Supplementary Material

Structure and Activity of Anabaenopeptins Produced by Baltic Sea Cyanobacteria

Lisa Spoof¹, Agata Błaszczyk², Jussi Meriluoto¹, Marta Cegłowska² and Hanna Mazur-Marzec²

- ¹ Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; lspoof@abo.fi (L.S.); jussi.meriluoto@abo.fi (J.M.)
- ² Department of Marine Biotechnology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland; agata.blaszczyk@ug.edu.pl (A.B.); ma.ceglowska@gmail.com (M.C.); biohm@ug.edu.pl (H.M.-M.)

Figure S1. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at 934 and structure Phe + CO + [Lys + Val + Hty + MeHty + MetO] elucidated on the basis of following fragments: 916 [M + H - H₂O], 906 [M + H - CO], 888 [M + H - H₂O - CO], 870 [M + H - CH₃SOH (from MetO)], 852 [M + H - CH₃SOH - H₂O], 769 [M + H - Phe - H₂O], 743 [M + H - (CO + Phe)], 705 [M + H - Phe - CH₃SOH - H₂O], 679 [M + H - (CO + Phe) - CH₃SOH], 661 [M + H - (CO + Phe) - CH₃SOH - H₂O], 566 [M + H - (Hty + MHty)], 528 [M + H - Phe - Hty - CH₃SOH - H₂O], 511 [M + H - Phe - (Hty + Val)], 447 [M + H - Phe - (Hty + Val) - CH₃SOH], 403 [MetO + Lys(CO) + Val + H], 339 [MetO + MeHty + H], 164 MeHty, 107 [CH₂PhOH], 84 Lys-immonium ion.

Figure S2. Mass fragmentation spectrum of anabaenopeptin with *m*/*z* of $[M + H]^+$ at 916 and structure Phe + CO + [Lys + Val + Hty + N – MeHty + AcSer] elucidated on the basis of following fragments: 898 [M + H – H2O], 888 [M + H – CO], 870 [M + H – CO – H2O], 856 [M + H – CH₃COOH (from AcSer)], 769 [M + H – Phe], 739 [M + H – Hty], 725 [M + H – MHty] or [M + H – (CO + Phe)], 665 [M + H – (CO + Phe) – CH₃COOH], 640 [M + H – (Val + Hty)], 622 [M + H – (Val + Hty) – H2O], 612 [M + H – (Val + Hty) – CO], 594 [M + H – (Val + Hty) – CO – H2O], 493 [M + H – Phe – (Hty + Val)], 488 [Val + Lys + AcSer + MeHty – CH₃COOH + H], 389 [Lys + (AcSer – CH₃COOH) + MeHty + H], 321 [MeHty + AcSer + H], 164 MeHty, 120 Phe immonium ion, 107 [CH₂PhOH], 84 Lys–immonium ion.

Figure S3. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at 900 and structure Ile + CO + [Lys + Val + Hty + MeHty + MetO] elucidated on the basis of following fragments: 882 [M + H - H₂O], 872 [M + H - CO], 854 [M + H - H₂O - CO], 836 [M + H - CH₃SOH (from MetO)], 818 [M + H - CH₃SOH - H₂O], 787 [M + H - Ile], 769 [M + H - Ile - H₂O], 743 [M + H - (CO + Ile)], 705 [M + H - Ile - CH₃SOH - H₂O], 679 [M + H - (CO + Ile) - CH₃SOH], 528 [M + H - Ile - Hty - CH₃SOH - H₂O], 511 [M + H - Ile - (Hty + Val)], 468 [MeHty + Hty + Val + H], 447 [M + H - Ile - (Hty + Val) - CH₃SOH], 339 [MetO + MeHty + H], 164 MeHty, 107 [CH₂PhOH], 84 Lys-immonium ion.

Figure S4. Mass fragmentation spectrum of anabaenopeptin with *m*/*z* of $[M + H]^+$ at 870 and structure [Phe + CO[Lys + Val + Leu + MeHty + MetO] elucidated on the basis of following fragments: 852[M + H – H₂O], 842 [M + H – CO], 806 [M + H – CH₃SOH (from MetO)], 788 [M + H – CH₃SOH – H₂O), 757 [M + H – Ile], 739 [M + H – Ile – H₂O], 705 [M + H – Phe – H₂O], 679 [M – MHty + H], 615 [M – Mhty + H – CH₃SOH], 641 [M + H – Phe – CH₃SOH – H₂O], 528 [M + H – Phe – Leu – CH₃SOH – H₂O], 511 [M + H – Phe – (Leu + Val)], 339 [MetO + MeHty + H], 164 MeHty, 120 Phe–immonium ion, 107 [CH₂PhOH], 84 Lys–immonium ion.

Figure S5. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at 868 and structure Ile + CO[Lys + Val + Hph + MeHty + Met] elucidated on the basis of following fragments: 850[M + H – H2O], 840 [M + H – CO], 822 [M + H – CO – H2O], 755 [M + H – Ile], 737 [M + H – Ile – H2O], 711 [M + H – (Ile + CO)], 707 [M + H – Hph], 693 [M + H – (Ile + CO) – H2O], 608 [M + H – (Hph + Val)], 590 [M + H – (Hph + Val) – H2O], 580 [M + H – (Hph + Val) – CO], 495 [M + H – Ile – (Hph + Val)], 323 [MeHty + Met + H], 84 Lys–immonium ion.

Figure S6. Mass fragmentation spectrum of anabaenopeptin with *m*/*z* of $[M + H]^+$ at **866** and structure Ile + CO[Lys + Val + Hph + MeHty + AcSer] elucidated on the basis of following fragments: 848 [M + H – H₂O], 838 [M + H – CO], 820 [M + H – CO – H₂O], 806 [M + H – CH₃COOH (from AcSer)], 753 [M + H – Ile], 735 [M + H – Ile – H₂O], 675 [M + H – Ile – CH₃COOH – H₂O], 709 [M + H – (CO + Ile)], 705 [M + H – Hph], 675 [M + H – MeHty], 649 [M + H – (CO + Ile) – CH₃COOH], 493 [M + H – Ile – (Hph + Val)], 337 [M + H – Ile – (Hph + MeHty) – CH₃COOH], 321 [MeHty + AcSer + H],164 MeHty, 107 [CH₂PhOH], 84 Lys–immonium ion.

Figure S7. Mass fragmentation spectrum of anabaenopeptin with *m*/*z* of $[M + H]^+$ at **858** and structure Phe + CO[Lys + Val + Hph + MeHty + Ser] elucidated on the basis of following fragments: 840 [M + H – H₂O], 830 [M + H – CO], 812 [M + H – CO – H₂O], 711 [M + H – Phe], 697 [M + H – Hph], 667 [M + H – MeHty] and [M + H – (CO + Phe)], 649 [M + H – MeHty – H₂O], 639 [M + H – MeHty – CO], 598 [M + H – (Hph + Val)], 580 [M + H – (Hph + Val) – H₂O], 570 [M + H – (Hph + Val) – H₂O], 451 [M + H – Phe – (Hph + Val)], 279 [MeHty + Ser + H], 164 MeHty, 120 Phe–immonium ion, 107 [CH₂PhOH], 84 Lys–immonium ion.

Figure S8. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at 856 and structure Phe + CO + [Lys + Val + Val + MeHty + MetO] elucidated on the basis of following fragments 838 [M + H - H₂O], 828 [M + H - CO], 810 [M + H - CO - H₂O], 792 [M + H - CH₃SOH (from MetO)], 757 [M + H - Val], 739 [M + H - Val - H₂O], 691 [M + H - Phe - H₂O], 658 [M + H - (Val + Val)], 647 [M + H - MeHty - H₂O], 627 [M + H - Phe - CH₃SOH - H₂O], 566 [M + H - (Val + MeHty], 511 [M + H - Phe - (Val + Val)], 658 [M + H - (Val + Val)], 658 [M + H - (Val + Val)], 658 [M + H - (Val + Val)], 447 [M + H - Phe - (Val + Val) - CH₃SOH], 339 [MetO - MeHty + H], 164 MeHty, 120 Phe–immonium ion, 107 [CH₂PhOH], 84 Lys–immonium ion.

Figure S9. Mass fragmentation spectrum of anabaenopeptin with *m*/*z* of $[M + H]^+$ at 824 and structure Ile + CO + [Lys + Val + Hph + MeHty + Ser] elucidated on the basis of following fragments 806 [M + H – H2O], 796 [M + H – CO], 778 [M + H – CO – H2O], 711 [M + H – Ile], 693 [M + H – Ile – H2O], 667 [M + H – (CO + Ile)], 663 [M + H – Hph], 645 [M + H – Hph – H2O], 615 [M + H – MeHty – H2O], 564 [M + H – (Hph + Val)], 546 [Hph + Val + Lys + CO + Ile + H], 520 [M + H – Ile – MeHty], 451 [M + H – (MeHty + Val) – Ile], 353 [Hph + MeHty + H], 279 [MeHty + Ser + H], 260 [MeHty + Ser + H – H2O], 164 MeHty, 107 [CH2PhOH], 84 Lys–immonium ion.

Figure S10. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at **814** and structure Phe + CO[Lys + Val + Hty + MeGly + Phe] elucidated on the basis of following fragments: 796 $[M + H - H_2O]$, 786 [M + H - CO], 768 $[M + H - CO - H_2O]$, 715 [M + H - Val], 649 $[M + H - Phe - H_2O]$, 623 [M + H - (CO + Phe)], 605 $[M + H - (CO + Phe) - H_2O]$, 495 [Phe + MeGly + Hty + Val + H], 467 [Phe + Lys + CO + Phe + H], 396 [Hty + MeGly + Phe + H], 373 $[M + H - Phe - (Hty + Val) - H_2O]$, 320 [M + H - Phe - (Val + Hty + MeGly + Phe)], 277 [Hty + Val + H], 249 [Hty + MeGly + H], 120 Phe immonium ion, 107 $[CH_2PhOH]$, 84 Lys–immonium ion.

Figure S11. Mass fragmentation spectrum of anabaenopeptin with m/z of $[M + H]^+$ at 808 and structure Ile + CO + [Lys + Ile + Hty + MeAla + Phe] elucidated on the basis of following fragments: 790 [M + H – H2O], 780 [M + H – CO], 762 [M + H – CO – H2O], 695 [M + H – Ile], 677 [M + H – Ile – H2O], 651 [M + H – (CO + Ile)], 631 [M + H – Hty], 613 [M + H – Hty – H2O], 518 [M + H – Ile – Hty], 500 [M + H – Ile – Hty], 500 [M + H – Ile – Hty – H2O], 490 [M + H – Ile – Hty – CO], 463 [M + H – (MeAla + Phe)], 405 [M + H – (Hty + Ile³) – Ile¹], 387 [M + H – (Hty + Ile³) – Ile¹ – H2O], 320 [M + H – (MeAla + HTy + Ile³) – Ile¹], 263 [MeAla + Hty + H], 120 Phe–immonium ion, 84 Lys–immonium ion.

AA₂ (D if Ureido Not Activity m/z AA₁ (exo) AA₃ AA_6 Source Reference AA_4 AA₅ Linkage Otherwise Indicated) Arg in exocyclic position 1 Welker et al. 2006, Not AP 820, [Hph⁴] AP F 821 Arg CO Hph Phe Peptides 27, 2090-Lys Val NMeAla Microcystis sp. determined 2103. Harada 1995 Tetraheddon Letters 36, 1511–1514. Repka et al. 2004 Appl. Env. Microbiol. 70, 4551rNEc, no PP1i Anabaena flos-aquae 4560. TRYi NRC 525-17 Murakami et al. No protease Anabaena, Strain 90 1997, inh. Oscillatoria agardii Phytochemistry 44, Anabaenopeptin B PP1i 837 Arg CO Lys Val Hty **NMeAla** Phe NIES-204 449-452 ELAi, no TRY, Gkelis et al. 2006, AP B no CHY, Planktothrix Aquatic toxicology cytotoxicity 78, 32–41. *rubescence* bloom No CPAi Bubik et al. 2008, Biol. Chem. 389, 1339-1346. Murakami et al. 2000, J. Nat. Prod. 63, (9) 1280-1282. Ferranti et al. 2011, Not Rapid Commun. Anabaenopeptin B1 Phe CO Val Hty NMeAla P. rubescence 851 HArg Lys Mass Spectrom. 25, determined 1173-1183.

Table S1. Published anabaenopeptin variants.

AP MM850	851	Arg(OMe)	СО	Lys	Val	Hty	NMeAla	Phe	<i>Microcystis</i> sp. bloom	CHYi, ELAi, TRYi, no THROi	Zafir-Ilan and Carmeli 2010, Tetrahedron 66, 9194–9202.
Anabaenopeptin E	851	Arg	СО	Lys	Val	MeHty	NMeAla	Phe	Oscillatoria agardhii NIES-204 Planktothrix agardhii HUB 011	Not determined Not determined no CPAi	Shin et al. 1997, J. Nat. Prod. 60, 139– 141. Erhard et al. 1999, Rapid Commun. Mass Spectrom. 13, 337–343. Murakami et al. 2000, J. Nat. Prod. 63, (9) 1280–1282.
Anabaenopeptin F, APDA850	851	Arg	СО	Lys	Ile/allo-	Hty	NMeAla	Phe	Oscillatoria agardhii NIES-204 Planktothrix rubescens NIES-610 Oscillatoria agardhii Strain 97 P. rubescence, bloom Microcystis aeruginosa, bloom	Not determined PP1i, PP2i Not determined ELAi, no THROi, no CHYi, cytotoxicity No TRYi, no THROi	Shin et al. 1997, J. Nat. Prod. 60, 139– 141. Sano et al. 2001, J. Nat. Prod. 64, 1052– 1055. Fujii etal. 2000, Tetrahedron 56, 725–733. Bubik et al. 2008, Biol. Chem. 389, 1339–1346. Adiv et al. 2013, J. Nat. Prod. 76, 2307– 2315.
Anabaenopeptin F1, AP KT864	865	HArg	СО	Lys	Ile	Hty	NMeAla	Phe	Planktothrix rubescence Microcystis sp. MB-K	Not determined No TRYi, no CHYi	Ferranti et al. 2011, Rapid Commun. Mass Spectrom. 25, 1173–1183. Beresovsky et al. 2006, Isr. J. Chem 46, 79–87.

Oscillamide B	869	Arg	СО	Lys	Met	Hty	NMeAla	Phe	P. agardhii CCAP 1459/11A	PP1i, PP2i	Sano <i>et al.</i> 2001, <i>J.</i> <i>Nat Prod.</i> 64, 1052– 1055.
AP 877	878	Arg	СО	Lys	Ile	Hph	NMeAla	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919
AP HU892	893	Arg	СО	Lys	Val	Hph	NMeHty	Ile	<i>Microcystis</i> <i>aeruginosa</i> bloom	Not determined	Gesner-Apter and Carmeli 2009, J. Nat. Prod. 72, 1429– 1436.
AP KB906	907	Arg	СО	Lys	Ile	Hph	NMeHty	Ile	<i>Microcystis</i> spp. bloom	No TRYi, no CHYi	Elkobi-Peer and Carmeli 2015 <i>Marine Drugs</i> 13, 2347–2375.
AP 908	909	Arg	СО	Lys	Val	Hty	NMeHty	Ile	P. agardhii, CYA 126/8	CPAi, no TRYi no CHYi	Okumura et al. 2009, J. Nat. Prod. 72, 172–176.
Anabaenopeptin H	923	Arg	СО	Lys	Ile	Hty	NMeHty	Ile	Oscillatoria agardhii NIES-595	CPAi	Itou et al. 1999, Bioorganic & Medical Chem. Lett. 9, 1243–1246.
Oscillamide C	957	Arg	СО	Lys	Ile	Hty	NMeHty	Phe	P. rubescens CCAP 1459/14	PP1i, PP2i	Sano <i>et al.</i> 2001, J. Nat Prod. 64, 1052– 1055.
AP 891	892	Arg	СО	Lys	Ile	MeHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 905	906	Arg	СО	Lys	Ile	EtHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
Paltolide A	812	Arg	СО	Lys	Ala	Leu	Leu	Trp	Theonella swinhoei	No cytotoxicity	Plaza et al. 2010, J. Nat. Prod. 73, 485– 488.
Paltolide B	842	Arg	СО	Lys	Ala	Leu	NMeLeu	L-5'- hydroxyTrp	Theonella swinhoei	No cytotoxicity	Plaza et al. 2010, J. Nat. Prod. 73, 485– 488.

Paltolide C	904	Arg	СО	Lys	Ala	Leu	NMeLeu	L-6'-BrTrp	Theonella swinhoei	No cytotxicity	Plaza et al. 2010, J. Nat. Prod. 73, 485– 488.
AP 906 (putative)	907	Arg	СО	Lys	Ile	MeHty	NMeLeu	Phe	Microcystis sp.	Not determined	Puddick et al. 2008, Chemistry in New Zealand 72, 25–28.
Anabaenopeptin G	909	Arg	СО	Lys	Ile	Hty	NMeLeu	Tyr	Planktothrix agardhii HUB 011	Not determined	Erhard et al. 1999, Rapid Commun. Mass Spectrom. 13, 337–343.
Glu(OMe) in exocyclic position											
AP MM822	823	Glu(OMe)	СО	Lys	Val	Hty	NMeAla	Phe	Microcystis sp.	CHYi, ELAi, no THROi, no TRYi	Zafir-Ilan and Carmeli 2010, <i>Tetrahedron</i> 66, 9194–9202.
Ile in exocyclic position 1											
Anabenopeptin I	760	Ile	СО	Lys	Val	Hty	NMeAla	Leu	Aphanizomenon flos- aquae NIES-81	CPAi	Murakami et al. 2000, J. Nat. Prod. 63, 1280–1282.
Scizopeptin 791	792	Ile	СО	Lys	Ile	Hph	NMeAla	Phe	Terrestial <i>Schizothrix</i> sp.	TRYi, no CHYi	Reshef and Carmeli 2002, J. Natural Products 65, 1187–1189.
Anabenopeptin J	794	Ile	СО	Lys	Val	Hty	NMeAla	Phe	Aphanizomenon flos- aquae NIES-81	CPAi	Murakami et al. 2000, J. Nat. Prod. 63, 1280–1282.
AP 807	808	Ile	СО	Lys	Ile	Hty	NMeAla	Phe	Nodularia spumigena, Australian strains Baltic Sea bloom	Not determined CPAi, PP1i	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19. This study
NP 823	824	Ile	СО	Lys	Val	Hph	NMeHty	Ser	Baltic Sea bloom	Not determined	This study
Nodulapeptin 855	856	Ile	СО	Lys	Met	Hph	NMeHty	Ser	Nodularia spumigena CCNP1402	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.

Anabaenopeptin T	866	Ile	СО	Lys	Val	Hty	NMeHty	Ile	Bloom material, lake Teganuma, Japan	CPAi	Kodani et al. 1999, FEMS Microbiol. Lett. 178, 343–348.
NP 865	866	Ile	СО	Lys	Val	Hph	NMeHty	AcSer	Baltic sea bloom	CPAi, PP1i	This study
NP 867	868	Ile	СО	Lys	Val	Hph	NMeHty	Met	Baltic sea bloom	CPAi, PP1i	This study
NP 879	880	Ile	СО	Lys	Ile	Hph	NMeHty	AcSer	Nodularia spumigena CCNP 1402, BY1,Node2, Nodg3, Nodh2	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.
Nodulapeptin 881	882	Ile	СО	Lys	Ile	Hph	NMeHty	Met	Nodularia spumigena CCNP 1402	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.
NP 883	884	Ile	CO	Lys	Val	Hph	NMeHty	Met(O)	Baltic sea bloom	CPAi, PP1i	This study
Nodulapeptin C	898	Ile	СО	Lys	Met	Hph	NMeHty	AcSer	Nodularia spumigena CCY9414	Not determined	Rouhiainen <i>et al.</i> 2010, Chemistry & Biology 17, 265–273.
NP 899	900	Ile	CO	Lys	Val	Hty	NMeHty	Me(O)	Baltic Sea bloom	PP1i, CPAi	This study
[Met] ⁶ Nodulapeptin C	900	Ile	СО	Lys	Met	Hph	NMeHty	Met	Nodularia spumigena CCY9414	Not determined	Rouhiainen <i>et al.</i> 2010, Chemistry & Biology 17, 265–273.
Nodulapeptin B	914	Ile	СО	Lys	Met(O)	Hph	NMeHty	AcSer	Nodularia spumigena AV1	Not determined	Fujii et al. 1997, Tetrahedron Letters 31, 5525–5528.
NP 915	916	Ile	СО	Lys	Ile	Hph	NMeHty	Met	Nodularia spumigena , CCNP 1402, BY1, Node2, Nodg3, Nodh2	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.
Nodulapeptin A	930	Ile	СО	Lys	Met(O2)	Hph	NMeHty	AcSer	Nodularia spumigena AV1	Not determined	Fujii et al. 1997, Tetrahedron Letters 31, 5525–5528.
NP931	932	Ile	СО	Lys	Met(O)	Hph	NMeHty	Met(O)	Nodularia spumigena CCNP1402, BY1	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.
Nodulapeptin 855	856	Ile	СО	Lys	MetO	Hph	NMeHph	Ser	<i>Nodularia spumigena</i> Baltic Sea and turkish strains	Not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.

[Ser] ⁶ Nodulapeptin B	872	lle	СО	Lys	MetO	Hph	NMeHph	Ser	Nodularia spumigena CCY9414	Not determined	Rouhiainen et al. 2010, Chemistry & Biology 17, 265–273.
Nodulapeptin 881	882	Ile	СО	Lys	Met	Hph	NMeHph	AcSer	Nodularia spumigena CCNP 1402, BY1	Not determined	Mazur-Marzec <i>et</i> <i>al.</i> 2013, <i>Mar. Drugs</i> 11, 1–19
Nodulapeptin 883	884	Ile	СО	Lys	MetO	Hph	NMeHph	Met	Nodularia spumigena CCNP 1402	Not determined	Mazur-Marzec <i>et</i> <i>al.</i> 2013, <i>Mar. Drugs</i> 11, 1–19.
[MHph]⁵ Nodulapeptin B	898	Ile	СО	Lys	MetO	Hph	NMeHph	AcSer	Nodularia spumigena CCY9414	not determined	Rouhiainen <i>et al.</i> 2010, Chemistry & Biology 17, 265–273.
Brunsvicamide A	845	Ile	СО	L-Lys D-Lys	Val	Leu	NMe-L-5'- hydroxyTrp	Phe	Tychonema	PPi (MptpB, weak) No PPi, CPAi and CPBi	Müller et al. 2006, J. Med. Chem. 49, 4871–4878. Walther et al. 2009, ChemBioChem 10, 1153–1162.
Brunsvicamide B	859	Ile/allo-Ile	СО	L-Lys	Ile	Leu	NMe-L-5'- hydroxyTrp	Phe	Tychonema	PPi (MptpB)	Muller et al. 2006, J. Med Chem. 49, 4871–4878.
Mozamide A	861	L-allo-Ile	СО	L-Lys	D-Val	Leu	NMe-L-5'- hydroxyTrp	Phe	Theonella, sponge	No anti- microbial activity	Schmidt <i>et al.</i> 1997, J. Nat. Prod 60, 779– 782.
Mozamide B	875	L-allo-Ile	СО	L-Lys	D-Ile	Leu	NMe-L-5'- hydroxyTrp	Phe	Theonella, sponge	No anti- microbial activity	Schmidt <i>et al.</i> 1997, J. Nat. Prod 60, 779– 782.
Brunsvicamide C	877	Ile/allo-Ile	СО	L-Lys	Val	Leu	NMe-L-N'- formyl-D- kynurenine	Phe	Tychonema	PPi (MptpB)	Muller et al. 2006, J. Med Chem. 49, 4871–4878.
(–)-Psymbamide	937	Ile	СО	Lys	Leu	Leu	NMe-L-5'- BrTrp	Phe	Sponge Psammocinia aff. bulbosa	Not determined	Robinson <i>et al.</i> 2007, J. Nat. Prod. 70, 1002–1009.
Pompanopeptin B	958	lle	СО	Lys	Val	Hty	NMeAhpha	Htyr	Lyngbya confervoides, bloom	Not determined	Matthew et al. 2008, Tetrahedron 64, 4081–4089.

Leu in exocyclic position 1											
AP 848	849	Leu	СО	Lys	Ile	MeHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 862	863	Leu	СО	Lys	Ile	EtHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
Konbamide	877	Leu	СО	L-Lys	Ala	Leu	NMeLeu	BhTrp	Theonella, sponge	CAM-PDE inhibition	Kobayashi et al. 1991, J. Chem. Soc. Chem. Commun. 1050–1052 Schmidt and Weinbrenner 1996, Angew. Chem. Int. Ed. Engl. 35(12) 1336–1338
Lys in exocyclic position 1											
Anabaenopeptin C	809	Lys	СО	Lys	Val	Hty	NMeAla	Phe	Anabaena sp. 90	Not determined	Fujii et al. 1996, In Harmful and Toxic Algal Blooms 559– 562.
AP 849	850	Lys	СО	Lys	Ile	Hph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz <i>et al.</i> 2015, Marine Drugs 13, 3892–3919.
AP 863	864	Lys	СО	Lys	Ile	MeHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 877	878	Lys	СО	Lys	Ile	EtHph	NMeAsn	Phe	Desmonostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
Phe in exocyclic position 1											
AP 813	814	Phe	СО	Lys	Val	Hty	NMeGly	Phe	Baltic Sea bloom	PP1i, CPAi	This study

Anabaenopeptin D	828	Phe	СО	Lys	Val	Hty	NMeAla	Phe	Anabaena sp. 202 A2/41 (A. lemmermannii), Baltic Sea bloom	not determined PP1i, CPAi	Fujii et al. 1996, In Harmful and Toxic Algal Blooms 559– 562. This study
AP 841	842	Phe	СО	Lys	Ile	Hty	NMeAla	Phe	Nodularia spumigena CCNP 1401,1403, B15a	not determined	Mazur-Marzec et al. 2013, Mar. Drugs 11, 1–19
AP 841	842	Phe	СО	Lys	Val	Hph	NMeAla	Hty	Desmonostoc sp.	not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
Lyngbyaureidamide B	842	D-Phe	СО	Lys	Ile	Hty	NMeAla	Phe	<i>Lyngbya</i> sp. SAG 36.91	No CHY-like inh.	Zi et al. 2012, Phytochemistry 74, 173–177.
Lyngbyaureidamide A	856	D-Phe	СО	Lys	Ile	Hty	NMeAla	Hph	<i>Lyngbya</i> sp. SAG 36.91	No CHY-like inh.	Zi et al. 2012, Phytochemistry 74, 173–177.
AP 855	856	Phe	СО	Lys	Ile	Hph	NMeAla	Hty	Nostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 855	856	Phe	CO	Lys	Val	Val	NMeHty	Met(O)	Baltic Sea bloom	PP1i, CPAi	This study
AP 857	858	Phe	СО	Lys	Val	Hty	NMeAla	Hty	Nostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 857	858	Phe	CO	Lys	Val	Hph	NMeHty	Ser	Baltic Sea bloom	PP1i, CPAi	This study
NP 869	870	Phe	CO	Lys	Val	Leu	NMeHty	Met(O)	Baltic Sea bloom	PP1i	This study
AP 871	872	Phe	СО	Lys	Ile	Hty	NMeHty	Hty	Nostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
NP 899	900	Phe	СО	Lys	Val	Hph	NMeHty	AcSer	Nodularia spumigena KAC 66 Baltic Sea bloom	Not determined PP1i, CPAi	Schumacher <i>et al.</i> 2012, <i>Tetrahedron</i> 68, 1622–1628. This study
NP 901	902	Phe	СО	Lys	Val	Hph	NMeHty	Met	Nodularia spumigena KAC 66	Not determined	Schumacher et al. 2012, Tetrahedron 68, 1622–1628.

NP 915	916	Phe	СО	Lys	Val	Hty	NMeHty	AcSer	Nodularia spumigena KAC66, CCNP 1423, CCNP 1424, CCNP 1425 Baltic Sea bloom	PP1i, CPAi	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19. This study
NP 917	918	Phe	СО	Lys	Val	Hph	NMeHty	Met(O)	Nodularia spumigena KAC 66 Baltic Sea bloom	Not determined PP1i, CPAi	Schumacher <i>et al.</i> 2012 <i>, Tetrahedron</i> 68, 1622–1628. This study
NP 933	934	Phe	СО	Lys	Val	Hty	NMeHty	Met(O)	<i>Nodularia spumigena</i> CCNP 1423, CCNP 1424, CCNP 1425 Baltic Sea bloom	PP1i, CPAi	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19. This study
NP 883	884	Phe	СО	Lys	Val	Hph	NMeHph	AcSer	Nodularia spumigena KAC66, CCNP 1423, CCNP 1424, CCNP 1425	not determined	Mazur-Marzec et al. 2013, Marine Drugs 11, 1–19.
AP 813	814	Phe	CO	Lys	Val	Hty	NMeGly	Phe	Baltic Sea bloom	PP1i, CPAi	This study
AP NZ825	826	Phe	СО	Lys	Ile	Hph	NMeGly	Hph	Anabaena sp. TAU strain NZ-3-1	No activity towards serine proteaser	Grach- Progrebinsky and Carmeli 2008, <i>Tetrahedron</i> 64, 10233–10238.
AP NZ841	842	Phe	СО	Lys	Ile	Hty	NMeGly	Hph	Anabaena sp. TAU strain NZ-3-1	No activity towards serine proteaser	Grach- Progrebinsky and Carmeli 2008, <i>Tetrahedron</i> 64, 10233–10238.
Nostamide A	842	Phe	СО	Lys	Ile	Hph	NMeGly	Hty	Nostoc punctiforme PCC73102	Not determined	Rouhiainen et al. 2010, Chemistry & Biology 17, 265–267.
AP NZ857	858	Phe	со	Lys	Ile	L-Hty	NMeGly	Hty	Anabaena sp. TAU strain NZ-3-1 Nostoc punctiforme PCC73102	No activity towards serine proteaser	Grach- Progrebinsky and Carmeli 2008, <i>Tetrahedron</i> 64, 10233–10238. Rouhiainen <i>et al.</i>

											2010, Chemistry & Biology 17, 265–273.
AP 882	883	Phe	СО	Lys	Ile	MeHph	NMeAsn	Phe	Nostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
AP 896	897	Phe	СО	Lys	Ile	EtHph	NMeAsn	Phe	Nostoc sp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.
Keramamide A	943	Phe	СО	L-Lys	Leu	Leu	NMeCht	Phe	Theonella, sponge	No cytotoxicity, SERCA inhibition	Kobyashi et al. 1991, J. Chem. Soc. Perin. Trans. 1, 2609–2611.
Keramamide L	927	Phe	CO	L-Lys	Leu	Leu	NMeCTrp	Phe	Theonella, sponge	Cytotoxicity	Uemoto <i>et al</i> . 1999, <i>Tetrahedron</i> 55, 12543–12548.
Trp in exocyclic position 1											
Ferintoic acid A	867	Trp	СО	Lys	Val	Htyr	NMeAla	Phe	<i>Microcystis</i> <i>aeruginosa</i> bloom	No CHYi	Williams et al. 1996, J. Nat. Prod. 59, 570–575.
Ferintoic acid B	881	Trp	CO	Lys	allo-Ile	Htyr	NMeAla	Phe	Microcystis aeruginosa bloom	No CHYi	Williams et al. 1996, J. Nat. Prod. 59, 570–575.
Tyr in exocyclic position 1											
Anabaenopeptin A	844	Tyr	со	Lys	Val	Hty	NMeAla	Phe	Anabaena flos-aquae NRC 525-17 Baltic Sea bloom	rNEc, no Ppi PP1i PP1i, CPAi	Harada et al. 1995, Tetraheddon Letters 36, 1511–1514. Gkelis et al. 2006, Aquatic Toxicology 78, 32–41. This study
Oscillamide Y	858	Tyr	СО	Lys	Ile	Hty	NMeAla	Phe	Oscillatoria agardhii= P. rubescense NIES- 610 Synthetic and	CHYi No CHYi PP1i, CPAi	Sano and Kaya 1995, Tetrahedron lett. 36, 5933–5936. Marsh et al. 1997, J. Org. Chem. 62,

									natural Baltic Sea bloom		6199–6203. This study
AP KB899	900	Tyr	CO	Lys	Val	Hph	NMeHty	lle	<i>Microcystis</i> spp. bloom	No TRYi, no CHYi	Elkobi-Peer and Carmeli 2015, Mar. Drugs 13, 2347– 2375.
AP MM913	914	Tyr	СО	Lys	Ile	Hph	NMeHty	Ile	<i>Microcystis</i> sp., bloom	No endoprotease inhibition	Zafir-Ilan and Carmeli 2010, <i>Tetrahedron</i> 66, 9194–9202.
AP 915	916	Tyr	СО	Lys	Ile	Hty	NMeHty	Ile	P. agardhii, CYA 126/8	No TRYi, no CHYi	Okumura et al. 2009, J. Natural Products 72, 172– 176.
Anabaenopeptin G *	930	Tyr	СО	Lys	Ile	Hty	NMeHty	Ile	Oscillatoria agardhii NIES-595	CPAi	Itou et al. 1999, Bioorganic & Medical Chem. Lett. 9, 1243–1246.
Oscillamide H	930	Tyr	СО	Lys	NMelle	Ile	NMeHty	lle	Planktothrix agardhii, NIES-595	Not determined	Sano et al. 1996, Tennen Yuki Kagobatsu Toronkai Koen Yoshishu 38, 433–438. Dr T. Sano, personal communication
Val in exocyclic position 1											
AP 802	803	Val	СО	Lys	Ile	Trp	NMeAla	Phe	Brasilonema spp.	Not determined	Sanz et al. 2015, Marine Drugs 13, 3892–3919.

Abbreviations: BhTrp, 2-bromo-5-hydroxytryptophan. CAM-PDE, calmodulin -activated brain phosphodiesterase. CHY, chymotrypsin. CPA, carboxypeptidase A. ELA, elastase. i, inhibition. MeCht, 6-chloro-5-hydroxy-*N*-methyltryptophan. MptpB, *Mycobacterium tuberculosis* protein tyrosine phophatase B. PP, protein phosphatase. rNec, norepinephrin induced contraction. SERCA, sarcoplasmic reticulum Ca²⁺-ATPase. TRY, trypsin. THRO, thrombin.