Supplemental Information File

General NMR, LC-MS and HPLC procedures

¹H and 2D experiments were recorded at a 600MHz using DMSO- d_6 in a Varian spectrometer and chemical shifts were recorded based on the corresponding solvent signal ($\delta_{\rm H}$ 2.50 ppm for DMSO- d_6).

High resolution ESI-TOF (HRMS) mass spectra were provided by the Scripps Research Institute, La Jolla, CA. Low-resolution LC/ESI-MS data were measured using an Agilent 1200 series LC/MS system -with a reverse-phase C18 column (Phenomenex Luna, 150mm X 4.6 mm, 5 μ m) at a flow rate of 0.7 mL/min. Semi-preparative HPLC was performed on an Agilent 1200 series, using a C18 column (Phenomenex Luna, 250 mm X 10.0 mm, 5 μ m).

Collection and phylogenetic analysis of strain SNA-024

The marine-derived bacterium strain SNA-024 was isolated from a sediment sample collected from West Plana Cay, Bahamas. Bacterial spores were collected via a stepwise centrifugation as follows: 2 g of sediment was dried over 24 hr in an incubator at 35° and the resulting sediment added to 10 mL sH₂O containing 0.05% Tween 20. After vigorous vortex for 10 min, the sediment was centrifuged at 18000 rpm for 25 min (4° C) and the resulting spore pellet collected. The resuspended spore pellet (4 mL sH₂O) was plated on an acidified Gause media, giving rise to individual colonies of SNA-024 after 2 weeks. Analysis of the 16S rRNA sequence of SNA-024 revealed 98% identity to *Streptomyces coeruleoaurantiacus*.

Cultivation and Extraction

Bacterium SNA-024 was cultured in 15 X 2.8 L Fernbach flasks each containing 1 L of seawater-based medium (10 g starch, 4 g yeast extract, 2 g peptone, 1 g CaCO₃, 40 mg Fe₂(SO₄)₃·4H₂O, 100 mg KBr) and shaken at 200 rpm at 27 °C. After seven days of cultivation, sterilized XAD-7-HP resin (20 g/L) was added to absorb the organic products, and the culture and resin were shaken at 200 rpm for 2 h. The resin was filtered through cheesecloth, washed with deionized water, and eluted with acetone. The acetone-soluble fraction was dried *in vacuo* to yield 11.4 g of extract.

Purification of N6,N6-dimethyladenosine

Crude extract (11.4g) was separated into 9 fractions by reverse phase chromatography (C18) using a stepwise gradient, with MeOH /H₂O (20%-100%). The biologically active fraction (**F5**, 91.4mg) was further purified using an automated reversed phase chromatography (ISCO, RediSep Rf Gold® 30 g C18, 35 ml/min) using a gradient solvent system from 10%-100% MeOH:H₂O over 25 min and 30 fractions (F5-I1 – F5-I30) were collected. Fractions were combined based on LC-MS profile similarity to a total of 5 fractions (F5-I1, F5-I3, F5-I5, F5-I7 and F5-I9). Biologically active F5-I7 (5.3mg) was further purified by reverse-phase HPLC (Phenomenex Luna, C18, 250 X 10.0 mm, 5 µm, 2.5 mL/min) using a gradient solvent system, acetonitrile/water with 0.1% formic acid (10%-100%) over 20 minutes with five fractions collected. Fraction F5-I7-1 (~0.5 mg, t_R = 7.0 min) was biologically active and used for structural characterization (HRMS and NMR), and biological assays.

NMR characterization

High-resolution ESI-MS (HRMS) analysis of the enriched fraction **F5-I7-1** gave m/z 296.1352 [M + H]⁺ for the major metabolite consistent with a molecular formula of C₁₂H₁₇N₅O₄ (calcd for C₁₂H₁₈N₅O₄, 296.1358). ¹H NMR data indicated that the major metabolite was a nucleoside in nature with two aromatic signals and signals diagnostic of a glucoside. Analysis of the molecular formula and the diagnostic NMR signals suggested a structure consistent with N^6 , N^6 -dimethyladenosine. Due to material constraints of fraction **F5-I7-1** and the inability to get a pure sample, we ordered commercial N^6 , N^6 -dimethyladenosine (ChemBridgeTM, ChemBridge Corporation, San Diego, CA, USA) to directly compare the ¹H NMR.

¹H NMR comparison of commercial N^6 , N^6 -dimethyladenosine with the enriched fraction **F5-I7-1** indicated that the major metabolite is N^6 , N^6 -dimethyladenosine (Supplemental Table 1). Comparison of the aromatic H-2 at $\delta_{\rm H}$ at 8.21(s), and H-8 at $\delta_{\rm H}$ at 8.37(s), the anomeric H-1' at $\delta_{\rm H}$ at 5.90 (d, J = 6.0Hz), and remaining ribulose signals H-2' at $\delta_{\rm H}$ 4.56 (ddd, J = 5.6, 6.0, 6.2), H-3' at $\delta_{\rm H}$ 4.14 (ddd, J = 4.8, 5.0, 6.2), H-4' at $\delta_{\rm H}$ 3.96 (ddd, J = 3.6, 3.7, 4.0), H-5' at $\delta_{\rm H}$ 3.67(m) and $\delta_{\rm H}$ 3.55(m) with exchangeable protons 2'-OH at $\delta_{\rm H}$ 5.2, 3'-OH at $\delta_{\rm H}$ 5.3 and 4'-OH at $\delta_{\rm H}$ 5.5 unequivocally establish the major metabolite in enriched fraction **F5-I7-1** as N^6 , N^6 -dimethyladenosine (Supplemental Table 1, Supplemental Figure 1-3). Analysis of the remaining ¹H signals ($\delta_{\rm H}$ 8.15 to $\delta_{\rm H}$ 8. 40 ppm and $\delta_{\rm H}$ 3.50 to 6.10 ppm) in **F5-I7-1** revealed that the other metabolites are related adenosine analogs, potentially a diastereomers of N^6 , N^6 -dimethyladenosine.

No.	δ_{H} , mult. (J in Hz)	δ _H , mult. (<i>J</i> in Hz)	δ _H , mult. (<i>J</i> in Hz)
	F5-I7-1	N ⁶ , N ⁶ -dimethyladenosine	adenosine
1	-	-	-
2	8.21 s*	8.21 <i>s</i>	8.13 <i>s</i>
3	-	-	-
4	-	-	-
5	-	-	-
6	-	-	-
7	-	-	-
8	8.37 s*	8.37 s	8.34 <i>s</i>
9	-	-	-
1'	5.90 d (6.0)*	5.90 d (6.0)	5.87 d (6.2)
2'	4.56 ddd (5.0)*	4.56 ddd (5.6, 6.0, 6.2)	4.61 ddd (5.1, 6.2, 6.3)
3'	4.14 ddd (3.5)*	4.14 ddd (4.8, 5.0, 6.2)	4.14 ddd (3.0, 4.6, 5.1)
4'	3.96 ddd (3.6, 3.7, 3.8)*	3.96 ddd (3.6, 3.7, 4.0)	3.96 ddd (3.0, 3.6, 3.7)
5'	3.67 <i>m</i> *	3.67 ddd (4.0, 5.0, 12.1)	3.67 ddd (3.6, 4.4, 12.1)
	3.55 <i>m</i> *	3.55 ddd (3.7, 7.0, 12.1)	3.55 ddd (3.7, 7.2, 12.1)
2'OH	5.5 m*	5.46 d (6.3)	5.43 d (6.3)
3'OH	5.2 m*	5.19 d (4.7)	5.17 d (4.6)
5'OH	5.3 m*	5.38 dd (4.5, 7.1)	5.41 dd (4.4, 7.2)
N6-Me	3*	3.33 s	-

Supplemental Table 1. 1D ¹H NMR data for F5-I7-1, N⁶, N⁶-dimethyladenosine and adenosine.

* overlap with other metabolites

Supplemental Figure 1. 1D ¹H NMR comparison of **F5-I7-1** and *N*⁶,*N*⁶-dimethyladenosine H2, H8 and H1' protons.

Supplemental Figure 2. 1D proton NMR of F5-I7-1 using 600MHz in DMSO-d₆.

Supplemental Figure 3. 1D proton NMR of N⁶, N⁶-dimethyladenosine at 600MHz in DMSO-d₆.

Supplemental figure 4. HRMS of F5-I7-1 showing peak at m/z 296.1352 [M + H]⁺.