Supplementary Materials: Synthesis and Anti-Influenza A Virus Activity of 6'-amino-6'-deoxyglucoglycerolipids Analogs Li Ren, Jun Zhang, Haizhen Ma, Linlin Sun, Xiaoshuang Zhang, Guangli Yu, Huashi Guan, Wei Wang and Chunxia Li p-methylphenyl 2,3,4-tri-O-benzyl-6-azido-6-deoxy-1-thio-β-D-glucopyranoside (7) Compound 5 (1.0 g, 3.5 mmol) was dissolved in dry pyridine (10 mL) and tosyl chloride (1.2 g, 6.3 mmol) and DMAP (0.08 g, 0.65 mmol) were added at r.t. After stirring for 4 h the solvent was removed under reduced pressure, then the residue was dissolved in 30 mL CH2Cl2 and washed sequentially with 1 M HCl, saturated NaHCO3 solution and brine. The organic layer was dried with Na₂SO₄ and concentrated. The residue was purified by silica gel chromatography (AcOEt-petroleum ether 1:1) to give a white solid (1.2 g, 79%). To the solution of the white solid (3.2 g, 7.5 mmol) in dry DMF (15 mL) was added NaN₃ (2.0 g, 30.0 mmol). The reaction mixture was stirred at 80 °C for 5 h, and then cooled to r.t. The mixture solution was filtered, and then NaH (1.1 g, 25.7 mmol) and BnBr (3.1 mL, 25.7 mm) were added to the filtrate to continue the reaction. After stirring for 1 h, the solution was diluted with brine and extracted with CH₂Cl₂. All of the organic extracts were combined, dried and concentrated under vacuum to give a residue. The residue was purified by silica gel chromatography (AcOEt-petroleum ether 1:10) to give 7 (3.6 g, 86% over two steps) as a white solid. ¹H-NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 8.1 Hz, 2H, STol Ar*H*), 7.40–7.26 (m, 15H, Ar*H*), 7.15 (d, *J* = 8.0 Hz, 2H, STol ArH), 4.97–4.61 (m, 6H, PhC $H_2 \times 3$), 4.62 (d, J = 9.8 Hz, 1H, H-1), 3.72 (t, J = 8.9 Hz, 1H, H-3), 3.57–3.52 (m, 2H, H-6a, H-4), 3.49 (t, J = 9.2 Hz, 1H, H-2), 3.45 (ddd, J = 9.6, 5.5, 2.2 Hz, 1H, H-5), 3.37 (dd, J = 13.1, 5.5 Hz, 1H, H-6b), 2.37 (s, 3H, STol CH₃); LR-ESI-MS m/z calcd. for C₃₄H₃₅N₃O₄S Na [M + Na] + 604.2, found 604.3. $3-O-(6'-azido-2',3',4'-tri-O-benzyl-6'-deoxy-\alpha-D-glucopyranosyl)-1,2-isopropylidene-sn-glycerol (9)$ To a stirred solution of 7 (3.8 g, 6.5 mmol) in acetone (27 mL) and H₂O (3 mL) at ambient temperature, NBS (3.4 g, 19.5 mmol) was added. After 0.5 h, the reaction was quenched with saturated NaHCO₃ and the mixture was concentrated. The crude intermediate was diluted with CH₂Cl₂ (30 mL) and washed sequentially with saturated NaHCO₃, brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica column chromatography to afford oil (3.0 g). To a stirred solution of the oil (1.0 g, 2.1 mmol) in CH₂Cl₂ (8 mL) were added CCl₃CN (840 μ L, 8.4 mmol) and DBU (250 μ L, 1.6 mmol) at 0 °C. After 0.5 h, the solution was concentrated and the residue was purified by silica column chromatography (AcOEt–petroleum ether 1:5) to afford 8 (1.2 g, 89% for two steps) as a syrup. A mixture of the glycosyl donor **8** (2.4 g, 3.6 mmol) and activated 4 Å molecular sieves was stirred in dry Et₂O (10 mL) at 0 °C under N₂ atmosphere, then acceptor (*S*)-1,2-isopropylideneglycerol (600 μ L, 4.3 mmol) and catalytic amounts of TMSOTf (150 μ L, 0.7 mmol) were added. The reaction mixture was stirred at 0 °C under an N₂ atmosphere for 30 min, when TLC showed that the reaction was completed. The mixture was quenched by addition of Et₃N and filtered to remove the sieves. The filtrate was concentrated and the residue was dissolved in 50 mL CH₂Cl₂. The solution was washed with saturated NaHCO₃ and brine. The organic layer was dried over Na₂SO₄, then the solvent was removed *in vacuo*, and the residue was purified by silica column chromatography (AcOEt-petroleum ether 1:7) to afford **9** (2.2 g, 97%, α/β = 12/1) as an oil. ¹H-NMR (600 MHz, CDCl₃) α isomer: 7.35–7.31 (m, 15H, ArH), 4.99 (d, J = 10.8 Hz, 1H, PhCH), 4.90 (d, J = 11.0 Hz, 1H, PhCH), 4.87 (d, J = 3.7 Hz, 1H, H-1), 4.79 (d, J = 10.8 Hz, 1H, PhCH), 4.77 (d, J = 11.9 Hz, 1H, PhCH), 4.67 (d, J = 11.9 Hz, 1H, PhCH), 4.57 (d, J = 11.1 Hz, 1H, PhCH), 4.39–4.34 (m, 1H, H_{5n-2}), 4.08 (dd, J = 8.4, 6.4 Hz, 1H, H_{5n-3a}), 3.96 (t, J = 9.3 Hz, 1H, H-3), 3.82 (ddd, J = 10.0, 5.6, 2.5 Hz, 1H, H-5), 3.74 (dd, J = 8.3, 6.2 Hz, 1H, H_{5n-3b}), 3.64 (dd, J = 10.6, 5.6 Hz, 1H, H_{5n-1a}), 3.58–3.52 (m, 2H, H-2, H_{5n-1b}), 3.47–3.42 (m, 2H, H-4, H-6a), 3.33 (dd, J = 13.1, 5.5 Hz, 1H, H-6b), 1.43 (s, 3H, CH₃), 1.37 (s, 3H, CH₃); LR-ESI-MS calcd. for C₃₃H₃9N₃O7 Na [M + Na]+612.3, found 612.3. 1,2-Dipalmitoyl-3-O-(6'-azido-2',3',4'-tri-O-benzyl-6'-deoxy-α-D-glucopyranosyl)-sn-glycerol (10) TsOH·H₂O (0.25 g, 0.7 mmol) was added to a stirred solution of 9 (0.9 g, 1.5 mmol) in MeOH (10 mL). After stirring for 2 h at r.t, the solution was concentrated and purified by silica column chromatography (AcOEt-petroleum ether 1:2) to afford the residue (0.8 g). To a solution of the residue (0.3 g, 0.55 mmol) in dry pyridine (25 mL), DMAP (57 mg, 0.3 mmol) and palmitoyl chloride (0.9 mL, 3.0 mmol) were added at 80 °C. The reaction mixture was stirred for 1 h, and then concentrated and diluted with CH2Cl2 (30 mL) and washed sequentially with 1 M HCl and saturated NaHCO3. The organic phase was dried over Na₂SO₄, filtrated, concentrated. Purification by flash chromatography (AcOEt-petroleum ether 1:12) yielded compound 10 (0.54 g, 85% for 2 steps) as a white solid. ¹H-NMR (600 MHz, CDCl₃): δ 7.34–7.31 (m, 15H, ArH), 5.24–5.16 (m, 1H, H_{stt-2}), 4.97(d, *J* = 10.8 Hz, 1H, PhCH), 4.89 (d, *J* = 11.0 Hz, 1H, PhCH), 4.80 (d, *J* = 10.8 Hz, 1H, PhCH), 4.74 (d, *J* = 12.0 Hz, 1H, PhCH), 4.73 (d, J = 3.6 Hz, 1H, H-1), 4.63 (d, J = 11.9 Hz, 1H, PhCH), 4.57 (d, J = 11.1 Hz, 1H, PhCH), 4.41 (dd, J = 12.0, 3.7 Hz, 1H, H_{sn-3a}), 4.20 (dd, J = 11.9, 6.0 Hz, 1H, H_{sn-3b}), 3.94 (t, J = 9.2 Hz, 1H, H-3), 3.78–3.74 (m, 2H, H-5, H_{sn-1a}), 3.56 (dd, J = 10.8, 5.5 Hz, 1H, H-2), 3.53 (dd, J = 9.5, 3.6 Hz, 1H, H_{sn-1b}), 3.45–3.40 (m, 2H, H-4, H-6a), 3.31 (dd, J = 13.2, 5.5 Hz, 1H, H-6b), 2.32–2.27 (m, 4H, 2 × CO–CH₂), 1.65–1.60 (m, 4H, $2\times CO-CH_2-CH_2$), 1.33–1.22 (m, 48H, $2\times CH_2-CH_2-(CH_2)_{12}-CH_3$), 0.88 (t, J=9.2 Hz, 6H, $2\times CH_3$); LR-MALDI-MS *m/z* calcd. for C₆₂H₉₅O₉N₃ Na [M + Na]⁺ 1048.7, found 1048.6. 1,2-Dipalmitoyl-3-O-(6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy-α-D-glucopyranosyl)-sn-glycerol (11) To a solution of **10** (0.20 g, 0.20 mmol) in 20 mL AcOEt/MeOH (1:1) was treated with 10% palladium (0.1 g) and stirred at r.t. under hydrogen atmosphere for 1 h. After filtration the solvent was evaporated and the residue was purified by silica column chromatography (CH₂Cl₂–MeOH 20:1) to afford **11** (0.18 g, 95%) as a paste. 1 H-NMR (600 MHz, CDCl₃): δ 7.34–7.31 (m, 15H, Ar*H*), 5.28–5.20 (m, 1H, H_{sn-2}), 4.97 (d, J = 10.8 Hz, 1H, PhC*H*), 4.87 (d, J = 11.1 Hz, 1H, PhC*H*), 4.80 (d, J = 10.9 Hz, 1H, PhC*H*), 4.74 (d, J = 11.9 Hz, 1H, PhC*H*), 4.69 (d, J = 3.5 Hz, 1H, H-1), 4.62 (d, J = 11.9 Hz, 1H, PhC*H*), 4.61 (d, J = 11.1 Hz, 1H, PhC*H*), 4.41 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-3a}), 4.19 (dd, J = 12.0, 6.1 Hz, 1H, H_{sn-3b}), 3.95 (t, J = 9.2 Hz, 1H, H-3), 3.73 (dd, J = 10.8, 5.7 Hz, 1H, H_{sn-1a}), 3.58–3.54 (m, 1H, H-5), 3.53 (dd, J = 10.9, 5.6 Hz, 1H, H_{sn-1b}), 3.48 (dd, J = 9.7, 3.7 Hz, 1H, H-2), 3.33 (t, J = 9.4 Hz, 1H, H-4), 3.18–3.16 (m, 2H, NH2), 2.97 (dd, J = 13.4, 2.8 Hz, 1H, H-6a), 2.72 (dd, J = 13.5, 6.3 Hz, 1H, H-6b), 2.31–2.26 (m, 4H, 2 × CO–CH2), 1.65–1.60 (m, 4H, 2 × CO–CH2–CH2), 1.33–1.22 (m, 48H, 2 × CH2–CH2–CH2); L3–2.26 (m, 4H, 2 × CO–CL3); L3–2.26 (m, 4H, 2 × CH3); L4–2.31; L4–2.31; L5–3.31 (for C₆2L97NO9 (M + H)+1001.4, found 1001.4. General procedure for compounds 12a-12f To a solution of compound 11 (100 mg, 0.1 mmol) in CH₂Cl₂ (10 mL) was added Ac₂O (9.5 μ L, 0.1 eq) at 0 °C. After stirring for 0.5 h, the mixture was washed with aq. NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed (AcOEtpetroleum ether 1:3) to afford 12a (92 mg, 89%) as a white solid. To a solution of compound **11** (200 mg, 0.2 mmol) in CH₂Cl₂ (10 mL) were sequentially added EDCI (42 mg, 0.22 mmol), HOBt (30 mg, 0.22 mmol) and corresponding fatty acids (hexadecanoic acid, lauric acid, myristic acid acid, palmitic acid, stearic acid, hydrocinnanmic acid, 1.1 eq) at 0 °C. After stirring for 1 h, the mixture was diluted with aq. NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed by silica gel (AcOEtpetroleum ether 1:4) to afford **12b–12f** (41%–89%) as white solids. 1,2-Dipalmitoyl-3-O-(N-acetyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**12a**) 92 mg, 89%; ¹H-NMR (600 MHz, CDCl₃): δ 7.37–7.27 (m, 15H, ArH), 5.69 (dd, J = 7.2, 4.0 Hz, 1H, NH–CO), 5.25–5.20 (m, 1H, H_{sn-2}), 4.97 (d, J = 10.8 Hz, 1H, PhCH), 4.85 (d, J = 10.5 Hz, 1H, PhCH), 4.82 (d, J = 10.8 Hz, 1H, PhCH), 4.76 (d, J = 12.0 Hz, 1H, PhCH), 4.68 (d, J = 3.5 Hz, 1H, H-1), 4.64–4.61 (m, 2H, 2 × PhCH), 4.39 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.18 (dd, J = 12.0, 6.2 Hz, 1H, H_{sn-1b}), 3.95 (t, J = 9.3 Hz, 1H, H-3) 3.74–3.63 (m, 3H, H-5, H_{sn-3a} , H-6a), 3.59 (dd, J = 11.0, 5.6 Hz, 1H, H_{sn-3b}), 3.47 (dd, J = 9.7, 3.5 Hz, 1H, H-2), 3.33 (dt, J = 13.8, 3.7 Hz, 1H, H-6b), 3.27 (t, J = 9.4 Hz, 1H, H-4), 2.31–2.28 (m, 4H, 2 × CO–CH2), 1.92 (s, 1H, NHCOCH3), 1.63–1.55 (m, 4H, 2 × CO–CH2–CH2), 1.33–1.22 (m, 48H, 2 × CH2–CH2–(CH2)12–CH3), 0.88 (t, J = 7.0 Hz, 6H, 2 × CH3); LR-ESI-MS m/z calcd. for C₆₄H₁₀₀NO₁₀ [M + H]⁺ 1042.7, found 1042.8. 1,2-Dipalmitoyl-3-O-(N-hexanoyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**12b**) 88 mg, 41%; ¹H-NMR (600 MHz, CDCl₃): δ 7.38–7.27 (m, 15H, Ar*H*), 5.64 (dd, *J* = 7.4, 3.8 Hz, 1H, N*H*–CO), 5.25–5.21 (m, 1H, *H*_{sn-2}), 4.96 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.83 (t, *J* = 10.8 Hz, 2H, 2 × PhC*H*), 4.76 (d, *J* = 12.0 Hz, 1H, PhC*H*), 4.69 (d, *J* = 3.6 Hz, 1H, *H*-1), 4.62 (d, *J* = 11.5 Hz, 2H, 2 × PhC*H*), 4.40 (dd, *J* = 12.0, 3.6 Hz, 1H, *H*_{sn-1a}), 4.18 (dd, *J* = 12.0, 6.1 Hz, 1H, *H*_{sn-1b}), 3.95 (t, *J* = 9.3 Hz, 1H, *H*-3), 3.79–3.73 (m, 1H, *H*-5), 3.71–3.65 (m, 2H, *H*_{sn-3a}, *H*-6a), 3.57 (dd, *J* = 10.9, 5.4 Hz, 1H, *H*_{sn-3b}), 3.46 (dd, *J* = 9.7, 3.5 Hz, 1H, *H*-2), 3.34 (dt, *J* = 13.9, 3.7 Hz, 1H, *H*-6b), 3.27 (t, *J* = 9.4 Hz, 1H, *H*-4), 2.32–2.27 (m, 4H, 2 × CO–C*H*₂), 2.12–2.09 (m, 2H, NH–CO–C*H*₂), 1.63–1.55 (m, 6H, 3 × CO–CH₂–C*H*₂), 1.33–1.22 (m, 52H, 2 × CH₂–CH₂–(C*H*₂)₁₂–CH₃, CH₂–CH₂–(C*H*₂)₂–CH₃), 0.89–0.86 (m, 9H, 3 × C*H*₃); HR-MALDI-MS *m*/*z* calcd. for C₆₈H₁₀₇NO₁₀ Na [M + Na]⁺ 1120.7793, found 1120.7760. 1,2-Dipalmitoyl-3-O-(N-lauroyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D- glucopyranosyl)-sn-glycerol (12c) 200 mg, 87%; ¹H-NMR (600 MHz, CDCl₃): δ 7.38–7.27 (m, 15H, Ar*H*), 5.65 (dd, *J* = 7.4, 3.9 Hz, 1H, N*H*–CO), 5.23–5.21 (m, 1H, *H*_{sn-2}), 4.96 (d, *J* = 10.7 Hz, 1H, PhC*H*), 4.83 (t, *J* = 10.5 Hz, 2H, 2 × PhC*H*), 4.76 (d, *J* = 12.0 Hz, 1H, PhC*H*), 4.69 (d, *J* = 3.5 Hz, 1H, *H*-1), 4.62 (d, *J* = 11.5 Hz, 2H, 2 × PhC*H*), 4.40 (dd, *J* = 12.0, 3.6 Hz, 1H, *H*_{sn-1a}), 4.18 (dd, *J* = 12.0, 6.1 Hz, 1H, *H*_{sn-1b}), 3.95 (t, *J* = 9.2 Hz, 1H, *H*-3), 3.79–3.74 (m, 1H, *H*-5), 3.71–3.65 (m, 2H, *H*_{sn-3a}, *H*-6a), 3.57 (dd, *J* = 10.9, 5.5 Hz, 1H, *H*_{sn-3b}), 3.47 (dd, *J* = 9.7, 3.5 Hz, 1H, *H*-2), 3.33 (dt, *J* = 13.7, 3.7 Hz, 1H, *H*-6b), 3.27 (t, *J* = 9.4 Hz, 1H, *H*-4), 2.32–2.27 (m, 4H, 2 × CO–C*H*₂), 2.12–2.09 (m, 2H, NH–CO–C*H*₂), 1.63–1.55 (m, 6H, 3 × CO–CH₂–C*H*₂), 1.33–1.22 (m, 64H, 2 × CH₂–CH₂–(C*H*₂)₁₂–CH₃, CH₂–CH₂–(C*H*₂)₈–CH₃), 0.88 (t, *J* = 7.0 Hz, 9H, 3 × C*H*₃); HR-MALDI-MS *m*/*z* calcd. for C₇₄H₁₁₉NO₁₀ Na [M + Na]⁺ 1204.8732, found 1204.8758. Mar. Drugs **2016**, 14, 116 S4 of S12 1,2-Dipalmitoyl-3-O-(N-myristoyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**12d**) 200 mg, 82%; ¹H-NMR (600 MHz, CDCl₃): δ 7.33–7.27 (m, 15H, ArH), 5.65 (dd, J = 7.4, 3.9 Hz, 1H, NH–CO), 5.23–5.20 (m, 1H, H_{sn-2}), 4.96 (d, J = 10.7 Hz, 1H, PhCH), 4.83 (t, J = 10.5 Hz, 2H, 2 × PhCH), 4.76 (d, J = 12.0 Hz, 1H, PhCH), 4.69 (d, J = 3.5 Hz, 1H, H-1), 4.63 (d, J = 11.4 Hz, 2H, 2 × PhCH), 4.40 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.18 (dd, J = 12.0, 6.1 Hz, 1H, H_{sn-1b}), 3.95 (t, J = 9.3 Hz, 1H, H-3), 3.79–3.74 (m, 1H, H-5), 3.71–3.65 (m, 2H, H_{sn-3a} , H-6a), 3.57 (dd, J = 10.9, 5.4 Hz, 1H, H_{sn-3b}), 3.47 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.34 (dt, J = 13.8, 3.7 Hz, 1H, H-6b), 3.27 (t, J = 9.3 Hz, 1H, H-4), 2.32–2.27 (m, 4H, 2 × CO–CH₂), 2.12–2.09 (m, 2H, NH–CO–CH₂), 1.63–1.55 (m, 6H, 3 × CO–CH₂–CH₂), 1.33–1.22 (m, 68H, 2 × CH₂–CH₂–(CH₂)₁₂–CH₃, CH₂–CH₂–(CH₂)₁₀–CH₃), 0.88 (t, J = 7.0 Hz, 9H, 3 × –CH₃); HR-MALDI-MS m/z calcd. for C₇₆H₁₂₃NO₁₀ Na 1232.9045 [M + Na]⁺, found 1232.8992. 1,2-Dipalmitoyl-3-O-(N-stearoyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**12e**) 223 mg, 89%; 1 H-NMR (600 MHz, CDCl₃): δ 7.38–7.27 (m, 15H, ArH), 5.64 (dd, J = 7.5, 3.9 Hz, 1H, NH–CO), 5.23–5.19 (m, 1H, H_{sn-2}), 4.96 (d, J = 10.8 Hz, 1H, PhCH), 4.82 (t, J = 10.5 Hz, 2H, 2 × PhCH), 4.75 (d, J = 12.0 Hz, 1H, PhCH), 4.69 (d, J = 3.6 Hz, 1H, H-1), 4.64–4.60 (m, 2H, 2 × PhCH), 4.39 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.17 (dd, J = 12.0, 6.2 Hz, 1H, H_{sn-1b}), 3.94 (t, J = 9.2 Hz, 1H, H-3), 3.79–3.74 (m, 1H, H-5), 3.69–3.64 (m, 2H, H_{sn-3a} , H-6a), 3.57 (dd, J = 10.9, 5.4 Hz, 1H, H_{sn-3b}), 3.46 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.33 (dt, J = 13.8, 3.7 Hz, 1H, H-6b), 3.27 (t, J = 9.3 Hz, 1H, H-4), 2.32–2.27 (m, 4H, 2 × CO–CH₂), 2.12–2.09 (m, 2H, NH–CO–CH₂), 1.63–1.55 (m, 6H, 3 × CO–CH₂–CH₂), 1.33–1.22 (m, 76H, 2 × CH₂–CH₂–(CH₂)₁₂–CH₃, CH₂–CH₂–(CH₂)₁₄–CH₃), 0.88 (t, J = 7.0 Hz, 9H, 3 × CH₃); HR-MALDI-MS m/z calcd. for C₈₀H₁₃₁NO₁₀ Na [M + Na]⁺ 1288.9665, found 1288.9682. 1,2-Dipalmitoyl-3-O-(N-hydrocinnamoyl-6'-amino-2',3',4'-tri-O-benzyl-6'-deoxy- α -D-glucopyranosyl)-sn-glycerol (12f) 92 mg, 53%; ¹H-NMR (600 MHz, CDCl₃): δ 7.38–7.27 (m, 15H, ArH), 7.25–7.23 (m, 2H, ArH), 7.18–7.15(m, 3H, ArH), 5.61–5.59 (dd, J = 7.6, 3.7 Hz, 1H, NH–CO), 5.21–5.17 (m, 1H, H_{sn-2}), 4.96 (d, J = 10.8 Hz, 1H, PhCH), 4.81 (d, J = 10.8 Hz, 1H, PhCH), 4.78 (d, J = 10.4 Hz, 1H, PhCH), 4.75 (d, J = 12.0 Hz, 1H, PhCH), 4.65 (d, J = 3.5 Hz, 1H, H-1), 4.62 (d, J = 12.0 Hz, 1H, PhCH), 4.56 (d, J = 10.4 Hz, 1H, PhCH), 4.37 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.15 (dd, J = 12.0, 6.2 Hz, 1H, H_{sn-1b}), 3.91 (t, J = 9.3 Hz, 1H, H-3), 3.79–3.73 (m, 1H, H-5), 3.66–3.59 (m, 2H, H_{sn-3a} , H-6a), 3.54 (dd, J = 11.0, 5.5 Hz, 1H, H_{sn-3b}), 3.39 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.27 (dt, J = 13.9, 3.7 Hz, 1H, H-6b), 3.14 (t, J = 9.2 Hz, 1H, H-4), 2.98–2.89 (m, 2H, NHCO–CH2), 2.45–2.41 (m, 2H, CH2Ph), 2.29–2.25 (m, 4H, 2 × CO–CH2), 1.60–1.55 (m, 4H, 2 × CO–CH2–CH2), 1.33–1.22 (m, 48H, 2 × CH2–CH2–(CH2)12–CH3), 0.88 (t, J = 7.0 Hz, 6H, 2 × –CH3); HR-MALDI-MS m/z calcd. for C71H105NO10 Na 1154.7631 [M + Na]+, found 1154.7638. 1,3,4,6-tetra-O-acetyl-2-Azido-2-deoxy-D-glucopyranoside (13) [1] Imidazole-1-sulfonyl Azide Hydrochloride [2] (0.25 g, 1.2 mmol) was added to the mixture of D-Glucosamine 13 (6.6 g, 30.0 mmol), K_2CO_3 (9.3 g, 66.5 mmol) and $CuSO_4$. $5H_2O$ (75 mg, 0.3 mmol) in MeOH (120 mL) at r.t. The mixture was stirred for 5 h and concentrated and co-evaporated with toluene. Then Ac₂O (22.0 mL, 240.0 mmol) and DMAP (0.4 g, 3.0 mmol) were added to the residue in pyridine (120 mL) and the mixture was stirred for 4 h. The mixture was concentrated, diluted with H_2O (20 mL) and extracted with AcOEt. The combined organic layer was dried (Na₂SO₄), filtered and concentrated. Flash chromatography (petroleum ether/AcOEt 7:1) gave the 14 (9.2 g, 81%) as a white solid. 1 H-NMR (600 MHz, CDCl₃, α/β = 1/6) β isomer: δ 5.54 (d, J = 8.6 Hz, 1H, H-1), 5.08 (t, J = 9.6 Hz, 1H, H-3), 5.03 (t, J = 9.6, 1H, H-4), 4.29 (dd, J = 12.6, 4.5 Hz, 1H, H-6a), 4.07 (dd, J = 12.6, 2.1 Hz, 1H, H-6b), 3.8 (ddd, J = 9.8, 4.5, 2.1 Hz, 1H, H-5), 3.66 (dd, J = 9.9, 8.6 Hz, 1H, H-2), 2.18, 2.08, 2.06, 2.01 (4s, 12H, CH₃ × 4); LR-ESI-MS m/z calcd. for C₁₄H₁₉N₃O₉Na [M + Na]⁺ 396.1, found 396.1. p-methylphenyl 3,4,6-tri-O-benzyl-2-azido-2-deoxy-1-thio-D-glucopyranoside (16) To a solution of peracetylated glucosamine 14 (11.8 g, 31.6 mmol) and p-CH₃PhSH (5.8 g, 47.4 mmol) in dry 100 mL CH2Cl2, BF3·Et2O (7.8 mL, 63.2 mmol) was added at 0 °C. The reaction mixture was stirred for 8 h at room temperature and then washed with saturated NaHCO3 and NaCl. The organic layer was dried with Na₂SO₄ and concentrated. The residue was purified by silica column chromatography (petroleum ether-AcOEt, 1:1) to afford colorless oil (9.9 g, 85%). To a solution of the oil (4.8 g, 11.0 mmol) in CH₃OH (30 mL) was added a catalytic amount of NaOMe until pH 9.0. The reaction mixture was stirred for 20 min, and then was neutralized with Amberlite IR120 resin (H⁺). After filtration, the filtrate was concentrated in vacuo and the residue was dissolved in DMF (40 mL), then NaH (1.7 g, 43.6 mmol) and BnBr (5.2 mL, 43.6 mmol) were added at 0 °C. After stirring for 1 h at room temperature, the mixture was quenched by CH₃OH (10 mL) and concentrated. The residue was dissolved in CH2Cl2 (50 mL) and washed with brine, dried over Na2SO4 and concentrated. The residue was chromatographed (petroleum ether-AcOEt, 15:1) to give 16 (6.2 g, 98% for 2 steps) as an oil. ¹H-NMR (600 MHz, CDCl₃, $\alpha/\beta = 3/1$) α isomer: δ 7.52–7.06 (m, 19H, ArH), 5.55 (d, J = 5.4 Hz, 1H, H-1), 4.93 (d, J = 10.6 Hz, 1H, PhCH), 4.89 (d, J = 10.5 Hz, 1H, PhCH), 4.83 (d, J = 10.9 Hz, 1H, PhCH), 4.61 (d, *J* = 11.9 Hz, 1H, PhC*H*), 4.55 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.45 (d, *J* = 11.9 Hz, 1H, PhC*H*), 3.8 (ddd, J = 9.9, 3.6, 2.0 Hz, 1H, H-5), 3.95 (dd, J = 10.2, 5.4 Hz, 1H, H-2), 3.84 (t, J = 10.0 Hz, 1H, H-4), 3.81 (dd, J = 10.8, 3.8 Hz, 1H, H-6a), 3.76 (t, J = 9.1 Hz, 1H, H-3), 3.66 (dd, J = 10.8, 2.0 Hz, 1H, H-6b), 2.33(s, 3H, STol-CH₃); LR-ESI-MS m/z calcd. for C₃4H₃5N₃O₄S Na [M + Na]⁺ 604.2, found 604.1. 3-O-(2'-azide-3',4',6'-tri-O-benzyl-2'-deoxy-D-glucopyranosyl)-1,2-isopropylidene-sn-glycerol (18) Compound **16** (12.9 g, 22.2 mmol) was treated according to above procedure (synthesis of compound **9**) to give **18** as a yellow oil (9.9 g, 76% for 3 steps). ¹H-NMR (500 MHz, CDCl₃, α/β = 2:1): α isomer: δ 7.37–7.15 (m, 15H, ArH), 4.99 (d, J = 3.7 Hz, 1H, H-1), 4.89–4.83 (m, 2H, PhCH × 2), 4.81 (d, J = 11.0 Hz, 1H, PhCH), 4.62 (d, J = 12.0 Hz, 1H, PhCH), 4.53–4.48 (m, 2H, PhCH × 2), 4.35–4.29 (m, 1H, H_{sn-2}), 4.08 (dd, J = 8.2, 6.5 Hz, 1H, H_{sn-1a}), 3.97 (t, J = 9.8 Hz, 1H, H-3), 3.85 (d, J = 9.8 Hz, 1H, H-5), 3.78 (dd, J = 8.3, 6.1 Hz, 1H, H_{sn-1b}), 3.77–3.67 (m, 2H, H-4, H-6a), 3.68 (dd, J = 10.3, 5.4 Hz, 1H, H-6b), 3.66 (dd, J = 10.6, 1.7 Hz, 1H, H_{sn-1a}), 3.61 (dd, J = 10.6, 5.3 Hz, 1H, H_{sn-1b}), 3.37 (dd, J = 10.3, 3.4 Hz, 1H, H-2), 1.42 (s, 3H, CH₃), 1.36 (s, 3H, CH₃); LR-ESI-MS m/z calcd. for C₃₃H₃₉N₃O₇ Na [M + Na]⁺ 612.3, found 612.2. 1,2-Dipalmitoyl-3-O-(2'-azide-3',4',6'-tri-O-benzyl-2'-deoxy-D-glucopyranosyl)-sn-glycerol (19) Compound **18** (1.5 g, 2.5 mmol) was treated according to above procedure (synthesis of compound **10**) to give **19** as a yelow oil (2.1 g, 82% for 2 steps). 1 H-NMR (600 MHz, CDCl₃, α/β = 11/4) α isomer: δ 7.37–7.14 (m, 15H, ArH), 5.26–5.22 (m, 1H, H_{sn-2}), 4.92 (d, J = 3.4 Hz, 1H, H-1), 4.88–4.85 (m, 2H, PhCH × 2), 4.80 (d, J = 10.9 Hz, 1H, PhCH), 4.61 (d, J = 12.0 Hz, 1H, PhCH), 4.51 (d, J = 10.9 Hz, 1H, PhCH), 4.48 (d, J = 12.0 Hz, 1H, PhCH), 4.37 (dd, J = 12.0, 3.9 Hz, 1H, H_{sn-1a}), 4.16 (dd, J = 12.0, 5.9 Hz, 1H, H_{sn-1b}), 3.96 (dd, J = 10.1, 8.7 Hz, 1H, H-3), 3.83 (dd, J = 10.9, 4.8 Hz, 1H, H_{sn-3a}), 3.79–3.69 (m, 2H, H-5, H-6a), 3.68–3.62 (m, 3H, H-4, H-6b, H_{sn-3b}), 3.33 (dd, J = 10.3, 3.7 Hz, 1H, H-2), 2.35–2.27 (m, 4H, H-7), 1.63–1.55 (m, 4H, H-8), 1.33–1.24 (m, 48H, H-1048.6966, found 1048.6967. 1,2-Dipalmitoyl-3-O-(2'-amino-3',4',6'-tri-O-benzyl-2'-deoxy-α-D-glucopyranosyl)-sn-glycerol (20) To a solution of **19** (0.5 g, 0.49 mmol) in 12 mL AcOEt/MeOH (1:3) was treated with 10% Pd/C (0.3 g) and stirred at r.t. under hydrogen atmosphere for 2 h. After filtration the solvent was evaporated and the residue was purified by silica column chromatography (CH₂Cl₂–MeOH 20:1) to afford α-anomer **20** (0.26 g, 54%) as a white solid. ¹H-NMR (600 MHz, CDCl₃): δ 7.37–7.16 (m, 15H, ArH), 5.29–5.22 (m, 1H, H_{sn-2}), 4.97 (d, J = 11.3 Hz, 1H, PhCH), 4.85 (d, J = 3.4 Hz, 1H, H-1), 4.79 (d, J = 10.8 Hz, 1H, PhCH), 4.72 (d, J = 11.3 Hz, 1H, PhCH), 4.65 (d, J = 12.1 Hz,1H, PhCH), 4.54–4.50 (m, 2H, PhCH), 4.34 (dd, J = 11.9, 3.9 Hz, 1H, H_{sn-1a}), 4.13 (dd, J = 11.9, 6.1 Hz, 1H, H_{sn-1a}), 3.82 (dd, J = 10.8, 4.6 Hz, 1H, H_{sn-3a}), 3.78–3.74 (m, 2H, H-5, H-6a), 3.66–3.63 (m, 2H, H-3, H-6b), 3.59 (dd, J = 10.8, 6.1 Hz, 1H, H_{sn-3b}), 3.54 (t, J = 9.5 Hz, 1H, H-4), 2.81 (dd, J = 9.9,3.6 Hz, 1H, H-2), 2.32–2.28 (m, 4H, CH2 × 2), 1.63–1.58 (m, 4H, CH2 × 2), 1.33–1.26 (m, 48H, CH2)12 × 2), 0.89 (t, J = 9.5 Hz, 6H, CH3 × 2); LR-ESI-MS calcd. for $C_{62}H_{98}NO_9$ [M + H]+ 1000.7, found 1000.7. General procedure for Compounds 21a-21c To a solution of compound 20 (100 mg, 0.1 mmol) in CH₂Cl₂ (10 mL) was added Ac₂O (9.5 μ L, 0.1 eq) at 0 °C. After stirring for 0.5 h, the mixture was washed with aq. NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed (AcOEtpetroleum ether 1:3) to afford 21a (91 mg, 87%) as a white solid. To a solution of compound **20** (100 mg, 0.10 mmol) in CH₂Cl₂ (6 mL) were sequentially added EDCI (21 mg, 0.11 mmol), HOBt (15 mg, 0.11 mmol) and corresponding fatty acids (hexadecanoic acid, or palmitic acid, 1.1 eq) at 0 °C. After stirring for 3 h, the mixture was diluted with aq. NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed (AcOEt-petroleum ether 1:4–1:6) to afford **21b** (70 mg, 64%) and **21c** (118 mg, 96%) as white solids. 1,2-Dipalmitoyl-3-O-(N-acetyl-3',4',6'-tri-O-benzyl-2'-amino-2'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**21a**) ¹H-NMR (600 MHz, CDCl₃): δ 7.37–7.16 (m, 15H, ArH), 5.47 (d, J = 9.6 Hz, 1H, -NHCO), 5.22–5.18 (m, 1H, H_{sn-2}), 4.83 (d, J = 11.5 Hz, 1H, PhCH), 4.80 (d, J = 10.8 Hz, 1H, PhCH), 4.77 (d, J = 3.6 Hz, 1H, H-1), 4.65 (d, J = 11.5 Hz, 1H, PhCH), 4.62 (d, J = 12.1 Hz, 1H, PhCH), 4.51 (d, J = 11.7 Hz, 2H, PhCH × 2), 4.39 (dd, J = 11.8, 4.5 Hz, 1H, H_{sn-1a}), 4.27 (td, J = 10.2, 3.7 Hz, 1H, H-2), 4.03 (dd, J = 11.8, 5.9 Hz, 1H, H_{sn-1a}), 3.76 (dd, J = 11.2, 4.4 Hz, 1H, H_{sn-3a}), 3.77–3.71 (m, 3H, H-5, H-6 × 2), 3.70–3.65 (m, 2H, *H*-3, *H*-4), 3.53 (dd, *J* = 11.2, 6.0 Hz, 1H, *H*_{sn-3b}), 2.31–2.26 (m, 4H, $2 \times \text{CO-CH}_2$), 1.85 (s, 3H, COC*H*₃), 1.63–1.58 (m, 4H, $2 \times \text{CO-CH}_2$ –C*H*₂), 1.32–1.25 (m, 48H, $2 \times \text{CH}_2$ –C*H*₂–C*H*₂), 0.88 (t, *J* = 7.0 Hz, 6H, $2 \times \text{CH}_3$); LR-ESI-MS m/z calcd. for C₆₄H₁₀₀NO₁₀ [M + H]⁺ 1042.7, found 1042.8. 1,2-Dipalmitoyl-3-O-(N-hexanoyl-3',4',6'-tri-O-benzyl-2'-amino-2'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**21b**) ¹H-NMR (500 MHz, CDCl₃): δ 7.35–7.14 (m, 15H, ArH), 5.42 (d, J = 9.2 Hz, 1H, -NHCO), 5.21–5.16 (m, 1H, H_{sn-2}), 4.81 (d, J = 11.5 Hz, 1H, PhCH), 4.78 (d, J = 3.5 Hz, 1H, H-1),4.77 (d, J = 10.8 Hz, 1H, PhCH), 4.66 (d, J = 11.5 Hz, 1H, PhCH), 4.62 (d, J = 12.2 Hz, 1H, PhCH), 4.53–4.49 (m, 2H, PhCH × 2), 4.37 (dd, J = 11.8, 4.2 Hz, 1H, H_{sn-1a}), 4.29 (td, J = 9.6,3.2 Hz, 1H, H-2), 4.05 (dd, J = 11.8, 5.9 Hz, 1H, H_{sn-1a}), 3.76 (dd, J = 11.0, 4.4 Hz, 1H, H_{sn-3a}), 3.76–3.71 (m, 3H, H-5, H-6 × 2), 3.70–3.64 (m, 2H, H-3, H-4), 3.52 (dd, J = 11.0, 5.9 Hz, 1H, H_{sn-3b}), 2.31–2.25 (m, 4H, 2 × CO–CH₂), 2.03 (td, J = 7.4, 4.0 Hz, 2H, NHCO–CH₂), 1.60–1.51 (m, 6H, 2 × CO–CH₂–CH₂, NHCO–CH₂–CH₂), 1.33–1.24 (m, 52H, 2 × CO–CH₂–CH₂–CH₂) (CH₂)₁₂–CH₃, NHCO–CH₂–CH₂–CH₃), 0.89–0.83 (m, 9H, 3 × CH₃); HR-MALDI-MS m/z calcd. for C₆₈H₁₀₇O₁₀N Na [M + Na]⁺ 1120.7895, found 1120.7786. 1,2-Dipalmitoyl-3-O-(N-palmitoyl-3',4',6'-tri-O-benzyl-2'-amino-2'-deoxy- α -D-glucopyranosyl)-sn-glycerol (**21c**) ¹H-NMR (500 MHz, CDCl₃): δ 7.34–7.14 (m, 15H, Ar*H*), 5.42 (d, *J* = 9.2 Hz, 1H, -N*H*CO), 5.22–5.17 (m, 1H, *H*_{sn-2}), 4.81 (d, *J* = 11.5 Hz, 1H, PhC*H*), 4.78 (d, *J* = 3.9 Hz, 1H, *H*-1), 4.77 (d, *J* = 10.3 Hz, 1H, PhC*H*), 4.66 (d, *J* = 11.5 Hz, 1H, PhC*H*), 4.62 (d, *J* = 12.1 Hz, 1H, PhC*H*), 4.53–4.49 (m, 2H, PhC*H* × 2), 4.37 (dd, *J* = 11.8, 4.2 Hz, 1H, *H*_{sn-1a}), 4.29 (td, *J* = 9.7,3.5 Hz, 1H, *H*-2), 4.05 (dd, *J* = 11.8, 5.8 Hz, 1H, *H*_{sn-1b}), 3.75 (dd, *J* = 10.9, 4.3 Hz, 1H, *H*_{sn-3a}), 3.76–3.71 (m, 3H, *H*-5, *H*-6 × 2), 3.70–3.64 (m, 2H, *H*-3, *H*-4), 3.52 (dd, *J* = 10.9, 5.9 Hz, 1H, *H*_{sn-3b}), 2.31–2.25 (m, 4H, 2 × CO–C*H*₂), 2.07–2.01 (m, 2H, NHCO–C*H*₂), 1.65–1.52 (m, 6H, 2 × CO–CH₂–C*H*₂, NHCO–CH₂–C*H*₂), 1.34–1.24 (m, 72H, 3 × CO–CH₂–CH₂–(C*H*₂)₁₂–CH₃), 0.88 (t, *J* = 6.8 Hz, 9H, 3 × C*H*₃); HR-MALDI-MS m/z calcd. for C₇₈H₁₂₇O₁₀N Na [M + Na]⁺ 1260.9358, found 1260.9343. 3-O-(2',3',4'-tri-O-benzyl-6'-O-tert-butyl-diphenylsilyl- α -D-glucopyranosyl)-1,2-isopropylidene-sn-glycerol (24) Compound **22** (1.7 g, 2.2 mmol) was treated according to above procedure (synthesis of compound **9**) to give **24** as an oil (1.2 g, 69% for 3 steps). 1 H-NMR (600 MHz, CDCl₃, α/β = 13/1) α isomer: δ 7.71–7.66 (m, 4H, ArH), 7.44–7.25 (m, 19H, ArH), 7.16–7.14 (m, 2H, ArH), 4.98 (d, J = 10.7 Hz, 1H, PhCH), 4.91 (d, J = 3.6 Hz, 1H, H-1), 4.89 (d, J = 10.8 Hz, 1H, PhCH), 4.84–4.79 (m, 2H, PhCH) × **2**), 4.71 (d, J = 11.9 Hz, 1H, PhCH), 4.61 (d, J = 10.8 Hz, 1H, PhCH), 4.38–4.34 (m, 1H, H_{sn-2}), 4.06 (dd, J = 8.3, 6.5 Hz, 1H, H_{sn-3a}), 3.99 (t, J = 9.3 Hz, 1H, H-3), 3.88–3.86 (m, 2H, H-6 × 2), 3.71 (dt, J =10.0, 2.9 Hz, H-5), 3.69 (dd, J = 8.3, 6.2 Hz, 1H, H_{sn-3b}), 3.65–3.55 (m, 4H, H-2, H-4, H_{sn-1a}, H_{sn-1b}), 1.41 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.05 (s, 9H, CH₃ × 3); LR-ESI-MS m/z calcd. for C₄₉H₅₈O₈Si Na [M + Na]⁺ 825.4, found 825.4. $3-O-(2',3',4'-tri-O-benzyl-\alpha-D-glucopyranosyl)-sn-glycerol$ (25) TsOH·H₂O (2.3 mg, 0.01 mmol) was added to a stirred solution of 24 (50 mg, 0.06 mmol) in MeOH (5 mL). After stirring for 8 h at 40 °C, the solution was concentrated and purified by silica column chromatography (AcOEt-petroleum ether 1:3) to afford the α -anomer **25** (40 mg, 82%) as an oil. ¹H-NMR (600 MHz, CDCl₃): δ 7.37–7.27 (m, 15H, ArH), 4.94 (d, J = 10.9 Hz, 1H, PhCH), 4.87 (d, J = 11.0 Hz, 1H, PhCH), 4.84 (d, J = 10.9 Hz, 1H, PhCH), 4.79 (d, J = 11.8 Hz, 1H, PhCH), 4.69 (d, J = 3.6 Hz, 1H, H-1), 4.65–4.63 (m, 2H, PhCH × 2), 3.97 (t, J = 9.3 Hz, 1H, H-3), 3.86 (dt, J = 7.6, 3.9 Hz, 1H, H_{sn-2}), 3.80 (dd, J = 10.3, 3.5 Hz, 1H, H_{sn-1a}), 3.77 (dd, J = 11.8, 2.3 Hz, 1H, H-6a), 3.73–3.69 (m, 2H, H-6b, H-5), 3.65 (dd, J = 11.6, 4.5 Hz, 1H, H_{sn-3a}), 3.61 (dd, J = 11.6, 4.5 Hz, 1H, H_{sn-3b}), 3.53–3.48 (m, 2H, H-4, H-2), 3.40 (dd, J = 10.3, 6.9 Hz, 1H, H_{sn-1b}); LR-ESI-MS m/z calcd. for C₃₀H₃₆O₈ Na [M + Na]⁺ 547.2, found 547.2. 1,2-Dipalmitoyl-3-O-(6'-O-tert-butyl-diphenylsilyl-2',3',4'-tri-O-benzyl- α -D-glucopyranosyl)-sn-glycerol (**26**) CSA (73 mg, 0.3 mmol) was added to a stirred solution of 24 (2.5 g, 3.1 mmol) in MeOH (30 mL). After stirring for 8 h at r.t, the solution was quenched by Et₃N and concentrated. The residue was purified by silica column chromatography (AcOEt-petroleum ether 1:3) to afford the α -anomer paste. To the solution of the paste in dry pyridine (25 mL), DMAP (57 mg, 0.3 mmol) and palmitoyl chloride (0.5 mL, 1.8 mmol) were added at 80 °C. The reaction mixture was stirred for 3 h and concentrated, then the residue was diluted with CH₂Cl₂ (30 mL) and washed sequentially with 1 M HCl and saturated NaHCO3. The organic phase was dried over Na2SO4, filtrated, concentrated. Purification by flash chromatography (AcOEt-petroleum ether 1:10) yielded compound 26 (3.1 g, 82% for 2 steps) as a white solid. H-NMR (600 MHz, CDCl₃): δ 7.68–7.64 (m, 4H, ArH), 7.41–7.24 (m, 19H, ArH), 7.16– 7.14 (m, 2H, ArH), 5.25–5.21 (m, 1H, H_{Sn-2}), 4.95 (d, J = 10.8 Hz, 1H, PhCH), 4.89 (d, J = 10.7 Hz, 1H, PhCH), 4.81 (d, J = 10.6 Hz, 1H, PhCH), 4.80 (d, J = 3.6 Hz, 1H, H-1), 4.77 (d, J = 11.8 Hz, 1H, PhCH), 4.67 (d, J = 11.8 Hz, 1H, PhCH), 4.62 (d, J = 11.0 Hz, 1H, PhCH), 4.40 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.15 (dd, J = 12.0, 6.2 Hz, 1H, H_{sn-1b}), 3.97 (t, J = 8.0 Hz, 1H, H-3), 3.89-3.82 (m, 2H, H-2, H-5), 3.72 (dd, 2 × CO-CH₂), 1.64-1.60 (m, 4H, 2 × CO-CH₂-CH₂), 1.33-1.20 (m, 48H, 2 × CH₂-CH₂-(CH₂)₁₂-CH₃), 1.03 (s, 9H, CH₃ × 3), 0.88 (t, J = 7.0 Hz, 6H, CH₃ × 2); LR-ESI-MS m/z calcd. for C₇₈H₁₁₄O₁₀Si Na [M + Na]⁺ 1261.8, found 1261.9. 1,2-Dipalmitoyl-3-O-(2',3',4'-tri-O-benzyl- α -D-glucopyranosyl)-sn-glycerol (27) To a solution of **26** (0.5 g, 0.4 mmol) in THF (15 mL), TBAF (0.15 g, 0.5 mmol) was added at 40 °C. The reaction mixture was stirred overnight, and then was concentrated and purified by flash chromatography (AcOEt-petroleum ether 1:6) to afford **27** (0.34 g, 84%) as a white solid. 1 H-NMR (600 MHz, CDCl₃): δ 7.38–7.28 (m, 15H, ArH), 5.28–5.23 (m, 1H, H_{sn-2}), 4.98 (d, J = 10.9 Hz, 1H, PhCH), 4.89 (d, J = 11.0 Hz, 1H, PhCH), 4.83 (d, J = 10.9 Hz, 1H, PhCH), 4.77 (d, J = 12.0 Hz, 1H, PhCH), 4.71 (d, J = 3.6 Hz, 1H, H-1), 4.66–4.62 (m, 2H, PhCH × 2), 4.42 (dd, J = 12.0, 3.6 Hz, 1H, H_{sn-1a}), 4.21 (dd, J = 12.0, 6.1 Hz, 1H, H_{sn-1b}), 3.97 (t, J = 9.3, 1H, H-3), 3.78–3.72 (m, 2H, H-2, H-5), 3.70–3.64 (m, 2H, H_{sn-3a} , H-6a), 3.57–3.49 (m, 3H, H-4, H_{sn-3b} , H-6b), 2.32–2.28 (m, 4H, 2 × CO–CH₂), 1.64–1.58 (m, 4H, 2 × CO–CH₂–CH₂), 1.32–1.22 (m, 48H, 2 × CH₂–CH₂–(CH₂)₁₂–CH₃), 0.89 (t, J = 7.0 Hz, 6H, 2 × CH₃); HR-ESI-MS m/z calcd. for C₆₂H₉₇O₁₀ [M + H]+ 1001.7076, found 1001.7078. 1,2-Dipalmitoyl-3-O-(2',3',4'-tri-O-benzyl-6-iodo-α-D-glucopyranosyl)-sn-glycerol (29) PPh₃ (16 mg, 0.07 mmol) was added to a solution of **27** (60 mg, 0.06 mmol) in toluene (5 mL) under nitrogen atomosphere followed by refluxing for 20 min. The mixture was cooled down to 80 °C and imidazole (11 mg, 0.15 mmol) and I₂ (16 mg, 0.07 mmol) were added. After refluxing for 30 min, the solution was concentrated under reduced pressure. The resulting residue was diluted with CH₂Cl₂ (20 mL) and washed with a saturated Na₂S₂O₃ solution (20 mL) and water (20 mL). The organic layer was dried on Na₂SO₄ and evaporated to dryness. Purification by column chromatography (petroleum ether/AcOEt 9:1) gave **29** (46 mg, 70%) as a white solid. ¹H-NMR (600 MHz, CDCl₃): δ 7.36–7.27 (m, 15H, Ar*H*), 5.28–5.24 (m, 1H, H_{sn-2}), 4.97 (d, J = 10.7 Hz, 1H, PhC*H*), 4.94 (d, J = 10.9 Hz, 1H, PhC*H*), 4.79 (d, J = 10.8 Hz, 1H, PhC*H*), 4.75 (d, J = 12.0 Hz,1H, PhC*H*), 4.74 (d, J = 3.6 Hz, 1H, H-1), 4.69 (d, J = 10.9 Hz, 1H, PhC*H*), 4.62 (d, J = 12.0 Hz,1H, PhC*H*), 4.11 (dd, J = 12.0, 3.7 Hz, 1H, H_{sn-1a}), 4.20 (dd, J = 11.9, 6.1 Hz, 1H, H_{sn-1b}), 3.98 (t, J = 9.2 Hz, 1H, H-3), 3.84 (dd, J = 10.7, 5.3 Hz, 1H, H_{sn-3a}), 3.56–3.51 (m, 2H, H-2, H_{sn-3b}), 3.46–3.42 (m, 2H, H-6 × 2), 3.34 (t, J = 9.0 Hz, 1H, H-4), 3.28–3.27 (m, 1H, H-5), 2.32–2.28 (m, 4H, CH2 × 2), 1.62–1.58 (m, 4H, CH2 × 2), 1.31-1.24 (m, 48H, CH2) × 2), 0.88 (t, J = 7.1 Hz, 6H, CH3 × 2); LR-ESI-MS calcd. for $C_{62}H_{95}IO_9$ Na [M + Na]* 1133.6, found 1133.6. 1,2-Dipalmitoyl-3-O-(2',3',4'-tri-O-benzyl- α -D-glucosyluronate)-sn-glycerol (30) 1,2-Dipalmitoyl-3-O-(2',3',4'-tri-O-benzyl-6'-O-sulfo-α-D-glucopyranoside)-sn-glycerol (31) SO₃·py (0.21 g, 1.3 mmol) was added to a solution of **27** (0.13 g, 0.1 mmol) in DMF (8 mL) under nitrogen. After strring for 1 h, the solution was concentrated under reduced pressure. The resulting residue was diluted with CH₂Cl₂ (30 mL) and washed with sat. NaHCO₃ and water. The organic layer was dried on Na₂SO₄ and evaporated to dryness. Purification by column chromatography (CH₂Cl₂/CH₃OH 10:1) afforded **31** (0.12 g, 86%) as a colorless oil. 1 H-NMR (600 MHz, CDCl₃): δ 7.28–7.13 (m, 15H, ArH), 5.23–5.27 (m, 1H, H_{sn-2}), 4.89 (d, J = 2.9 Hz, 1H, H-1),4.87 (d, J = 11.2 Hz, 1H, PhCH), Mar. Drugs **2016**, 14, 116 S10 of S12 4.76 (d, J = 10.7 Hz, 1H, PhCH), 4.73 (d, J = 11.1 Hz, 1H, PhCH), 4.64 (d, J = 10.5 Hz, 1H, PhCH), 4.57 (d, J = 12.1 Hz, 1H, PhCH), 4.54 (d, J = 11.8 Hz, 1H, PhCH), 4.33–4.21 (m, 3H, H_{sn-1a} , $H-6 \times 2$), 4.15 (dd, J = 11.9, 6.8 Hz, 1H, H_{sn-1b}), 3.88 (t, J = 9.2 Hz, 1H, H-3), 3.84–3.82 (m, 1H, H_{sn-3a}), 3.78 (dd, J = 11.0, 3.6 Hz, 1H, H_{sn-3b}), 3.57–3.47 (m, 3H, H-5, H-2, H-4), 2.32–2.28 (m, 4H, 2 × CO–CH2), 1.61–1.57 (m, 4H, 2 × CO–CH2–CH2), 1.31–1.23 (m, 48H, 2 × CH2–CH2–(CH2)12–CH3), 0.88 (t, J = 7.0 Hz, 6H, CH3 × 2); LR-ESI-MS m/z calcd. for C₆₂H₉₅O₁₃S [M – H]⁻ 1079.6, found 1079.9. 1,2-Dipalmitoyl-3-O-[2",3",4",6"-tetra-O-benzyl- α -D-galactopyranosyl-(1" \rightarrow 6')-2',3',4'-tri-O-benzyl- α -D-glucopyranosyl]-sn-glycerol (32) To a solution of compound **27** (0.10 g, 0.10 mmol), **28** [3] (82 mg, 0.12 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (12 mL) at 0 °C under nitrogen was added TMSOTf (4 μ L, 0.02 mmol). The mixture was stirred for 1 h at 0 °C and then neutralized by Et₃N and filtered. The filtrate was concentrated to give a residue that was purified by column chromatography (petroleum ether-AcOEt, 8:1) affording compound **32** as a colorless oil (114 mg, 75%). ¹H-NMR (600 MHz, CDCl₃): δ 7.35–7.19 (m, 35H, ArH), 5.23–5.19 (m, 1H, H_{sn-2}), 5.03 (d, J = 3.7 Hz, 1H, H-1''), 4.94–4.90 (m, 2H, PhCH × 2), 4.85 (d, J = 11.0 Hz, 1H, PhCH), 4.81–4.77 (m, 2H, PhCH × 2), 4.72–4.70 (m, 3H, PhCH × 3), 4.67 (d, J = 3.4 Hz, 1H, H-1'), 4.62–4.60 (m, 2H, PhCH × 2), 4.55 (d, J = 11.5 Hz, 1H, PhCH), 4.48 (d, J = 12.0 Hz, 1H, PhCH), 4.43 (d, J = 11.7 Hz, 1H, PhCH), 4.38 (dd, J = 11.9, 3.3 Hz, 1H, H_{sn-1a}), 4.55 (d, J = 12.0 Hz, 1H, PhCH), 4.17 (dd, J = 11.9, 6.2 Hz, 1H, H_{sn-1b}), 4.03 (dd, J = 9.8, 3.7 Hz, 1H, H-2''), 3.94–3.84 (m, 4H, H-3', H-3'', H-4'', H-5''), 3.74–3.68 (m, 4H, H-6' × 2, H-5', H_{sn-3a}), 3.55–3.47 (m, 2H, H-6'' × 2, H-4', H_{sn-3b}), 3.37 (dd, J = 9.5, 3.4 Hz, 1H, H-2'), 2.36–2.23 (m, 4H, COCH₂ × 2), 1.67–1.56 (m, 4H, O=CCH₂CH₂ × 2), 1.30–1.23 (m, 48H, (CH₂)₁₂ × 2), 0.88 (t, J = 6.9 Hz, 6H, CH_3 × 2); LR-MALDI-MS m/z calcd. for C₉₆H₁₃₀O₁₅ Na [M + Na]* 1545.9, found 1545.7. Bis(tetradecyl)methyl-6-azide-2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranoside (33) $$C_{14}H_{29}$$ OH + BB0 OF CCI₃ TMSOTf Et₂O BB0 OF C₁₄H₂₉ BB0 OF C₁₄H₂₉ C₁₄H₂₉ C₁₄H₂₉ A solution of **32** [4] (0.5 g, 1.2 mmol) in dry Et₂O (35 mL) was added freshly dried powdered 4 Å MS and cooled to 0 °C, then catalytic amount of TMSOTf (35 μ L, 1.2 mmol) was added and the mixture was stirred for 20 min at room temperature. The solution of **8** (0.6 g, 0.97 mmol) in dry Et₂O (10 mL) was slowly added and stirred for 30 min. The mixture was quenched by Et₃N and filtered to remove 4 Å MS. The filtrate was concentrated and purified by column chromatography on silica gel (petroleum ether/AcOEt: 15/1) to afford **33** (0.42 g, 49%) as a white solid. ¹H-NMR (500 MHz, CDCl₃): δ 7.35–7.27 (m, 15H, Ar*H*), 5.00 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.94 (d, *J* = 3.7 Hz, 1H, *H*-1), 4.91 (d, *J* = 11.0 Hz, 1H, PhC*H*), 4.81 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.73 (d, *J* = 11.7 Hz, 1H, PhC*H*), 4.73 (d, *J* = 11.7 Hz, 1H, PhC*H*), 4.59 (d, *J* = 11.0 Hz, 1H, PhC*H*), 3.99 (t, *J* = 9.3 Hz, 1H, *H*-3), 3.92 (ddd, *J* = 9.7, 5.4, 2.4 Hz, 1H, *H*-5), 3.59–3.56 (m, 1H, –OC*H*–), 3.53 (dd, *J* = 9.7, 3.8 Hz, 1H, *H*-2), 3.46–3.40 (m, 2H, *H*-4, *H*-6a), 3.35 (dd, *J* = 13.0, 5.4 Hz, 1H, *H*-6b), 1.53–1.48 (m, 4H, OCH–(C*H*₂)₂), 1.27–1.22 (m, 48H, (C*H*₂)₁₂ × 2), 0.88 (t, *J* = 7.0 Hz, 6H, C*H*₃ × 2); HR-MALDI-MS *m*/*z* calcd. for C₅₆H₈₇O₅N₃ Na 904.6543 [M + Na]⁺, found 904.6555. Bis(tetradecyl)methyl-6-amino-2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranoside (**34**) Mar. Drugs **2016**, 14, 116 S11 of S12 To a solution of **33** (60 mg, 0.07 mmol) in 4 mL AcOEt/MeOH (1:1) was treated with 10% palladium (30 mg) and stirred at r.t. under hydrogen atmosphere for 2 h. After filtration the solvent was evaporated and the residue was purified by silica column chromatography (CH₂Cl₂–MeOH 15:1) to afford α-anomer **34** (51 mg, 88%) as a yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ 7.35–7.29 (m, 15H, Ar*H*), 5.00 (d, J = 10.8 Hz, 1H, PhC*H*), 4.88 (d, J = 3.7 Hz, 1H, H-1), 4.89 (d, J = 11.0 Hz, 1H, PhC*H*), 4.82 (d, J = 10.8 Hz, 1H, PhC*H*), 4.73 (d, J = 11.7 Hz, 1H, PhC*H*), 4.68–4.63 (m, 2H, PhC*H* × 2), 4.00 (t, J = 9.3 Hz, 1H, H-3), 3.74–3.69 (m, 3H, H-5, -NH2), 3.56–3.53 (m, 1H, OC*H*), 3.48 (dd, J = 9.8, 3.7 Hz, 1H, H-2), 3.37 (t, J = 9.4 Hz, 1H, H-4), 2.97 (dd, J = 13.4, 2.6 Hz, 1H, H-6a), 3.35 (dd, J = 13.4, 5.5 Hz, 1H, H-6b), 1.51–1.47 (m, 4H, -OCH-(CH2)₂), 1.27–1.22 (m, 48H, -(CH2)₁₂ × 2), 0.88 (t, J = 6.9 Hz, 6H, CH3 × 2); LR-ESI-MS m/z calcd. for C₅₆H₉₀NO₅ [M + H]⁺ 856.7, found 856.6. General procedures for 35a-35c $$\begin{array}{c} \text{NH}_{2} \\ \text{BnO} \\ \text{O} \\ \text{C}_{14}\text{H}_{29} \\ \text{C}_{14}\text{H}_{29} \\ \end{array} \\ \begin{array}{c} \text{R}_{4}\text{OH EDCI, HOBt, CH}_{2}\text{CI}_{2} \\ \text{or Ac}_{2}\text{O, CH}_{2}\text{CI}_{2} \\ \end{array} \\ \begin{array}{c} \text{BnO} \\ \text{O} \\ \text{C}_{14}\text{H}_{29} \\ \end{array} \\ \begin{array}{c} \text{35a R= acetyl} \\ \text{35b R= hexanoyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35b R= acetyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35b R= acetyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35c R= acetyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35c R= acetyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35c R= acetyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \text{35c R= palmitoyl} \\ \end{array} \\ \begin{array}{c} \text{35c R= acetyl} \\ \text{35c R= palmitoyl} pa$$ To a solution of compound **34** (80 mg, 0.09 mmol) in CH₂Cl₂ (5 mL) was added Ac₂O (20 μ L, 0.2 mmol) and DMAP (2 mg, 0.02 mmol) at 0 °C. After stirring for 1 h, the mixture was washed with saturated NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed (AcOEt-petroleum ether 1:4) to afford **35a** (70 mg, 87%) as a white solid. To a solution of compound **34** (80 mg, 0.09 mmol) in CH₂Cl₂ (5 mL) were sequentially added EDCI (21 mg, 0.11 mmol), HOBt (15 mg, 0.11 mmol) and corresponding fatty acids (hexadecanoic acid, or palmitic acid, 1.2 eq) at 0 °C. After stirring for 1 h, the mixture was diluted with saturated NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was chromatographed (AcOEt-petroleum ether 1:8) to afford **35b** (50 mg, 58%) and **35c** (85 mg, 86%) respectively as white solids. Bis(tetradecyl)methyl-N-acetyl-2,3,4-tri-O-benzyl-6-amino-6-deoxy-α-D-glucopyranoside (35a) ¹H-NMR (500 MHz, CDCl₃): δ 7.38–7.28 (m, 15H, Ar*H*), 5.57 (dd, J = 6.2, 3.9 Hz, 1H, -N*H*), 4.99 (d, J = 10.8 Hz, 1H, PhC*H*), 4.87 (d, J = 3.9 Hz, 1H, *H*-1), 4.86–4.82 (m, 2H, PhC*H* × 2), 4.74 (d, J = 12.0 Hz, 1H, PhC*H*), 4.68 (d, J = 12.0 Hz, 1H, PhC*H*), 4.63 (d, J = 10.5 Hz, 1H, PhC*H*), 4.00 (t, J = 9.3 Hz, 1H, *H*-3), 3.84–3.80 (m, 1H, *H*-6*a*), 3.75–3.70 (m, 1H, *H*-5), 3.53–3.49 (m, 1H OC*H*), 3.47 (dd, J = 9.8, 3.7 Hz, 1H, *H*-2), 3.35 (dt, J = 13.9, 3.7 Hz, 1H, *H*-6*b*), 3.28 (t, J = 9.3 Hz, 1H, *H*-4), 1.92 (s, 3H, COC*H*₃), 1.51–1.47 (m, 4H, OCH–(C*H*₂)₂), 1.35–1.22 (m, 48H, (C*H*₂)₁₂ × 2), 0.88 (t, J = 6.9 Hz, 6H, C*H*₃ × 2); HR-MALDI-MS m/z calcd. for C₅₈H₉₁O₆N Na [M + Na]⁺ 920.6739, found 920.6748. Bis(tetradecyl)methyl-N-hexanoyl-2,3,4-tri-O-benzyl-6-amino-6-deoxy-α-D-glucopyranoside (35b) ¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.27 (m, 15H, Ar*H*), 5.58 (dd, *J* = 6.5, 4.2 Hz, 1H, -N*H*), 4.99 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.87 (d, *J* = 3.7 Hz, 1H, *H*-1), 4.84 (d, *J* = 10.0 Hz, 2H, PhC*H* × 2), 4.74 (d, *J* = 11.8 Hz, 1H, PhC*H*), 4.68 (d, *J* = 11.8 Hz, 1H, PhC*H*), 4.63 (d, *J* = 10.5 Hz, 1H, PhC*H*), 4.00 (t, *J* = 9.3 Hz, 1H, *H*-3), 3.84-3.80 (m, 1H, *H*-6*a*), 3.78-3.72 (m, 1H, *H*-5), 3.54-3.50 (m, 1H OC*H*), 3.46 (dd, *J* = 9.8, 3.4 Hz, 1H, *H*-2), 3.37 (dt, *J* = 13.7, 3.7 Hz, 1H, *H*-6*b*), 3.28 (t, *J* = 9.4 Hz, 1H, *H*-4), 2.11 (t, *J* = 7.7 Hz, 2H, COC*H*₂), 1.63-1.58 (m, 4H, OCH-(C*H*₂)₂), 1.50-1.47 (m, 2H, COCH₂C*H*₂), 1.34-1.25 (m, 52H, (C*H*₂)₁₂ × 2, COCH₂CH₂(C*H*₂)₂), 0.90-0.86 (m, 9H, C*H*₃ × 3); HR-MALDI-MS *m*/*z* calcd. for C₆₂H₉₉O₆N Na [M + Na]⁺ 976.7365, found 976.7379. Mar. Drugs **2016**, 14, 116 S12 of S12 Bis(tetradecyl)methyl-N-palmitoyl-2,3,4-tri-O-benzyl-6-amino-6-deoxy- α -D-glucopyranoside (35c) ¹H-NMR (500 MHz, CDCl₃): δ 7.37–7.27 (m, 15H, Ar*H*), 5.57 (dd, *J* = 6.9, 4.0 Hz, 1H, -N*H*), 4.98 (d, *J* = 10.8 Hz, 1H, PhC*H*), 4.87 (d, *J* = 3.7 Hz, 1H, *H*-1), 4.88–4.82 (m, 2H, PhC*H* × 2), 4.74 (d, *J* = 11.8 Hz, 1H, PhC*H*), 4.68 (d, *J* = 11.8 Hz, 1H, PhC*H*), 4.63 (d, *J* = 10.3 Hz, 1H, PhC*H*), 3.99 (t, *J* = 9.2 Hz, 1H, *H*-3), 3.84–3.79 (m, 1H, *H*-6*a*), 3.76–3.71 (m, 1H, *H*-5), 3.53–3.49 (m, 1H OC*H*), 3.46 (dd, *J* = 9.7, 3.6 Hz, 1H, *H*-2), 3.37 (dt, *J* = 13.8, 3.9 Hz, 1H, *H*-6*b*), 3.28 (t, *J* = 9.4 Hz, 1H, *H*-4), 2.11 (t, *J* = 7.6 Hz, 2H, COC*H*2), 1.58–1.47 (m, 6H, COCH₂CH₂, OCH(CH₂)₂), 1.35–1.22 (m, 72H, COCH₂CH₂(CH₂)₁₂, (CH₂)₁₂ × 2), 0.88 (t, *J* = 6.9 Hz, 9H, CH₃ × 3); HR-MALDI-MS *m*/*z* calcd. for C₇₂H₁₁₉O₆N Na [M + Na]⁺ 1116.8930, found 1116.8927. ## References - Vasella, A.; Witzig, C.; Chiara, J.L.; Martin-Lomas, M. Convenient Synthesis of 2-Azido-2-deoxy-aldoses by Diazo Transfer. *Helv. Chim. Acta* **2004**, *74*, 2073–2077. - 2 Goddard-Borger, E.D.; Stick, R.V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. *Org. Lett.* **2007**, *9*, 3797–3800. - 3 Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Practical synthesis of KRN7000 from phytosphingosine. *Synthesis* **2004**, *6*, 847–850. - 4 Roosjen, A.; Šmisterová, J.; Driessen, C.; Anders, J.T.; Wagenaar, A.; Hoekstra, D.; Hulst, R.; Engberts, J.B. Synthesis and characteristics of biodegradable pyridinium amphiphiles used for *in vitro* DNA delivery. *Eur. J. Org. Chem.* 2002, 2002, 1271–1277.