Supporting Informations

Three New Cytotoxic Steroidal Glycosides Isolated from *Conus pulicarius* Collected in Kosrae, Micronesia

Yeon-Ju Lee, * Saem Han, Su Hyun Kim, Hyi-Seung Lee, Hee Jae Shin, Jong Seok Lee, Jihoon

Lee

Marine Natural Product Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea.

yjlee@kiost.ac.kr

Tables of Contents

Table S1. Complete NMR data of 3 in methanol- d_4

Table S2. Complete NMR data of **4** in methanol- d_4

Table S3. Complete NMR data of 5 in methanol- d_4

Figure S1. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, chloroform-*d*) of 1

Figure S2. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 2

Figure S3. ¹H NMR Spectra (500 MHz, DMSO- d_6) of 2

Figure S4. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of **3**

Figure S5. HMBC and HSQC NMR spectra of 3

Figure S6. COSY and NOESY NMR spectra of 3

Figure S7. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 4

Figure S8. HMBC and HSQC NMR spectra of 4

Figure S9. COSY and NOESY NMR spectra of 4

Figure S10. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 5

Figure S11. HMBC and HSQC NMR spectra of 5

Figure S12. COSY and NOESY NMR spectra of 5

position	$\delta^{13}C$	δ^1 H (mult, J in Hz)	COSY	\mathbf{HMBC}^{c}	NOESY
1α	27.6	1.23 (m)	1β	2	2α, 3
1β	37.0	1.88 (m)	1α		19
2α	- 29.7	2.07 (brd, 12.9)	2β		1α, 3
2β		1.65 (m)	2α		4β, 19
3	79.3	4.21 (ddd, 16.0, 13.0, 4.8, 4.8)	4α, 4β		1 α, 2α, 4α, 4β
4α	40.4	2.61 (dd, 13.0, 4.8)	3	2, 3, 5, 6, 10	3, 6
4β	40.4	2.40 (dd, 13.0, 13.0)	3	3, 5, 6	2 β, 3, 19
5	148.2				
6	122.0	5.74 (dd, 5.5, 1.5)	7	7, 8	4 α, 7, 1 '
7	70.1	3.98 (brs)	6	5, 6, 9, 1'	6, 8, 15α , 1'
8	38.5	1.55 (ovl)	14		7, 11β, 18
9	43.0	1.54 (ovl)			12α, 14
10	38.7				
11α	01.0	1.54 (ovl)	11β		
11β	21.8	1.21 (ovl)	11α, 12β	9	8, 18
12α	40.0	1.23 (ovl)	12β		9, 14
12β	40.0	1.93 (m)	11β, 12α	13	
13	43.0				
14	49.8	1.72 (m)	8	8, 15	12α, 17
15α	24.6	1.97 (ovl)	15β, 16β	16	
15β	24.6	1.10 (m)	15α		7, 1'
16α	20.0	1.98 (ovl)	16β	13, 17, 20	
16β	29.0	1.44 (m)	15α, 16α, 17		
17	53.3	1.57 (ovl)	16β		14 , 20, 22
18	11.9	0.75 (s)		12, 13, 14, 17	8, 11β
19	18.5	1.03 (s)		1, 5, 9, 10	2β, 4β
20	40.1	1.97 (m)	21	21	22
21	13.3	0.76 (d, 6.8)	20	17, 20, 22	
22	80.8	4.12 (brs)		17, 20, 21, 23	17, 20
23	215.0				
24	40.5	2.38 (dd 18.3, 6.8)	25	23, 25, 26, 27	25
24	48.5	1.96 (ovl)			
25	25.4	2.12 (m)	24, 26, 27	24	24
26	22.9	0.91 (d, 6.8)	25	24, 25, 27	
27	23.0	0.93 (d, 6.8)	25	24, 25, 26	
1'	101.3	4.40 (d, 7.4)	2'	7, 5'	6, 7, 3', 5'β
2'	75.2	3.10 (dd, 8.9, 7.4)	1', 3'	1', 3'	4'
3'	77.9	3.31 (ovl)	2', 4'	2', 4', 5'	1', 5'β

Table S1. Complete NMR data of **3** in methanol- d_4

4'	71.4	3.46 (ddd, 10.0, 9.0, 5.3)	3', 5'	3', 5'	2'
5'α	66.8	3.83 (dd, 11.4, 5.3)	4'	1', 3', 4'	
5'β		3.19 (dd, 11.4, 10.0)	4'	1', 3', 4'	1', 3'

position	$\delta^{13}C$	δ^1 H (mult, J in Hz)	COSY	HMBC ^c	NOESY
1α	27.7	1.22 (m)	1β, 2β	2	2α, 3
1β	57.7	1.86 (m)	1α		19
2α	20.7	2.07 (brd, 12.0)	2β, 1α		1α, 3
2β	29.7	1.65(m)	2α, 3		1α, 4β , 19
3	79.3	4.20 (dddd, 15.0, 13.1, 5.5, 5.2)	2β, 4α, 4β		1 α, 2α, 4α
4α	40.4	2.61 (dd, 13.1, 5.2)	3	2, 3, 5, 6	3, 6
4β	40.4	2.42 (dd, 13.1, 13.1)	3	3, 5	2β, 19
5	148.1				
6	122.1	5.74 (dd, 5.0, 1.3)	7	8	4α, 1'
7	70.1	4.00 (brs)	6, 8	5, 6	15α, 1'
8	38.7	1.53 (ovl)	7, 14		18
9	43.0	1.54 (ovl)			12α, 14
10	38.4				
11α	01.0	1.54 (ovl)	11β		
11β	21.8	1.29 (ovl)	11α, 12β	9	12β, 18
12α	10.5	1.22 (ovl)	12β		9, 14
12β	40.5	1.98 (brd, 12.4)	11β, 12α	13	18
13	43.0				
14	49.8	1.68 (m)	8	9	9, 12α
15α	247	1.95 (ovl)	15β, 16β	13, 14	
15β	24.7	1.09 (m)	15α		7, 1'
16α	28.0	1.95 (m)	16β	20	
16β	28.9	1.25 (ovl)	15α, 16α		17, 22
17	53.4	1.56 (ovl)			16β, 22
18	11.8	0.71 (s)		12, 13, 14, 17	8 , 11β , 12β
19	18.6	1.02 (s)		1, 5, 9, 10	1β, 2β, 4β
20	38.9	1.53 (m)	21		
21	12.6	0.91 (d 6.4)	20	17, 20, 22	23
22	78.2	3.31 (ovl)	23		16β , 17 , 23
23	72.2	3.55 (ddd 10.5, 8.2, 2.6)	22, 24		21, 22
24	42.2	1.14 (ddd 13.6, 10.5, 2.6)	23, 25		
24	43.3	1.24 (ovl)		23, 25, 26, 27	
25	25.3	1.86 (m)	24, 26, 27	24	
26	21.7	0.92 (d, 6.6)	25	24, 25, 27	
27	24.5	0.94(d, 6.7)	25	24, 25, 26	
1'	101.3	4.40 (d, 7.4)	2'	7	6, 7, 3', 5'β
2'	75.2	3.10 (dd, 8.9, 7.4	1', 3'	1', 3'	3' , 4'
3'	77.8	3.33 (ovl)	2', 4'	2'	1', 5'β

Table S2. Complete NMR data of 4 in methanol- d_4

4'	71.4	3.46 (ddd, 10.2, 9.4, 5.3)	3', 5'		2'
5'α	66.8	3.83 (dd, 11.4, 5.3)	4'	1', 4'	4'
5'β		3.19 (dd, 11.4, 10.2)	4'	1', 3', 4'	1', 3'

position	$\delta^{13}C$	δ^1 H (mult, J in Hz)	COSY	HMBC ^c	NOESY
1α	27.7	1.22(m)	1β, 2β	2	2β, 3
1β	37.7	1.88 (m)	1α		19
2α	20.0	2.07 (brd, 12.4)	2β, 1α		1α, 2β, 3,
2β	29.8	1.64(m)	2α, 3		1α, 19
3	79.3	4.20 (dddd, 16.0, 13.1, 4.5, 4.5)	2β, 4α, 4β		1 α, 2α, 4α
4α	40.4	2.61 (dd, 13.1, 4.5)	3	3, 5	3, 6
4β	40.4	2.42 (dd, 13.1, 13.1)	3	2, 3, 5, 6	3, 19
5	148.2				
6	122.1	5.73 (dd, 4.9, 1.3)	7	8	4 α, 7, 1'
7	70.2	3.96 (brs)	6, 8	5, 6	6, 1'
8	38.4	1.53 (ovl)	7, 14		18
9	43.0	1.54 (ovl)			14
10	38.7				
11α	01.0	1.54 (ovl)	11β		
11β	21.8	1.29 (ovl)	11α, 12β	9	18, 19
12α	40.4	1.21 (ovl)	12β		
12β	40.4	2.00 (brd, 12.4)	11β, 12α	13	18
13	43.3				
14	49.7	1.63 (m)	8	9	9, 17
15α	24.9	1.92 (ovl)	15β, 16β	13, 14	17
15β	24.8	1.05 (m)	15α		18
16α		2.05 (m)	16β	20	
16β	29.6	1.21 (ovl)	15α, 16α		
17	58.2	1.15 (m)			14, 15α
18	11.9	0.70 (s)		12, 13, 14, 17	8 , 11 β, 12β, 15 β
19	18.6	1.02 (s)		1, 5, 9, 10	1β, 2β, 4β, 11β
20	35.2	1.44 (m)	21		
21	20.0	0.98 (d, 6.4)	20	17, 20, 22	
22	16.0	1.44 (ovl)	23		
22	40.5	1.54 (ovl)		17, 20, 21, 23	23
23	69.1	3.69 (m)	22, 24		22 24
24	175	1.22 (ovl)	23, 25		23
24	4/5	1.25 (ovl)		23, 25, 26, 27	
25	25.5	1.84 (m)	24, 26, 27	24	
26	22.0	0.90 (d, 6.7)	25	24, 25, 27	
27	24.3	0.92 (d, 6.7)	25	24, 25, 26	
1'	101.3	4.40 (d, 7.5)	2'	7	6, 7, 3', 5'β
2'	75.2	3.10 (dd, 8.9, 7.5)	1', 3'	1', 3'	3', 4'

Table S3. Complete NMR data of **5** in methanol- d_4

3'	77.9	3.32 (ovl)	2', 4'	2'	2', 1'
4'	71.4	3.47 (ddd, 9.9, 8.9, 5.3)	3', 5'		2' , 5'
5'α	66.8	3.83 (dd, 11.4, 5.3)	4'	1', 4'	4'
5'β		3.19 (dd, 11.4, 9.9)	4'	1', 3', 4'	1'

Figure S1. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, chloroform-*d*) of 1

Figure S2. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 2

Figure S3. ¹H NMR Spectra (500 MHz, DMSO- d_6) of 2

Figure S4. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of **3**

Figure S5. HMBC and HSQC NMR spectra of 3

Figure S6. COSY and NOESY NMR spectra of 3

Figure S7. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 4

Figure S8. HMBC and HSQC NMR spectra of 4

Figure S9. COSY and NOESY NMR spectra of 4

Figure S10. ¹H and ¹³C NMR Spectra (500 MHz and 125 MHz, methanol- d_4) of 5

Figure S11. HMBC and HSQC NMR spectra of 5

Figure S12. COSY and NOESY NMR spectra of 5