Mar. Drugs 2017, 15(3), 73; doi:10.3390/md15030073
Marine Lectins DlFBL and HddSBL Fused with Soluble Coxsackie-Adenovirus Receptor Facilitate Adenovirus Infection in Cancer Cells BUT Have Different Effects on Cell Survival
College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
*
Author to whom correspondence should be addressed.
Academic Editor: Kanji Hori
Received: 13 January 2017 / Revised: 26 February 2017 / Accepted: 10 March 2017 / Published: 14 March 2017
(This article belongs to the Special Issue Structures, Functions and Applications of Marine Lectins)
Abstract
Cancer development and progression are usually associated with glycosylation change, providing prognostic and diagnostic biomarkers, as well as therapeutic targets, for various cancers. In this work, Dicentrarchus labrax fucose binding lectin (DlFBL) and Haliotis discus discus sialic acid binding lectin (HddSBL) were genetically fused with soluble coxsackie-adenovirus receptor (sCAR), and produced through a bacterial expression system. Results showed that recombinant sCAR-DlFBL not only facilitated adenovirus Ad-EGFP infection in K562/ADR and U87MG cells, but also enhanced the cytotoxicity of adenovirus harboring gene encoding Pinellia pedatisecta agglutinin (PPA) or DlFBL (Ad-PPA or Ad-DlFBL) on U87MG cells through inducing apoptosis. Recombinant sCAR-HddSBL facilitated Ad-EGFP infection, but dramatically counteracted the cytotoxicity of both Ad-PPA and Ad-DlFBL in U87MG cells. Further analysis revealed that sCAR-HddSBL, but not sCAR-DlFBL, significantly upregulated transcription factor E2F1 levels in U87MG cells, which might be responsible for the adverse effect of sCAR-HddSBL on Ad-PPA and Ad-DlFBL. Taken together, our data suggested that sCAR-DlFBL could be further developed to redirect therapeutic adenoviruses to infect cancer cells such as U87MG, and the sCAR-lectin fusion proteins for adenoviral retargeting should be carefully examined for possible survival signaling induced by lectins, such as HddSBL. View Full-TextKeywords:
DlFBL; HddSBL; adenovirus; E2F1
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Wu, B.; Mei, S.; Cui, L.; Zhao, Z.; Chen, J.; Wu, T.; Li, G. Marine Lectins DlFBL and HddSBL Fused with Soluble Coxsackie-Adenovirus Receptor Facilitate Adenovirus Infection in Cancer Cells BUT Have Different Effects on Cell Survival. Mar. Drugs 2017, 15, 73.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Mar. Drugs
EISSN 1660-3397
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert