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Abstract: Long-term cigarette smoking increases the risk for chronic obstructive pulmonary disease
(COPD), characterized by irreversible expiratory airflow limitation. The pathogenesis of COPD
involves oxidative stress and chronic inflammation. Various natural marine compounds possess both
anti-oxidant and anti-inflammatory properties, but few have been tested for their efficacy in COPD
models. In this study, we conducted an in vitro screening test to identify natural compounds isolated
from various brown algae species that might provide protection against cigarette smoke extract
(CSE)-induced cytotoxicity. Among nine selected natural compounds, apo-9’-fucoxanthinone (Apo9F)
exhibited the highest protection against CSE-induced cytotoxicity in immortalized human bronchial
epithelial cells (HBEC2). Furthermore, the protective effects of Apo9F were observed to be associated
with a significant reduction in apoptotic cell death, DNA damage, and the levels of mitochondrial
reactive oxygen species (ROS) released from CSE-exposed HBEC2 cells. These results suggest that
Apo9F protects against CSE-induced DNA damage and apoptosis by regulating mitochondrial
ROS production.

Keywords: brown algae; apo-9'-fucoxanthinone; cigarette smoke; airway epithelial cells;
DNA damage; apoptosis; oxidative stress

1. Introduction

Many of the diverse marine organisms are rich natural sources for structurally unique and
biologically active chemicals [1]. Recent in vitro studies have identified various biological functions
for compounds derived from brown algae, including antioxidant [2], anti-inflammatory [3,4],
antibacterial [5], anti-HIV [6], and anti-allergic [7] properties. Such findings suggest that brown
algae species may be a novel source of pharmacophores that have the potential to serve as therapy for
an array of human diseases.
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Cigarette smoking increases the risk for many age-associated diseases, including chronic
obstructive pulmonary disease (COPD) characterized by a permanent expiratory airflow obstruction [8].
Airway epithelial cells are among the primary targets for cigarette smoke (CS) exposure and propagate
inflammatory responses in COPD. CS contains abundant reactive oxygen/nitrogen species (RONS)
and carcinogens, such as polycyclic aromatic hydrocarbons and N-nitrosamines [9,10], which induce
DNA damage and activate the DNA damage response (DDR) mediated by phosphoinositide 3-kinase
related protein kinases (PIKKs). One such PIKK, ataxia teleangiectasia mutated (ATM) protein [11,12],
is activated through autophosphorylation at the serine 1981 residue in response to a DNA double
strand break (DSB). ATM, in turn, phosphorylates serine 139 of H2AX variant (YH2AX) on chromatin
flanking DSB sites, allowing YH2AX, to relay subsequent DDR signaling and DNA repair. As such,
YH2AX is widely used as a biomarker for DSBs [13,14]. However, when DNA damage is extensive,
the repair pathway is overwhelmed, and the cells may activate mediators of apoptotic cell death [15].

CS or Cigarette smoke extract (CSE) can induce DNA damage and cytotoxicity that can be mediated
by oxidative stress. Several in vitro studies demonstrate that some anti-oxidants, such as N-acetyl
cysteine attenuate CS-induced DNA damage and cell death [16,17]. Mitochondria are an important site
of DNA damage [18] and endogenous ROS production in response to CS. Release of toxic ROS and
the mitochondrial damage associated molecular pattern molecules (including mito-DNA) critically
regulate cell fates including apoptotic cell death [19].

In this study, we evaluate nine natural marine compounds in the context of CSE-induced cellular
injury in immortalized human bronchial epithelial cells (HBEC2 cells). Among these, the brown algae
derived compound, apo-9’-fucoxanthinone (Apo9F), confers robust protection against CSE-induced
DNA damage and cytotoxicity. The protective effects of Apo9F are accompanied by the mitigation of
apoptosis, DNA damage, and mitochondria-derived ROS production.

2. Results

2.1. Apo9F Protects against Cigarette Smoke-Induced Cytotoxicity in Immortalized Human Bronchial
Epithelial Cells

To identify natural marine compounds that protect against CSE-induced cytotoxicity, we
conducted an in vitro screening test using the nine compounds isolated from various brown algae
species (Table 1). To determine this, we cultured HBEC2 cells with the nine different isolated
compounds in the presence or absence of 5% CSE for 24 h, and determined cell viability using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In this single screening
experiment, some of the tested compounds had a CSE-protective effect on cell viability, while others
including phlorofucofuroeckol A (PFFA), octaphlorethol A (OPA), and diphlorethohydroxycarmalol
(DPHC) were cytotoxic. These results are presented in Figure 1A with R? values that exceed 0.5
presented for trends of the compounds’ cytotoxicity or their rescue from CSE-induced cell death.
Among the nine compounds examined, only the dieckol (DK) compound and Apo9F showed protection
from CSE- mediated cell death without toxicity, and Apo9F provided the greatest magnitude of
protection against CSE-induced cytotoxicity with little intrinsic toxicity. At 50 uM, a 30% increase in
viable cells represents a more than doubling of the number of cells surviving CSE exposure compared
to the vehicle control. The protective effect of Apo9F on CSE-induced cytotoxicity was next confirmed
in another immortalized airway epithelial cell line, BEAS-2B cells, where cells treated with Apo9F
again exhibited ~60% less cytotoxicity from the CSE challenge (Figure 1B). These results suggest
that Apo9F protects against CSE-induced cytotoxicity in cultured human airway epithelial cells, and,
therefore, we further analyzed Apo9F with the following experiments.
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Table 1. Nine screened compounds isolated from the brown algae.

Molecular References for the
Species Structure Name Abbreviation . R
P v Weight Extraction Methods
Ecklonia cava 6,6-bieckol BK 742
Dieckol DK 742
Phlorofucofuroeckol A PFFA 602 [20,21]
Phloroglucinol 6,6-bieckol PGB 972
2,7-phyrogalyol-6,6-biekol 2,7PGB 972
Ishige foliacea Octaphlorethol A OPA 993 [22]
Ishige okamura Diphlorethohydroxycarmalol DPHC 512 [23]
Undariopsis .
P Apo-9’-fucoxanthinone Apo9F 266 [24]
peteseniana
Hizikia fusiformis Saringosterol acetate SA 470 [25]
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Figure 1. Cont.
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Figure 1. Screening of nine marine compounds for protection against cigarette smoke-induced
cytotoxicity in cultured immortalized human bronchial epithelial cells. (A) HBEC2 MTT
(3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide)-based cell viability after treatment
with various concentrations of the nine individual marine compounds (0, 5, 10, 25, and 50 uM in
DMSO (dimethyl sulfoxide)) in the presence or absence of 5% CSE (cigarette smoke extract) for 24 h.
Single measurements for each data point with R values greater than 0.5 are shown for toxicity (0% CSE)
or rescue (5% CSE); (B) BEAS-2B cells were cultured with 50 uM Apo9F in the presence or absence of
5% CSE for 24 h and assayed for viability. Data are expressed as mean + SEM (** p < 0.01) cytotoxicity
in cultured immortalized human bronchial epithelial cells. (A) HBEC2 MTT-based cell viability after
treatment with various concentrations of the nine individual marine compounds (0, 5, 10, 25, and
50 uM in DMSO) in the presence or absence of 5% CSE for 24 h. Single measurements for each data
point with R values greater than 0.5 are shown for toxicity (0% CSE) or rescue (5% CSE); (B) BEAS-2B
cells were cultured with 50 pM Apo9F in the presence or absence of 5% CSE for 24 h and assayed for
viability. Data are expressed as mean + SEM (** p < 0.01).

2.2. Apo9F Suppresses Cigarette Smoke-Induced Apoptotic Cell Death in HBEC2 Cells

CS exposure is known to induce apoptotic cell death in cultured HBEC2 cells [26]. We next
determined whether Apo9F attenuates CSE-induced apoptotic cell death using a flow cytometric
assay with dual staining of Annexin V and PI (propidium iodide). Consistent with the results of MTT
cytotoxicity assay, Apo9F attenuated apoptotic cell death with only 40% cells undergoing CSE-induced
apoptosis compared to 95% apoptotic cells in the vehicle-treated controls (Figure 2). These data suggest
that Apo9F protects against CSE-induced apoptosis in cultured HBEC2 cells.
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Figure 2. Cont.
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Figure 2. Apo9F suppresses apoptotic cell death in cultured immortalized human bronchial epithelial
cells. (A) HBEC2 cells were cultured with 50 tM Apo9F in the presence or absence of 5% CSE for 24 h.
Cell death was analyzed by Annexin Vand propidium iodide (PI) staining 24 h after CSE exposure.
The percentage of Annexin V positive cells/total cell number was expressed as percentage apoptosis.
Data are expressed as mean + SEM for three independentexperiments (** p < 0.01); (B) representative
flow cytometry data are shown.

2.3. Apo9F Decreases Mitochondria-Derived ROS Production in Cigarette Smoke-Exposed HBEC2 Cells

Mitochondria are the major source of ROS production in CSE-exposed lung epithelial cells [27].
To determine the effects of Apo9F on mitochondrial ROS in CSE-exposed HBEC2 cells, we cultured
HBEC2 cells with Apo9F (50 uM) in the presence or absence of a lower, nonlethal dose of 2% CSE for
24 h and determined the number of cells producing mitochondrial ROS. Apo9F significantly decreased
mitochondrial ROS with only 20% MitoSox-positive cells compared with 70% MitoSox-positive cells in
the vehicle-treated controls (Figure 3).
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Figure 3. Cont.
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Figure 3. Apo9F decreases mitochondria-derived ROS in cigarette smoke-exposed HBEC2 cells.
(A) HBEC2 cells were cultured with Apo9F (50 uM) in the presence or absence of 2% CSE for 24 h and
were determined mitochondrial ROS levels. Data are expressed as mean + SEM for three independent
experiments (** p < 0.01); (B) HBEC2 cells were treated as in (A). Representative pictures are shown
(Bars = 50 um).

2.4. Apo9F Attenuates Cigarette Smoke-Induced DNA Damage in HBEC2 Cells

CS exposure induces DNA damage mediated by oxidative stress [16]. Given the suppressive
effects of Apo9F on mitochondrial ROS, we hypothesize that Apo9F decreases CSE-induced DNA
damage. To test this, we cultured HBEC2 cells with Apo9F (50 uM) in the presence or absence
of 2% CSE for 24 h. Immunoblot analysis was performed for determining the phosphorylation of
ATM as a marker for DNA double strand breakage. Apo9F markedly attenuated detectable levels
phospho-ATM in immunoblots from CSE-exposed HBEC2 cells (Figure 4A). To localize the DNA
damage, we used immunocytofluorescence for phosphorylation of ATM and find punctate nuclear
staining to be prominently induced in vehicle control/CSE-exposed cells with significant reduction of
ATM phosphorylation by Apo9F pretreatment (Figure 4B).
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Figure 4. Cont.
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Figure 4. Apo9F attenuates cigarette smoke-induced DNA damage in HBEC2 cells. (A) HBEC2 cells were
cultured with Apo9F (50 uM) in the presence or absence of 2% CSE for 24 h. Immunoblot analysis was
performed for phosphorylation of ATM. Immunoblotting data are representative of three experiments;
(B) HBEC2 cells were treated as in (A) and ICF (immunocytofluorescence) analysis was performed for
phosphorylation of ATM. Representative pictures are shown (Bars = 50 pum).

We next investigated CSE-induced DNA damage and the effect of Apo9F on this phenomenon using
a comet assay. In the setting of CSE exposure, HBEC2 cells display considerable DNA fragmentation
and dissociation of nuclear integrity as shown by the trailing of DNA behind the main nuclear mass in
an electrophoretic field (Figure 5A). The length of this “comet tail” is a robust indicator of DNA damage
(Olive and Barnath Nature protocols 2006). Apo9F almost completely protects against the DNA
fragmentation caused by 4 h of CSE exposure (Figure 5A,B). These data show that Apo9F attenuates
DNA damage in CSE-exposed HBEC2 cells and support the finding that ATM phosphorylation after
CSE exposure is a marker for DNA damage, which can be rescued by the Apo9F chemical.
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Figure 5. Apo9F attenuates cigarette smoke-induced DNA damage in HBEC2 cells. HBEC2 cells were
cultured with Apo9F (50 uM) in the presence or absence of 5% CSE for 4 h. (A) Representative images
from the comet assay performed to measure DNA fragmentation by loss of nuclear DNA cohesion in
the “tail moment” (black bars) with fluorescent microscopic imaging; (B) quantitative analysis of tail
moment from at least 50 individual cells from each of the three groups (** p < 0.01). (white scale bar, 50 um).
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3. Discussion

In this study, we observed that among nine marine compounds isolated from various brown
algae species, Apo9F provided protection against CSE-induced apoptotic cell death in cultured
HBECs. These cytoprotective effects of Apo9F were accompanied by decreases in DNA damage
and mitochondrial ROS production. These results suggest that Apo9F attenuates the toxic effects of CS
through mitigation of mitochondrial ROS and DNA stabilization.

Natural compounds isolated from marine products compared with land plants have been
relatively understudied for potential pharmacologic utility. Marine algae represent an abundant
resource for a variety of products, with over 7.5 million tons of biomass either harvested from oceans
or manufactured by industries annually. About 10% of these marine algae are being utilized by some
industries to generate polysaccharides, such as carrageenan, agar and alginate [28,29]. Some brown
algae, such as E. cava, L. foliacea, I. okamura, H. fusiformis, and U. peteseniana, are edible and abundant
in the oceans surrounding the Southern Korean peninsula and Japanese islands. These brown algae
have long been consumed as favorable health foods among Asians and Europeans. Some compounds
isolated from the brown algae have been evaluated as pharmaceuticals. For example, the phlorotannins
have been reported to counteract oxidative stress and inflammation perhaps because of various
molecular properties such as abundant hydroxyl bonds [30-32]. 3-sitosterol, a marine algae-derived
sterol, belongs to a class of triterpenoid lipids and has been reported to improve hypercholesterolemia
in humans [33]. In addition, some algal sterols possess beneficial effects on oxidative stress [34]
and inflammation [35,36], and potentially on some diseases, including cancer, diabetes [32,37],
mycobacterial infections [38] and hypertension [39].

In this study, we found that the brown algae-derived compound Apo9F, which is derived from
fucoxanthine through permanganate oxidation, exhibits the significant protection against CSE-induced
cytotoxicity in vitro. Apo9F has been reported to possess an anti-inflammatory activity in vitro [40].
Yang et al. demonstrated that Apo9F decreases LPS (lipopolysaccharide)-induced production of nitric
oxide and prostaglandin E2 with stabilization of IkB-a and thus suppression of NF-kB-mediated
inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 cells [40]. Furthermore,
another in vitro study revealed that Apo9F inhibits microbial DNA-induced inflammatory response
by attenuating the activation of extracellular signal-regulated kinase [41].

In this study, we report a unique activity of Apo9F as an antioxidant that suppresses the
accumulation of mitochondrial ROS and attenuates CSE-induced apoptosis and DNA damage
in cultured human bronchial epithelial cells. These cells may model epithelia important for the
development of the chronic bronchitic and asthmatic variants of COPD, which may undergo apoptosis
after exposure to CS through an altered cell signaling in COPD [42,43]. While apoptosis of alveolar
pneumocytes is known to be important for the development of emphysematous COPD [44,45], we
speculate that CS exposure causes a similar apoptotic response in the bronchial epithelial cells [42,46].

Interestingly, previous in vitro studies supported an antioxidant activity of brown algae.
Yang et al. have demonstrated that aqueous extracts from brown algae protect against HyO;-induced
DNA damage and reverted the H,O,-induced cytotoxicity in H1299 cells [47].

Wen et al. also reported that the brown algae down regulates intracellular ROS, nitrogen oxide,
and malonic dialdehyde (MDA) levels through upregulating the level of antioxidant enzymes such
as manganese superoxide dismutase and glutathione peroxidase [48]. Apo9F may account for some
amount of this antioxidant activity from brown algae.

Further studies will be required to identify more specific molecular mechanisms of protective
effects of Apo9F on CSE-induced mitochondrial ROS production and evaluate the efficacy of Apo9F
on CS-induced DNA damage and emphysema in vivo.

While the primary focus to prevent COPD among smokers should be smoking cessation, DNA
damage in the lungs of COPD patients may persist after quitting smoking [49]. We propose that
chemopreventive compounds that blunt apoptotic cell death, such as Apo9F, may prove effective for
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ex-smokers at risk for persistent DNA damage to halt progression of COPD lung and could also be
helpful for environmental tobacco smoke-exposed nonsmokers.

4. Materials and Methods

4.1. Chemicals, Reagents, and Antibodies

Chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) and Calbiochem (La Jolla,
CA, USA); Proteinase inhibitor was from Roche Life Science (Indianapolis, IN, USA). Phosphorylation
of anti-ATM (serine 1981) antibody was from Cell Signaling Technology (Danvers, MA, USA) and
anti-f3 actin was from Sigma Aldrich.

4.2. Natural Marine Compounds Isolated from the Brown Algae

6,6-bieckol (BK), dieckol (DK), phlorofucofuroeckol A (PFFA), phloroglucinol 6,6-bieckol (PGB),
and 2,7-phyrogalyol-6,6-bieckol (2,7PGB) were isolated from Ecklonia cava; octaphlorethol A (OPA),
diphlorethohydroxycarmalol (DPHC), saringosterol acetate (SA), and Apo9F were isolated from
Ishige foliacea, Ishige okamura, Hizikia fusiformis, and Undariopsis peteseniana, respectively (Table 1).
Structures of the listed compounds were determined using liquid chromatography-electrospray
ionization-mass spectrometry (LC-ESI-MS, Finnigan MAT, San Jose, CA, USA), infrared spectroscopy,
and nuclear magnetic resonance (NMR, JEOL JNM-LA 300, Tokyo, Japan) spectroscopy, as we
previously described [20-23].

4.3. Cigarette Smoke Extract Preparation

Research cigarettes (3R4F) from the University of Kentucky were purchased and used to make
CSE solutions. CSE solutions were prepared as we previously described [50].

4.4. Cell Culture and Cell Viability

Immortalized human bronchial epithelial cells (HBEC2 and BEAS-2B) were cultured and
maintained as we previously described [50]. Experiments were performed in 12-well Costar tissue
culture plates or 100 mm culture dishes at a starting cell density of 10 x 10%/cm?. Cells were counted
with an electric particle counter (Beckman Coulter, Indianapolis, IN, USA).

Cell viability was determined by measuring the reduction of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT) as we previously described (27). HBEC2 cells were cultured
in 12-well plates for 24 h. Twenty-four hours later, the cells were treated with various concentrations
of the 9 individual marine compounds (0, 5, 10, 25, and 50 pM; dissolved in DMSO (Sigma Aldrich)
for 24 h. DMSO was used as the vehicle control at the highest volume used for the individual
chemical treatment. After treatment, the cells were exposed to various concentrations of CSE for 24 h.
Absorbance was measured at 540 nm. The relative cell viability of CSE-exposed cells was determined
by comparing the vehicle control cells unexposed to CSE (regarded as 100% viability).

4.5. Flow Cytometric Analysis of Apoptotic Cells

Flow cytometry with dual staining of Annexin V and PI was performed as we previously
described [26]. Briefly, following 24 h CSE exposure, cells were harvested by trypsinization.
Approximately 10° cells were stained in 1x binding buffer (0.01 M HEPES, pH 7.4; 0.14 M NaCl;
0.25 mM CaCly) using 5 pL of Annexin V-FITC (BioLegend, San Diego, CA, USA) and 10 pL
PI (BioLegend). The cells were then incubated in the dark for 15 min at room temperature and
the percentage of FITC- and PI-positive cells were quantified using FACS Canto-II flow cytometer
(BD Biosciences, San Jose, CA, USA) and were analyzed using Flow]o software (version 7.6.3; TreeStar,
San Carlos, CA, USA).
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4.6. Immunoblot Analysis

Immunoblot analysis was performed as we previously described [51]. Briefly, each sample was
normalized for all comparisons using equivalent amounts of total protein from all adherent cells
retrieved. Equivalent loading was verified by stripping the blot and reprobing with antibodies to
-actin. Results are expressed as the relative densitometry ratio (targeted protein/B-actin). The vehicle
control in the absence of CSE was set to a value of 1.0.

4.7. Immunocytofluorescence (ICF)

Immunocytofluorescent analysis was performed as previously described [52]. Twenty-four hours
after culture in the presence or absence of 50 uM Apo9F on Lab-Tek-II 8-chamber slides (Nalge Nunc
International, Rochester, NY, USA), HBEC2 cells were further cultured with or without 1.5% CSE
for another 24 h. Cells were fixed with 2% (w/v) paraformaldehyde in PBS for 15 min at 37 °C.
The cells were then incubated with 0.2% Triton X-100 with 0.2% Saponin in a blocking solution
containing 3% IgG-free BSA (bovine serum albumin), 1% Gelatin and 2% normal donkey serum
for 1 h at RT (room temperature) and further incubated with the following primary antibodies at
4 °C overnight: phosphorylation-specific antibody for ATM. The immunolabeled cells were detected
using F(ab)2-fragments of respective secondary antibody conjugated to DylightTM-549 (Jackson
ImmunoResearch, West Grove, PA, USA) and mounted with 4’,6-diamidino-2-phenylindole (DAPI)
containing Fluormount-G™ (SouthernBiotech, Birmingham, AL, USA) for nuclear staining.

4.8. Mitochondrial Reactive Oxygen Species

For measurement of mitochondria-derived ROS, the MitoSOX Red mitochondrial superoxide
indicator (Molecular Probes, Eugene, OR, USA) was used according to the manufacturer’s instruction.

4.9. DNA Damage Comet Assay

The comet assay to detect DNA damage was conducted using the OxiSelect Comet assay kit
(Cell Biolabs, San Diego, CA, USA) according to the manufacturer’s instructions as previously
described [53,54]. In brief, four hours after 5% CSE exposure in the presence or absence of Apo9F,
HBEC2 cells were harvested and suspended at a density of 750 cells/well, incubated with liquefied
OxiSelect™ (Cell Biolabs) comet agarose at 1:10 ratio, transferred into the OxiSelect™ Comet slide
(3 wells). The slides were immersed in pre-chilled lysis buffer for 45 min at 4 °C in the dark, transferred
into pre-chilled alkaline buffer for 30 min at 4 °C, and then electrophoresed in chilled alkaline buffer at
20 V for 30 min. After washed in chilled distilled water 3 times, the cells were fixed in 70% ethanol.
Once slides were dried, cells were stained with the Vista Green DNA dye. Images were captured at 40x
magnification with a ZEISS Observer Al and quantified using a software Zen 2 (ZEISS, Thornwood,
NY, USA). DNA damage was quantified by measuring the tail moment. More than 50 tailed cells were
analyzed per group.

4.10. Statistical Analysis

One-sample student unpaired t-test was performed for two-group comparison. For all other
comparisons involving multiple treatment groups, one-way analysis of variance was used to identify
treatment effects. The p values, based on calculated comparisons, were used to assess the individual
treatment effects and were regarded as significant when the value was less than 0.05. Data were
expressed as mean + SEM.

5. Conclusions

In this study, our screening test using nine brown algae derived compounds revealed that apo9F
exhibits robust protection against cigarette smoke-induced cytotoxicity in cultured human bronchial
epithelial cells. Furthermore, apo9F prevents cigarette smoke-induced apoptosis, DNA damage,
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and mitochondria-derived ROS production. This highlights the potential for algal compounds as
therapeutic agents in diseases associated with cell death like COPD.
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Abbreviations

The following abbreviations are used in this manuscript:

COrD chronic obstructive pulmonary disease
CS cigarette smoke
CSE cigarette smoke extract
Apo9F apo-9’-fucoxanthinone
RONS reactive oxygen/nitrogen species
HBEC human bronchial epithelial cells
DDR DNA damage response
PIKKs phosphoinositide 3-kinase related protein kinases
ATM ataxia teleangiectasia mutated
DSB DNA double-strand break
DK dieckol
PFFA phlorofucofuroeckol
PGB phloroglucinol 6,6-bieckol
2,7PGB 2,7-phyrogalyol-6,6-bieckol
OPA octaphlorethol
DPHC diphlorethohydroxycarmalol
SA saringosterol acetate
LC-ESI-MS liquid chromatography-electrospray ionization-mass spectrometry
NMR nuclear magnetic resonance
MTT 3-(4,5-dimethylthiazol-2-yl1)-2,5-diphenyl tetrazolium bromide
DSMO dimethyl sulfoxide
PI propidium iodide
FITC fluorescein isothiocyanate
FACS fluorescence-activated cell sorting
ICF immunocytofluorescence
DAPI 4/ 6-diamidino-2-phenylindole
MDA malonic dialdehyde
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