Supplementary Materials: New Metabolites and Bioactive Actinomycins from Marine-derived *Streptomyces* sp. ZZ338

Xiufang Zhang, Weiyun Chai, Xuewei Ye, Xiao-Yuan Lian and Zhizhen Zhang

CONTENT

Table S1. Sequences producing significant alignments
Table S2. ¹³ C NMR data of actinomycins D (1) and V (2) (in CDCl ₃ - <i>d</i>)
Table S3. ¹ H NMR data of actinomycins D (1) and V (2) (in CDCl ₃ - <i>d</i>)
Table S4. Main ¹ H NMR data of actinomycin X0β (3), in CDCl ₃ - <i>d</i>)
Figure S1. 16S rDNA sequence of <i>Streptomyces</i> sp. ZZ3384
Figures S2–S7. ¹ H NMR spectra of actinomycin D (1) 4–7
Figures S8-S14. ¹³ C NMR spectra of actinomycin D (1)
Figures S15–S20. DEPT spectra of actinomycin D (1) 11–13
Figures S21–S24. ¹ H– ¹ H COSY spectra of actinomycin D (1) 14–15
Figures S25–S28. HSQC spectra of actinomycin D (1) 16–17
Figures S29–S34. HMBC spectra of actinomycin D (1) 18–20
Figure S35. HRESIMS of actinomycin D (1) 21
Figures S36–S40. ¹ H NMR spectra of actinomycin V (2) 21–23
Figures S41–S48. ¹³ C NMR spectra of actinomycin V (2) 24–27
Figures S49–S53. DEPT spectra of actinomycin V (2)
Figures S54–S57. ¹ H- ¹ H COSY spectra of actinomycin V (2) 30–32
Figures S58–S63. HSQC spectra of actinomycin V (2) 32–35
Figure S64. HRESIMS of actinomycin V (2)
Figures S65–S69. ¹ H NMR spectra of actinomycin X0 _β (3)
Figure S70. HRESIMS of actinomycin X0 $_{\beta}$ (3)
Figures S71–S72. ¹ H spectra of compound 4 39
Figures S73–S75. ¹³ C spectra of compound 4
Figure S76. HSQC spectrum of compound 4 41
Figures S77–S80. HMBC spectra of compound 4 42–43
Figure S81. HRESIMS of compound 4
Figures S82–S84. ¹ H spectra of compound 5
Figures S85–S87. ¹³ C spectra of compound 5
Figures S88–S90. ¹ H- ¹ H COSY spectra of compound 5
Figures S91–S94. HMBC spectra of compound 5 49–50
Figure S95. HRESIMS of compound 5

Accession	Description	Max Score	Total Score	Query Coverage	Evalue	Ident
NC_016114.1	Streptomyces pratensis ATCC 33331, complete genome	2558	25317	100%	0.0	99%
NC_010572.1	Streptomyces griseus subsp. griseus NBRC 13350 DNA, complete genome	2558	25352	100%	0.0	99%
NZ_CP013738.1	Streptomyces globisporus C-1027, complete genome	2553	15319	100%	0.0	99%
NZ_JOAZ01000047.1	<i>Streptomyces halstedii</i> strain NRRL ISP-5068 contig47.1, whole genome shotgun sequence	2547	2547	100%	0.0	99%
NZ_JQJU01000080.1	Streptomyces atratus strain OK008 EW57DRAFT_scaffold00076.76_ C, whole genome shotgun sequence	2519	2519	100%	0.0	99%
NZ_LGDD01000116.1	Streptomyces sp. WM6378 P402contig199.1, whole genome shotgun sequence	2483	2483	100%	0.0	99%

Table S1. Sequences producing significant alignments.

No.	1	2	No.	1	2
1	129.1, C	129.2, C	2	132.4, C	132.1, C
3	125.7, CH	126.1, CH	4	130.4, CH	130.5, CH
5	127.8, C	128.0, C	6	140.5, C	140.6, C
7	145.1 <i>,</i> C	145.1, C	8	113.5, C	113.6, C
9	179.1, C	179.1, C	10	147.8, C	147.6, C
11	101.6, C	101.7, C	12	145.9, C	146.0, C
13	15.1, CH3	15.1, CH3	14	7.7, CH3	7.7, CH3
1'	166.6 ^{<i>a</i>} , C	166.4, C	1″	166.6 ^{<i>a</i>} , C	166.4, C
2'	55.2, CH	54.8, CH	2″	54.9, CH	55.1, CH
3'	168.6, C	168.9, C	3″	169.1, C	169.1, C
4'	58.9, CH	58.6, CH	4″	58.7, CH	57.2, CH
5'	31.5, CH	31.7, CH	5″	31.8, CH	31.9, CH
6'	19.0 ^{<i>b</i>} , CH3	18.9 ª CH3	6″	19.0 ^{<i>b</i>} , CH3	19.0 ^{<i>a</i>} , CH3
7'	19.3 ^b , CH3	19.2 ^{<i>a</i>} , CH3	7″	19.3 ^{<i>b</i>} , CH3	19.3 ^{<i>a</i>} , CH3
8'	173.3, C	174.1, C	8″	173.7, C	173.6, C
9'	47.4, CH2	53.0, CH2	9″	47.7, CH2	47.5, CH2
10'	23.0, CH2	208.9, C	10"	22.8, CH2	23.0, CH2
11'	31.0, CH2	42.0, CH2	11"	31.3, CH2	31.1, CH2
12'	56.4, CH	54.4, CH	12″	56.6, CH	56.6, CH
13'	173.4 °, C	172.9, C	13″	173.5 °, C	173.6, C
14'	35.0, CH3	34.9 ^b , CH3	14"	35.0, CH3	35.0 ^{<i>b</i>} , CH3
15'	51.3, CH2	51.3, CH2	15"	51.4, CH2	51.4, CH2
16'	166.4, C	166.1, C	16"	166.7 ª, C	166.8, C
17'	39.3, CH3	39.4, CH3	17"	39.2, CH3	39.2, CH3
18'	71.3, CH	71.5 °, CH	18''	71.2, CH	71.2 °, CH
19'	27.0, CH	27.1 ^{<i>d</i>} , CH	19″	27.0, CH	27.2 ^{<i>d</i>} , CH
20'	19.1 ^{<i>d</i>} , CH3	19.0 ^e , CH3	20"	19.1 ^d CH3	19.1 ^e , CH3
21'	21.6 ^{<i>d</i>} , CH3	21.6 e, CH3	21″	21.7 ^{<i>d</i>} , CH3	21.7 ^e , CH3
22'	167.7, C	167.7, C	22″	167.8, C	167.7, C
23'	75.0, CH	74.7, CH	23″	75.1, CH	74.8, CH
24'	17.3, CH3	17.3, CH3	24″	17.8, CH3	17.8, CH3

^{*a-e*} The data with the same labels in each column may be interchanged.

24'

1.20, d (6.3)

No.	1 (J = Hz)	2 (J = Hz)	No.	1 (J = Hz)	2 (J = Hz)
3	7.56, d (7.8)	7.61, d (7.7)	4	7.33, d (7.8)	7.36, d (7.7)
2′	4.47, dd (6.9, 2.4)	4.56, dd (7.3, 2.7)	2″	4.56, dd (6.7, 2.4)	4.49, dd (6.6, 2.6)
NH-2'	7.14, d (7.0)	7.19, d (7.3)	NH-2"	7.69, d (7.0)	7.68, d (7.2)
4'	3.49, dd (10.0, 6.0)	3.57, dd (9.5, 6.0)	4″	3.52, dd (10.0, 6.1)	3.70, dd (9.8, 6.0)
NH-4′	8.13, d (5.9)	7.68, d (7.2)	NH-4"	7.94, d (6.1)	8.21, d (6.0)
5'	2.14, m	2.13, m	5″	2.08, m	2.23, m
6'	1.06, d (6.8) ^a	1.12, d (6.8) ^a	6″	1.05, d (6.8) ^a	1.14, d (6.8) ^a
7'	0.82, d (6.8) ^a	0.90, d (6.8) ^a	7"	0.84, d (6.8) ^a	0.91, d (6.8) ^a
9'	3.68, m; 3.93, m	3.96, d (19.5); 4.55, d (19.5)	9″	3.65, m; 3.78, m	3.73, m; 3.92, m
10'	2.05, m; 2.20, m	_	10"	2.05, m; 2.20, m	2.21, m; 2.27, m
11′	1.77, m; 2.62, m	2,31, d (17.5); 3.63, d (17.5)	11″	1.81, m; 2.89, m	1.87, m; 2.76, m
12'	5.96, d (9.2)	6.56, d (10.0)	12″	5.88, d (9.2)	5.96, d (9.3)
14'	2.82, s	2.89 ^b , s	14″	2.82, s	2.92 ^b , s
15/	3.62, d (17.5);	3.69, d (17.7)	157	3.58, d (17.5);	3.66, d (17.5)
15	4.67, d (17.5)	4.58, d (17.7)	15	4.77, d (17.5)	4.71, d (17.5)
17'	2.90, s	2.94, s	17"	2.87, s	2.93, s
18'	2.66, d (9.4)	2.69, d (9.6) ^c	18"	2.66, d (9.4)	2.71, d (9.6) ^c
19′	2.59, m	2.65, m	19″	2.59, m	2.65, m
20'	0.69, d (6.7) ^b	0.74, d (6.5) ^d	20"	0.69, d (6.7) ^b	0.75, d (6.5) ^d
21'	0.89, d (6.7) ^b	0.95, d (6.3) ^d	21″	0.91, d (6.7) ^b	0.98, d (6.3) ^d
23'	5.15, dd (6.5, 2.6)	5.24, dd (6.2, 2.6)	23″	5.11, dd (6.5, 2.6)	5.15, dd (6.2, 2.6)

Table S3. ¹H NMR data of actinomycins D (1) and V (2) (in CDCl₃-*d*).

^{*a-d*} The data with the same labels in each column may be interchanged.

24''

1.20, d (6.3)

1.12, d (6.7)

1.26, d (6.7)

Table S4. Main ¹H NMR data of actinomycin X0_β (**3**, in CDCl₃-*d*).

No.	3 (<i>J</i> = Hz)	No.	3 (J = Hz)
3	7.66, d (7.8)	4	7.36, d (7.8)
2′	4.84, dd (7.0, 2.4)	2″	4.50, dd (7.0, 2.4)
NH-2′	7.44, d (6.5)	NH-2″	7.92, d (7.5)
4'	3.56, dd (10.3, 5.5)	4″	3.74, dd (10.1, 6.5)
NH-4′	7.48, d (6.9)	NH-4"	8.20 d (5.6)
6'	1.12, d (6.7) ^a	6″	1.14, d (6.7) ^a
7′	0.86, d (6.7) ^a	7″	0.91, d (6.7) ^a
12′	6.05, dd (9.3, 3.0)	12″	5.98, d (9.0)
14'	2.90, s	14″	2.90, s
15′	3.60, d (17.5); 4.56, d (17.5)	15″	3.64, d (17.6); 4.74, d (17.6)
17'	2.96 ^b , s	17″	2.97 ^b , s
18′	2.66, d (9.0)	18″	2.68, d (9.3)
19′	2.66, m	19″	2.66, m
20′	0.75, d (6.6) ^c	20"	0.76, d (6.7) ^c
21'	0.96, d (6.7) ^c	21″	0.98, d (6.7) ^c
23′	5.25, m	23″	5.25, m
24'	1.30, d (6.4) ^d	24″	1.26, d $(6.1)^d$

^{*a-d*} The data with the same labels in each column may be interchanged.

TTCGAAGCTCCCTCCCACAAGGGGTTGGGCCACCGGCTTCGGGTGTTACCGACTTTCGTG ACGTGACGGGCGGTGTGTGCAAGGCCCGGGAACGTATTCACCGCAGCAATGCTGATCTG CGATTACTAGCAACTCCGACTTCATGGGGTCGAGTTGCAGACCCCAATCCGAACTGAGAC CGGCTTTTTGAGATTCGCTCCGCCTCACGGCATCGCAGCTCATTGTACCGGCCATTGTAGC ACGTGTGCAGCCCAAGACATAAGGGGCATGATGACTTGACGTCGTCCCCACCTTCCTCCG AGTTGACCCCGGCAGTCTCCTGTGAGTCCCCATCACCCCGAAGGGCATGCTGGCAACAC AGAACAAGGGTTGCGCTCGTTGCGGGGACTTAACCCAACATCTCACGACACGAGCTGACG ACAGCCATGCACCACCTGTATACCGACCACAAGGGGGGGCACCATCTCTGATGCTTTCCGG TATATGTCAAGCCTTGGTAAGGTTCTTCGCGTTGCGTCGAATTAAGCCACATGCTCCGCTG CTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCG GGGAACTTAATGCGTTAGCTGCGGCACCGACGACGTGGAATGTCGCCAACACCTAGTTCC CAACGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTC CTCAGCGTCAGTAATGGCCCAGAGATCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGC GAATGCAGACCCGGGGTTAAGCCCCGGGCTTTCACATCCGACGTGACAAGCCGCCTACG AGCTCTTTACGCCCAATAATTCCGGACAACGCTTGCGCCCTACGTATTACCGCGGCTGCTG GCACGTAGTTAGCCGGCGCTTCTTCTGCAGGTACCGTCACTTTCGCTTCTTCCCTGCTGAA AGAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGGCGTCGCTGCATCAGGCTTTCGC CCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCA GTGTGGCCGGTCGCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTAGGCCATTACCCC ACCAACAAGCTGATAGGCCGCGGGGCTCATCCTTCACCGCCGGAGCTTTTAACCCCGTCCC ATGCGGGACAGAGTGTTATCCGGTATTAGACCCCGTTTCCAGGGCTTGTCCCAGAGTGAA GGGCAGATTGCCCACGTGTTACTCACCCGTTCGCCACTAATCCACCCCGAAAGGCTTCAT CGTTCG ACTGCA

Figure S2. ¹H NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S3. ¹H NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S4. ¹H NMR spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S6. ¹H NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S7. ¹H NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S8. ¹³C NMR spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S10. ¹³C NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S11. ¹³C NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S12. ¹³C NMR spectrum of actinomycin D (1, in CDCl₃-d).

Figure S14. ¹³C NMR spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S15. DEPT spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S16. DEPT spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S18. DEPT spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S20. DEPT spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S21. ¹H–¹H COSY spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S22. ¹H–¹H COSY spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S23. ¹H–¹H COSY spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S24. ¹H–¹H COSY spectrum of 1 actinomycin D (1, in CDCl₃-*d*).

Figure S25. HSQC spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S26. HSQC spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S28. HSQC spectrum of actinomycin D (1, in CDCl₃-d).

Figure S29. HMBC spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S30. HMBC spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S31. HMBC spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S32. HMBC spectrum of actinomycin D (1, in CDCl₃-*d*).

Figure S33. HMBC spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Figure S34. HMBC spectrum of actinomycin D (**1**, in CDCl₃-*d*).

Intensity

5.0e5 4.5e5 4.0e5

3.5e5

3.0e5 2.5e5 2.0e5

Figure S36. ¹H NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S37. ¹H NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S38. ¹H NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S39. ¹H NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S40. ¹H NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S42. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S43. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S44. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S46. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-d).

Figure S47. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S48. ¹³C NMR spectrum of actinomycin V (2, in CDCl₃-d).

Figure S50. DEPT spectrum of actinomycin V (**2**, in CDCl₃-*d*).

Figure S52. DEPT spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S53. DEPT spectrum of actinomycin V (**2**, in CDCl₃-*d*).

Figure S54. ¹H-¹H COSY spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S55. ¹H-¹H COSY spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S56. ¹H–¹H COSY spectrum of actinomycin V (**2**, in CDCl₃-*d*).

Figure S57. ¹H–¹H COSY spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S58. HSQC spectrum of actinomycin V (2, in CDCl₃-d).

Figure S60. HSQC spectrum of actinomycin V (2, in CDCl₃-*d*).

Figure S61. HSQC spectrum of actinomycin V (**2**, in CDCl₃-*d*).

Figure S62. HSQC spectrum of actinomycin V (**2**, in CDCl₃-*d*).

Figure S64. HRESIMS of actinomycin V (2, in CDCl₃-d).

Figure S66. ¹H NMR spectrum of actinomycin A1 (**3**, in CDCl₃-*d*).

Figure S68. ¹H NMR spectrum of actinomycin A1 (3, in CDCl₃-*d*).

Figure S69. ¹H NMR spectrum of actinomycin A1 (3, in CDCl₃-*d*).

Figure S72. ¹H NMR spectrum of compound 4 (in DMSO-*d*6).

Figure S73. ¹³C NMR spectrum of compound 4 (in DMSO-*d*6).

Figure S74. ¹³C NMR spectrum of compound 4 (in DMSO-d6).

Figure S75. ¹³C NMR spectrum of compound 4 (in DMSO-*d*6).

Figure S76. HSQC spectrum of compound 4 (in DMSO-d6).

Figure S77. HMBC spectrum of compound 4 (in DMSO-d6).

Figure S78. HMBC spectrum of compound 4 (in DMSO-d6).

Figure S79. HMBC spectrum of compound 4 (in DMSO-d6).

Figure S80. HMBC spectrum of compound 4 (in DMSO-d6).

Figure S82. ¹H NMR spectrum of compound 5 (in DMSO-d6).

Figure S84. ¹H NMR spectrum of compound 5 (in DMSO-*d*6).

Figure S86. ¹³C NMR spectrum of compound 5 (in DMSO-d6).

Figure S87. ¹³C NMR spectrum of compound 5 (in DMSO-*d*6).

Figure S88. ¹H–¹H COSY spectrum of compound 5 (in DMSO-*d*6).

Figure S89. ¹H–¹H COSY spectrum of compound 5 (in DMSO-*d*6).

Figure S90. ¹H–¹H COSY spectrum of compound 5 (in DMSO-*d*6).

Figure S91. HMBC spectrum of compound 5 (in DMSO-d6).

Figure S92. HMBC spectrum of compound 5 (in DMSO-d6).

Figure S93. HMBC spectrum of compound 5 (in DMSO-d6).

Figure S94. HMBC spectrum of compound 5 (in DMSO-*d*6).

Figure S95. HRESIMS of compound 5 (in DMSO-d6).