Supplementary Materials

A New Dihydrochromone Dimer and Other Secondary Metabolites from Cultures of the Marine Sponge-Associated Fungi *Neosartorya fennelliae* KUFA 0811 and *Neosartorya tsunodae* KUFC 9213

Decha Kumla ^{a, b,}, Tin Shine Aung ^{a, b,}, Suradet Buttachon ^{a, b}, Tida Dethoup ^c, Luís Gales ^{a, d}, José A. Pereira ^{a, b}, Ângela Inácio ^b, Paulo M. Costa ^{a, b}, Michael Lee ^e, Nazim Sekeroglu ^f, Artur M. S. Silva ^g, Madalena M. M. Pinto ^{b, h}, Anake Kijjoa ^{a, b*}

^a ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal. E-mail: decha1987@hotmail.com (DK), tinshineaung@gmail.com (TSA), jpereira@icbas.up.pt (JAP), pmcosta@icbas.up.pt (PMC).

^b Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. E-mail: nokrari_209@hotmail.com (SB), angelainacio@gmail.com (AI).

^c Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand. E-mail: tdethoup@yahoo.com.

^d Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal. E-mail: lgales@ibmc.up.pt.

^e Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK. E-mail: ml34@leicester.ac.uk.

^f Medicinal and Aromatic Plant Programme, Plant and Animal Sciences Department, Vocational School, Kilis 7 Aralık University, 79000, Kilis, Turkey. E-mail: nsekeroglu@gmail.com.

⁸ Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal. E-mail: artur.silva@ua.pt.

^h Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-3 13 Porto, Portugal. E-mail: madalena@ff.up.pt

thThese authors contributed equally to this work.

*Corresponding author.

E-mail address: ankijjoa@icbas.up.pt (A. Kijjoa)

Comentado [M1]: Changed § to this symbol, please confirm. AK: It is OK. Comentado [M2]: Changed § to this symbol, please confirm. AK: It is OK.

Comentado [M3]: Changed § to this symbol, please confirm.

Figure S3. ¹³C NMR spectrum of byssochlamic acid (CDCl₃, 75.4 MHz).

Figure S5. ¹³C NMR spectrum of hopan-3β, 22-diol (CDCl₃, 125.8 MHz).

Figure S6. ¹H NMR spectrum of chevalone B (CDCl₃, 300.13 MHz).

Figure S7. ¹³C NMR spectrum of chevalone B (CDCl₃, 75.4 MHz).

Figure S8. ¹H NMR spectrum of chevalone C (CDCl₃, 300.13 MHz).

Figure S9. $^{13}\mathrm{C}$ NMR spectrum of chevalone C (CDCl_3, 75.4 MHz).

Figure S10. ¹H NMR spectrum of sartorypyrone B (CDCl₃, 300.13 MHz).

Figure S13. ¹³C NMR spectrum of helvolic acid (CDCl₃, 75.4 MHz).

80 70 60 50 40 30 20

i fil hir di helen periodi di bio

200 190 180 170 160 150 140 130 120 110 100 90

Figure S14. ¹H NMR spectrum of lumichrome (DMSO, 300.13 MHz).

ppm

Figure S16. ¹H NMR spectrum of harmane (DMSO, 500.13 MHz).

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Figure S18. ¹H NMR spectrum of β-sitostenone (CDCl₃, 300.13 MHz).

Figure S19. ^{13}C NMR spectrum of $\beta\text{-sitostenone}$ (CDCl3, 75.4 MHz).

Figure S20. ¹H NMR spectrum of ergosta-4,6,8 (14), 22-tetraen-3-one (CDCl₃, 300.13 MHz).

Figure S21. ¹³C NMR spectrum of ergosta-4,6,8 (14), 22-tetraen-3-one (CDCl₃, 75.4 MHz).

Figure S22. ¹H NMR spectrum of cyathisterone (CDCl₃, 300.13 MHz).

Figure S23. ¹³C NMR spectrum of cyathisterone (CDCl₃, 75.4 MHz).

Figure S24. 1 H NMR spectrum of dehydromevalonic acid lactone (CDCl₃, 300.13 MHz).

Figure S25. ¹³C NMR spectrum of dehydromevalonic acid lactone (CDCl₃, 75.4 MHz).

Figure S26. ¹H NMR spectrum of aszonalenin (CDCl₃, 300.13 MHz).

Figure S27. ¹H NMR spectrum of aszonalenin (CDCl₃, 75.4 MHz).

Figure S29. ¹³C NMR spectrum of secalonic acid A (CDCl₃, 75.4 MHz).

Figure S30. ¹H NMR spectrum of fellutanine A (DMSO, 300.13 MHz).

Figure S31. ¹³C NMR spectrum of fellutanine A (DMSO, 75.4 MHz).

Figure S32. ¹H NMR spectrum of 1 (DMSO, 500.13 MHz).

Figure S33. ¹³C NMR spectrum of 1 (DMSO, 125.8 MHz).

Figure S34. COSY spectrum of 1 (DMSO, 500.13 MHz).

Figure S35. HSQC spectrum of 1 (DMSO, 500.13 MHz).

Figure S36. HMBC spectrum of 1 (DMSO, 500.13 MHz).

Figure S37. ¹H NMR spectrum of 2 (CDCl₃, 500.13 MHz).

Figure S38. ¹³C NMR spectrum of 2 (CDCl₃, 125.8 MHz).

Figure S39. HSQC spectrum of 2 (CDCl₃, 125.8 MHz).

Figure S40. HMBC spectrum of 2 (CDCl₃, 125.8 MHz).

Figure S41. ¹H NMR spectrum of 3 (CDCl₃, 300.13 MHz).

Figure S42. ¹³C NMR spectrum of 3 (CDCl₃, 75.4 MHz).

Figure S43. COSY spectrum of 3 (CDCl₃, 300.13 MHz).

Figure S44. HSQC spectrum of 3 (CDCl₃, 300.13 MHz).

Figure S45. HMBC spectrum of 3 (CDCl₃, 300.13 MHz).

24

Figure S46. NOESY spectrum of 3 (CDCl₃, 300.13 MHz).

Figure S47. ¹H NMR spectrum of 4 (CDCl₃, 500.13 MHz).

Table S1

 ^1H and ^{13}C NMR (CDCl_3, 500 MHz and 125 MHz) and HMBC assignment for 2

Position	δc, type	$\delta_{\rm H}$, (<i>J</i> in Hz)	COSY	НМВС
1	38.9, CH ₂	2.05, m	H-2	C-3, 5
2	34.4, CH ₂	2.46, m	H-1	
3	199.2, CO	-		
4	126.5, CH	6.36, s	-	C-2, 5, 6, 10
5	156.1, C	-		
6	200.1, CO	-		
7α	40.8, CH ₂	2.49, d (16.9)	Η-7β	C-6, 8, 13
β		2.66, dd (16.9, 1.4)	Η-7α	C-5, 6, 8, 9
8	62.2, C	-		
9	49.3, CH	2.81, brt (9.0)	H-11	C-1, 7, 8, 10, 14, 19
10	36.0, C	-		
11	23.2, CH ₂	1.68, m	H-9, 12	
		1.88, m	H-9, 12	
12	38.3, CH ₂	1.71, m	H-11	
		1.76, m	H-11	
13	54.0, C	-		
14	214.9, CO	-		
15	38.0, CH ₂	2.47, m	H-16	C-14, 17
16	25.1 CH ₂	1.85, m	H-15, 17	
		2.05, m	H-15, 17	
17	49.4, CH	1.48, m	H-16, 20	
18	17.1, CH ₃	0.98, s	-	C-8, 12, 13,
19	24.0, CH ₃	1.26, s	-	C-1, 5, 9, 10
20	37.2, CH	2.41, m	H-17, 21, 22	C-22, 23
21	23.6, CH ₃	1.09, d (7.0)	H-20	C-17, 20, 23
22	135.1, CH	5.27, m	H-20, 23	C-24
23	132.3, CH	527, m	H-22, 24	C-20
24	43.2, CH	1.87, m	H-23, 26	
25	33.1, CH	1.46, m	H-24, 27, 28	
26	17.6, CH ₃	0.91, d (6.9)	H-24	C-22, 24, 25
27	20.1, CH ₃	0.83, d (6.8)	H-25	C-24, 25, 28
28	19.7, CH ₃	0.81, d (6.8)	H-25	C-24, 25, 27

Table S2

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR (CDCl_3, 500 MHz and 125 MHz) of 4.

Position	δ _c , type	$\delta_{\rm H}$, (<i>J</i> in Hz)	HMBC
rosition	oc, type	$O_{\rm H}, (J {\rm III} {\rm III} 2)$	Innibe

1 2	27.8, CH ₂ 30.4, CH ₂	1.35, m 1.77, m 1.61, m	
3	67.5 CH	1.79, m	
4	36.4, CH2	4.04, q (0.4) 1.61, m 1.79, m	
5	77.7, C	-	
6	198.7, CO	-	
7	119.7, CH	5.63, brs	C-5, 9, 14
8	165.5, C	-	
9	43.9, CH	2.53, ddd (11.8, 7.9, 2.2)	C-7, 8, 10, 11, 19
10	40.5, C	-	
11	21.9, CH ₂	1.61, m	
		1.72, m	
12	38.9. CH2	1.43. m	
		2.10, m	
13	44.8, C	-	
14	55.8, CH	2.13, m	
15	22-5, CH ₂	1.35, m	
16	20.2 CH	1.//, m	
10	30.2, CH ₂	1.42, III 1.87 m	
		1.87, 11	
17	56.1, CH	1.35, m	
18	12.7, CH ₃	0.60, s	C-12, 13, 17
19	16.4, CH ₃	0.94, s	C-1, 5, 7
20	40.2, CH	2.03, m	
21	21.1, CH ₃	1.03, d (6.6)	C-17, 20
22	135.0, CH	5.16, dd (15.3, .6)	C-17, 20, 21, 24
23	132.5, CH	5.24, dd (15.3, 7.6)	C-20, 24, 25, 26
24	42.8, CH	2.03, m	
20 26	33.1, CH 17.6, CH	1.4/, m	C 22 24 25
20	17.0, CH ₃	0.92, u(0.0)	C-23, 24, 25 C 24, 25, 28
∠/ 28	19.9, UII3 10.6 CH	0.82 d(6.9)	C = 24, 25, 20 C 24, 25, 27
20	19.0, CH3	0.02, u(0.7)	0-24, 23, 27