3.8 ± 0.1 1.9 ± 0.1 0.012 
C16:0 14.8 ± 0.6 15.2 ± 0.6 0.685 

C16:1n-7 3.3 ± 0.1 1.8 ± 0.1 0.021 
C18:0 3.4 ± 0.1 3.5 ± 0.1 0.581 

C18:1n-9 35.7 ± 0.5 44.4 ± 0.4 0.061 
C18:1n-7 2.2 ± 0.3 1.7 ± 0.1 0.056 
C18:2n-6 11.4 ± 0.4 13.3 ± 0.4 0.095 
C18:3n-3 3.4 ± 0.1 3.3 ± 0.1 0.732 
C18:4n-3 1.0 ± 0.1 0.8 ± 0.1 0.127 
C20:1n-9 6.9 ± 0.2 4.5 ± 0.2 0.021 
C20:2n-6 1.0 ± 0.0 1.0 ± 0.0 0.283 
C20:3n-6 0.4 ± 0.0 0.8 ± 0.0 0.013 
C20:4n-6 0.3 ± 0.0 0.3 ± 0.0 0.681 
C20:3n-3 0.3 ± 0.0 0.2 ± 0.0 0.105 
C20:4n-3 0.9 ± 0.0 0.5 ± 0.0 0.019 
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Table 1. Cont. 

C20:5n-3 3.1 ± 0.1 1.5 ± 0.1 0.018 
C22:1 7.6 ± 0.3 3.3 ± 0.3 0.010 

C22:5n-3 1.3 ± 0.1 0.6 ± 0.1 0.024 
C22:6n-3 8.1 ± 0.1 4.9 ± 0.1 0.005 
∑SFA b 22.5 ± 0.9 21.1 ± 0.9 0.398 
∑MUFA c 56.1 ± 2.3 56.2 ± 2.3 0.989 
∑n-3 d 18.3 ± 0.4 12.1 ± 0.4 0.009 
∑n-6 e 13.5 ± 0.5 16.1 ± 0.5 0.070 
n3/n6 1.4 ± 0.01 0.8 ± 0.01 0.001 

%TL (FW)  11.0 ± 0.4 10.5 ± 0.4 0.469 
a (mean ± SE; 8 fillets per diet; n = 2 tanks per diet); b ∑SFA = sum of saturated fatty acids. Includes C14:0, 

C16:0, C18:0 and C20:0; c ∑MUFA = sum of monounsaturated fatty acids. Includes C16:1n-9, C16:1n-7, 

C18:1n-9, C18:1n-7, C20:1n-9 and C22:1 isomers; d ∑ (n-3) = sum of n-3 fatty acids. Includes C18:3, C18:4, 

C20:3, C20:4, C20:5, C22:5 and C22:6; e ∑ (n-6) = sum of n-6 fatty acids. Includes C18:2, C20:2, C20:3  

and C20:4. 

2.2. Fillet Lipid Class Composition, TAG, and PC Fatty Acid Analysis  

The influence of these two experimental diets on lipid classes was also assessed in salmon fillets. 

However, no significant difference in lipid class composition was noted (Table 2). Triacylglycerol was 

identified as the predominant lipid class (about 92% in fillets of fish fed both experimental diets), 

followed by phosphatidylcholine (PC) (3.6% in fillets of fish fed both experimental diets).  

Table 2. Lipid class composition (% of total lipid) in the fillet of fish fed diets with high  

(H-ED) and low (L-ED) levels of EPA and DHA fatty acids a. 

 H-ED L-ED p-Value b

TAG 92.3 ± 1.0 92.5 ± 1.0 0.864 
DG 0.8 ± 0.1 0.7 ± 0.1 0.786 
FFA 0.9 ± 0.2 1.0 ± 0.2 0.653 
PC 3.7 ± 0.3 3.7 ± 0.3 0.927 
PE 1.7 ± 0.1 1.6 ± 0.1 0.943 
PI 0.3 ± 0.0 0.3 ± 0.0 0.642 
PS 0.3 ± 0.0 0.2 ± 0.0 0.682 

a TAG, Triacylglycerol; DG, diacylglycerol; FFA, free fatty acids; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; b (mean ± SE; 6 fillets per diet;  

n = 2 tanks per diet).  

Additionally, the fatty acid composition of the TAG and PC fractions was also studied. The fatty acid 

composition of salmon fillet TAG reflected that of the diet, with significantly higher concentration of 

the characteristic fatty acids from FO, C14:0, EPA, C22:1 and DHA in fish fed the H-ED diet (Table 3).  

As mentioned above, it is well known that TAG composition is influenced by dietary oil source and 

especially in the fillet, given the high proportion of this lipid class (around 90%); therefore, our results 

are in agreement with previous studies [11,20].  
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Table 3. Fatty acid composition (% of total lipids) in the fillet TAG and PC of fish fed diets 

with high (H-ED) and low (L-ED) levels of EPA and DHA fatty acids a. 

 TAG PC 
 H-ED L-ED p-Value a H-ED L-ED p-Value a 

C14:0 3.7 ± 0.0 1.9 ± 0.0 0.0003 2.2 ± 0.1 1.0 ± 0.1 0.003 
C16:0 13.1 ± 0.3 14.0 ± 0.2 0.148 20.8 ± 0.2 22.5 ± 0.2 0.022 

C16:1n-7 3.2 ± 0.1 2.0 ± 0.0 0.003 1.4 ± 0.1 0.7 ± 0.1 0.018 
C18:0 2.7 ± 0.1 3.2 ± 0.1 0.053 0.9 ± 0.1 1.0 ± 0.1 0.581 

C18:1n-9  32.5 ± 0.6 42.1 ± 0.5 0.005 11.7 ± 0.1 15.4 ± 0.1 0.010 
C18:2n-6 10.9 ± 0.2 12.9 ± 0.2 0.015 3.8 ± 0.2 7.2 ± 0.2 0.008 
C18:3n-3 3.2 ± 0.0 3.3 ± 0.0 0.024 2.0 ± 0.1 2.7 ± 0.1 0.025 
C20:1n-9 6.4 ± 0.1 4.3 ± 0.1 0.001 0.8 ± 0.0 0.5 ± 0.0 0.031 
C20:2n-6 0.8 ± 0.0 0.9 ± 0.0 0.365 0.5 ± 0.0 0.6 ± 0.0 0.095 
C20:3n-6 0.3 ± 0.0 0.6 ± 0.0 0.016 0.6 ± 0.1 2.3 ± 0.1 0.004 
C20:4n-6 0.2 ± 0.0 0.2 ± 0.0 0.249 0.7 ± 0.0 1.3 ± 0.0 0.005 
C20:4n-3 0.8 ± 0.0 0.5 ± 0.0 0.008 0.9 ± 0.0 0.9 ± 0.0 0.935 
C20:5n-3 2.5 ± 0.1 1.2 ± 0.1 0.008 10.8 ± 0.4 8.1 ± 0.3 0.031 

C22:1 7.1 ± 0.1 3.3 ± 0.1 0.0009 0.3 ± 0.0 0.3 ±0.0 0.770 
C22:5n-3 1.0 ± 0.0 0.5 ± 0.0 0.018 2.4 ± 0.2 2.1 ± 0.2 0.295 
C22:6n-3 5.1 ± 0.2 2.9 ± 0.2 0.010 34.5 ± 01.0 28.0 ± 0.9 0.040 
∑SFA b 19.9 ± 0.3 19.6 ± 0.2 0.474 24.0 ± 0.2 24.7 ± 0.2 0.168 
∑MUFA c 52.1 ± 0.4 54.6 ± 0.4 0.037 15.8 ± 0.3 18.3 ± 0.3 0.034 
∑n-3 d 14.4 ± 0.2 9.6 ± 0.2 0.001 51.9 ± 0.5 44.4 ± 0.5 0.010 
∑n-6 e 12.2 ± 0.1 14.8 ± 0.2 0.002 5.9 ± 0.31 11.7 ± 0.28 0.005 
n3/n6 1.2 ± 0.0 0.65 ± 0.0 0.001 8.7 ± 0.25 3.8 ± 0.23 0.004 

a (mean ± SE; 6 fillets per diet; n = 2 tanks per diet); b ∑SFA = sum of saturated fatty acids. Includes C14:0, 

C16:0, C18:0 and C20:0; c ∑MUFA = sum of monounsaturated fatty acids. Includes C16:1n-9, C16:1n-7, 

C18:1n-9, C18:1n-7, C20:1n-9 and C22:1 isomers; d ∑ (n-3) = sum of n-3 fatty acids. Includes C18:3, C18:4, C20:3, 

C20:4, C20:5, C22:5 and C22:6; e ∑ (n-6) = sum of n-6 fatty acids. Includes C18:2, C20:2, C20:3 and C20:4. 

As described in the literature C16:0, C18:1n-9, EPA, and DHA were the principal fatty acids on  

PC [21] (Table 3). Although TAG is the lipid fraction more influenced by diet, the PL fatty acid profile 

is also affected by dietary oil composition [20,22]. Moreover, PC seems to be the PL most influenced 

by diet [21].  The concentration of C16:0 and C18:1n-9 was higher in the PC of fish fed the rich VO diet, 

while EPA and DHA values were higher in those fed the higher FO diet. Also, a significant increase of 

linoleic acid (C18:2n-6; LA) and their elongation products C20:3n-6, Arachidonic acid  

(C20:4n-6; AA) was noticeable in the PC fraction of fish fed the VO rich diet. This is in accordance with 

previous studies in Atlantic salmon fed diets including VO and FO [22].  

2.3. Regiospecific Analysis of Salmon Fillet Triacylclycerol and Phosphatidylcholine Classes  

The regiospecific analysis of fillet TAG showed that half of the EPA (49%–50%) and most of the 

DHA (80%–86%) was located in the sn-2 position of the TAG (Table 4). Reported values in the literature 

for these fatty acids in the sn-2 position of the TAG range from 34% to 47% for EPA and from 62% to 

76% for DHA [1,13], which are slightly lower than our results, especially for DHA. In the present study, 
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the analysis with lipase and 13C NMR method gave a similar EPA percentage in the sn-2 position of the 

TAG. However, a significant method effect (p < 0.002) was observed for DHA. A lower DHA 

percentage in the sn-2 position was reported with the pancreatic lipase than with the 13C NMR method: 

81.7% vs. 86.3%, respectively. As previously indicated, values in the literature for DHA in the sn-2 

position of salmon TAG analyzed by 13C NMR are up to 76% [1,13]. This value is similar to the one 

obtained in the present study with the lipase method (81.7%). However, it differs slightly from the results 

we obtained with the 13C NMR method (86.3%). Therefore, we cannot exclude some artifacts 

overestimating the values for DHA in our 13C NMR data, especially in the low DHA samples (p = 0.07 

for the interaction). Assignment of carbon resonances and representative 13C NMR spectra of the 

carbonyl region of H-ED and L-ED salmon oils are presented in Figure 1A,B; a relaxation time of 10 s 

was chosen for comparison of carbons in the same electronic environment (carbonyl region). A recent 

study with hoki oil (Macruronus novaezelandiae) containing 10%–12% of DHA and 5%–6% EPA 

showed the same positional distribution of both fatty acids using pancreatic lipase and 13C NMR  

methods [14]. Thus with our study we can confirm pancreatic lipase as a reliable method for the analysis 

of fish oils with low DHA (<10%) concentration.  

Table 4. Proportion of EPA and DHA (molar %) in sn-2 position in the fillet TAG of fish 

fed diets with high (H-ED) and low (L-ED) levels of EPA and DHA fatty acids determined 

by pancreatic lipase or by 13C NMR spectroscopy. 

 EPA DHA 

Diet   
H-ED 50.1 ± 1.3 84.9 ± 0.7 
L-ED 49.3 ± 1.3 83.1 ± 0.7 

Method   
Lipase 50.1 ± 1.1 81.7 ± 0.7 
NMR 49.2 ± 1.0 86.3 ± 0.6 

Diet × Method   
H-ED Lipase 50.7 ± 1.6 83.5 ± 1.0 
H-ED NMR 49.4 ± 1.4 86.3 ± 0.8 
L-ED Lipase 49.4 ± 1.4 79.9 ± 1.0 
L-ED NMR 49.1 ± 1.4 86.4 ± 0.8 

Probability a   
Diet 0.7286 0.1377 

Method 0.4323 0.0020 
Diet × Method 0.6219 0.0758 

a mean ± SE; 4 fillets per diet; n = 2 tanks per diet. 

No significant changes on the proportions of EPA and DHA in the sn-2 position of the fillet TAG 

were observed with the experimental diets fed to salmon. Among rearing conditions, water temperature 

seems to have a direct effect on DHA positional distribution with higher temperatures (i.e., 19 °C), 

decreasing the percentage of this fatty acid in the sn-2 position [1]. Results from this study suggest that 

feeding Atlantic salmon blends of FO and VO providing high or low EPA and DHA have no effect in 

the positioning of both fatty acids in the TAG.  
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Figure 1. 176.07 MHz 13C NMR spectra of the carbonyl region of (A) H-ED fillets and (B) 

L-ED fillet oils with the assigned sn-1,3 and sn-2 regioisomeric peaks to individual fatty acids. 

Additionally, the positional distribution of fatty acids in PC showed that most of the EPA  

(around 80%) and DHA (around 90%) were located in the sn-2 position of the PC (Table 5). Saturated 

fatty acids C14:0 and C16:0 were predominantly in the sn-1 position given the low levels found in the 

sn-2 position in the PC. This is in accordance with previous reports in salmon where the major molecular 

species in muscle PC is 16:0/22:6 [1]. However, it also agrees with the important role that EPA and 

especially DHA play as structural lipids in fish membranes, as they provide the sufficient plasticity to 

cope with pressure and temperature changes in the water environment [21]. Dietary effects were evident 

on fatty acid positional distribution in the PC. Fish fed the low EPA and DHA diets with higher dietary 
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concentrations of LA and linolenic (C18:3n-3) acids tended to show a higher proportion of both fatty 

acids in the sn-2 position compared to those fed the high EPA and DHA diet rich in FO. Also, higher 

concentrations of Arachidonic acid (AA) in the PC of fish fed the VO-rich diet tended (p = 0.08) to 

accumulate in the sn-2 position. Increasing levels of AA can lead to undesired side effects on tissue 

adiposity and the fish immune and antioxidant status [22,23]. Phospholipases hydrolyze the ester bond 

at the sn-2 position of the glycerophospholipid releasing free AA for eicosanoid production [24]. 

Furthermore, it has been shown that salmon fed on a sunflower oil diet had increased phospholipase A 

activity [22]. Therefore, future research is needed to study the possible implications of AA positioning 

in salmon membranes on the immune and antioxidant response. 

Table 5. Proportion of selected fatty acids (FAME%) in sn-2 position in the fillet PC of fish 

fed diets with high (H-ED) and low (L-ED) levels of EPA and DHA fatty acids. 

 H-ED L-ED p-Value a 

C14:0 21.3 ± 2.6 19.5 ± 2.6 0.680 
C16:0 16.4 ± 1.9 13.3 ± 1.9 0.378 

C18:1n-9 52.6 ± 1.4 57.4 ± 1.4 0.150 
C18:2n-6 45.5 ± 2.3 58.1 ± 2.3 0.063 
C18:3n-3 25.7 ± 1.0 31.2 ± 1.0 0.063 
C20:3n-6 53.5 ± 1.3 66.3 ± 1.3 0.022 
C20:4n-6 89.1 ± 0.8 93.2 ± 0.8 0.080 
C20:5n-3 77.4 ± 0.9 83.5 ± 0.9 0.040 
C22:5n-3 80.3 ± 1.3 85.7 ± 1.3 0.099 
C22:6n-3 89.7 ± 0.9 91.6 ± 0.9 0.312 

a mean ± SE; 4 fillets per diet; n = 2 tanks per diet. 

Fish fed the VO rich diet showed higher EPA concentration in the sn-2 position (77% vs. 83% in  

H-ED and L-ED, respectively) and similar (89% vs. 91%) DHA concentrations. Thus, it seems that when 

the dietary input of EPA and DHA is lower, salmon tend to retain both fatty acids in the sn-2 position of 

the phospholipid given the lower availability and the important structural role for both fatty acids, as 

previously indicated. 

3. Experimental Section  

3.1. Animals and Diets  

The feeding trial was run at Skretting Aquaculture Research Center (ARC) fish trial station  

(Lerang Research Station, Jorpeland, Norway). A total of 128 Atlantic salmon post-smolts with an 

average initial weight of 148 ± 3 g were randomly assigned to two experimental diets. All experimental 

procedures were performed according to the Norwegian Animal Research Authority (FDU) guidelines. 

Fish were randomly assigned to four 1 m deep × 1 m diameter circular tanks supplied with sea water and 

fed one of the two experimental diets for 15 weeks. Water temperature over the experimental period 

averaged 11.8 ± 0.3 °C. Diets were formulated to meet salmon nutrient recommendations [25] by using 

low fishmeal and blends of palm, rapeseed, and fish oil providing two EPA + DHA concentrations  



Mar. Drugs 2015, 13 4263 

 

 

(high: H-ED 10.3% and low: L-ED 4.6%) (Table 6). The dietary treatments were prepared at Skretting 

ARC pilot plant (Stavanger, Norway), as extruded, sinking 4 mm pellets. 

Table 6. Ingredients and analyzed chemical composition of the basal diet.  

Ingredients (as Fed Basis g/kg) H-ED L-ED 

Wheat a 35.0 35.0 
Wheat gluten b 149.6 149.9 

Sunflower meal c 88.4 84.8 
Fava beans, dehulled d 60.0 60.0 

Soy Protein Concentrate e 310.0 310.0 
Fishmeal NA f 100.0 100.0 

Palm oil g 2.1 46.7 
Rapeseed oil h 91.9 146.5 
Fish oil NA i 123.1 26.1 

Astaxanthin 10% j 0.4 0.4 
Vitamin and mineral mix k 32.1 32.1 

Water 7.1 7.4 

Analyzed composition   
Moisture, % 6.4 6.6 
Total fat, % 25.1 25.5 

Crude Protein, % 45.2 45.2 
Ash, % 4.5 4.6 

Fatty acids (g/100 g total fatty acids)   
C14:0 3.8 1.7 
C16:0 10.6 13.0 

C18:1n-9 27.3 38.8 
C18:2n-6 11.8 16.3 
C18:3n-3 4.2 5.2 
C20:5n-3 4.8 2.1 
C22:6n-3 5.5 2.5 
∑SFA l  17.7 17.8 

∑MUFA m 47.2 49.8 
∑ (n-3) 17.2 10.8 
∑ (n-6) 12.8 16.7 
n-3/n-6 1.34 0.64 

a HaGe Kiel AG, Germany; b Cargill Cerestar, Hautbourdin, France; c Rosenkrantz AS, Aalborg, Denmark;  
d Soufflet, Nogent-sur-Seine, France; e Imcopa-Imp.Exp.e, Araucaria PR, Brazil; f Scandinavian fish meal, 

Welcon, Norway; g AAK Karlsham, Karlsham, Sweeden; h Linas Agro AS, Vilnius, Lithuania; i Northern 

hemisphere fish oil, Måløy Sildeoljefab, Måløy, Norway; j DSM, Heerlen, The Netherlands; k Include vitamins 

and minerals; Trouw Nutrition, Boxmeer, The Netherlands, proprietary composition Skretting ARC, vitamin 

and mineral supplementation as estimated to cover requirements according NRC (2011); l ∑SFA = sum of 

saturated fatty acids; m ∑MUFA = sum of monounsaturated fatty acids. 

  



Mar. Drugs 2015, 13 4264 

 

 

3.2. Sampling 

At the beginning and end of the experimental period, all fish were individually weighed and measured 

for growth monitoring. Fish were deprived for feed for 12 h after the final sampling and then anesthetized 

with Tricaine Pharmaq (Pharmaq Ltd., Hampshire, UK) and killed by a blow to the head. Four fish per 

tank (n = 8 per diet) were selected to obtain individual samples of fillet. Tissues were collected, snap 

frozen in dry ice, and stored at −80 °C for fatty acid analysis.  

3.3. Feed Analysis  

Feed proximal analysis including moisture, total fat, protein, and ash was performed by using  

in-house near-infrared reflectance (NIR) methodology at the Skretting ARC laboratory, as previously 

described by Torstensen et al. [26]. Fatty acid analysis of the experimental diets was conducted using 

gas chromatography and flame ionization detection [27].  

3.4. Tissue Total Lipid Extraction and Analysis 

Total lipids were extracted from fillet samples by the method of Segura and López-Bote [28]. 

Lyophilised samples (200 mg) were homogenized in dichloromethane:methanol (8:2, by vol.) using a 

mixer mill (MM400, Retsch technology, Haan, Germany). The final biphasic system was separated  

by centrifugation. The extraction was repeated three times. Solvent was evaporated under nitrogen stream 

and lipids were dried by vacuum desiccation. The total lipid content was determined gravimetrically.  

Fatty acid methyl esters (FAME) were prepared from total lipids by transesterification using a mixture 

of sodium methylate:methanol and heptadecanoic acid (17:0) as an internal standard. Samples were 

heated at 70 °C for 1 h. Samples were re-heated for 1 h at 70 °C after adding 5% sulfuric acid in methanol. 

FAMES were extracted with petroleum ether and separated by GC-FID. 

3.5. Lipid Classes Analysis 

Major lipid classes from total lipid samples were separated by one-dimensional thin-layer 

chromatography (TLC), as previously described by Henderson and Tocher [29] with minor modifications. 

Total lipid samples (2–3 mg) were applied to TLC silica plates with fluorescent indicator  

(20 cm × 20 cm × 250 µm, Macherey-Nagel, Düren, Germany). Plates were developed to 9.5 cm in 

methyl acetate:isopropanol:chloroform:methanol:0.25% aqueous KCl (25:25:25:10:9, by volume). 

Excess solvent was evaporated via air drying and plates were further developed using a solvent mixture 

containing hexane: diethyl ether: acetic acid (80:20:1, by volume). The individual lipid classes were 

identified under UV light after a Primuline spray by comparison with commercial standards, as 

previously described [30]. Lipid fractions were scraped from the plate and used directly for methylation 

or extracted for further analysis. FAME compositions of these isolated lipid fractions were obtained by 

heating the samples at 80 °C for 1 h in methanol:toluene:H2SO4 (88:10:2, by vol.) as in [31]. After 

cooling, FAME were recovered with hexane and separated and quantified by GC-FID. 
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3.6. Positional Analysis of TAG 

3.6.1. 13C NMR Spectroscopy 

Quantitative broad band 13C NMR spectra from previously purified TAG were recorded under 

continuous 1H decoupling at 25 °C in a Bruker AV-III 700 MHz spectrometer, equipped with a 5 mm 

TCI cryoprobe using the standard TopSpin V 2.1 software, as previously described by Suarez et al. [32] 

with minor modifications.  The spectrometer was located at the Nuclear Magnetic Resonance Centre 

(one of the Complutense University of Madrid Research Support Centers, Madrid, Spain). The data were 

acquired at a 13C frequency of 176.07 MHz using the following acquisition parameters: 128 k complex 

data points, spectral width of 41,666 Hz (237 ppm), pulse width 90°, acquisition time 1.573 s, and 

collection of 2048 scans. A repetition time of 10 s was employed. Prior to Fourier transformation, all 

free induction decays (FID) were zero filled to 128 k real data points and apodized using exponential 

multiplication (0.3–0.7 Hz line broadening) for sensitivity enhancement. 

3.6.2. Enzymatic Analysis 

Positional analysis of purified TAG was performed as described by Luddy et al. [33] and adapted by 

Ruiz-Lopez et al. [34]. Samples containing 5 mg TAG were dried under nitrogen and resuspended in 

1mL of 1 mM Tris-HCl (pH 8.0). Samples were then sonicated for 60 s to ensure complete emulsification 

of the lipid. Then, 0.1 mL of 22% CaCl2 and 0.25 mL of 0.1% deoxycholate were added. Samples were 

warmed at 40 °C for 30 s, and 2 mg pancreatic lipase (≥20,000 units per mg protein; Sigma, St. Louis, 

MO, USA) was added. Samples were vortexed for 2–3 min. The reaction was terminated using 0.5 mL 

6 M HCl. The lipids were extracted twice with 2.5 mL diethyl ether. Lipids were evaporated at 40 °C 

under nitrogen and separated into lipid classes by TLC using silica plates and hexane/diethyl ether/acetic 

acid (70:30:1 by vol.). The spots corresponding to 2-monoacylglycerols were identified under UV light 

after a Primuline spray, scraped from the plate, and directly transmethylated for GC-FID analysis. The 

mean composition of fatty acids in the sn-1,3 positions was calculated using the composition of an 

aliquot of the initial triacylglycerol and the formula: mean percentage sn-1,3 = [(3 × % fatty acid in 

triacylglycerol) − (% fatty acid in the sn-2 position)]/2. The validity of the procedure was confirmed by 

comparing the FA composition of the intact TAG sample and those remaining after the partial 

hydrolysis [35]. 

3.7. Positional Analysis of PC 

Positional analysis of purified PC was performed as described previously by Ruiz-Lopez et al. [36]. 

Briefly, analysis of PC was performed using Naja mossambica phospholipase A2 (Sigma, St. Louis, MO, 

USA). Samples containing PC were dried under nitrogen and resuspended in 1 mL borate buffer (0.5 M, 

pH 7.5, containing 0.4 mM CaCl2) by sonication. Five units of lipase and 2 mL diethyl ether were added, 

and the digestions were performed by vortexing for 2 h. The ether phase was evaporated, and the reaction 

was stopped by adding 0.3 mL of 1 M HCl. The aqueous phase was extracted using chloroform:methanol 

(2:1, by volume). The resulting organic phase was dried under nitrogen and separated by TLC using 

chloroform:metanol:aqueous ammonia (65:25:0.7, by volume) as the solvent mix. The spots corresponding 
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to free fatty acids and lysophospholipids were scraped from the plate and directly transmethylated for 

GC-FID analysis (as described above). 

3.8. Fatty Acid Methyl Esters Analysis 

FAMEs were separated using a gas chromatograph (HP 6890 Series GC System) equipped with flame 

ionization detector. Separation was performed with a J&W GC Column, HP-Innowax Polyethylene 

Glycol (30 m × 0.316 mm × 0.25 μm). Nitrogen was used as a carrier gas. After injection at 170 °C, the 

oven temperature was raised to 210 °C at a rate 3.5 °C/min, then to 250 °C at a rate of 7 °C/min and held 

constant for 1 min. The flame ionization was held at 250 °C. FAME peaks were identified by comparing 

their retention times with those of authentic standards (Sigma-Aldrich, Alcobendas, Spain). 

3.9. Statistical Analysis 

Differences between means were detected through a mixed-model procedure of SAS (release 9.2, 

SAS Institute Inc., Cary, NC, USA). For fatty acid analysis the model included the diet as fixed effect 

and the tank was considered a random effect. To compare pancreatic lipase and 13C NMR the model 

included diet and method as fixed effects and the tank was considered a random effect.  

4. Conclusions  

Blends of FO and VO providing different concentrations of EPA + DHA (10.3% vs. 4.6%) fed to 

Atlantic salmon have no effect on the proportion of both fatty acids in the sn-2 position of fillet TAG. 

However, dietary effects were evident on fatty acid positional distribution in the PC. In fish fed the blend 

rich in VO the AA tended to accumulate in the sn-2 position of PC. Also, when dietary input of EPA 

and DHA is lower, salmon significantly retain both fatty acids in the sn-2 position of the PC given the 

lower availability and the important structural and metabolic role of this position for both fatty acids. 
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