Supplementary Materials: Laucysteinamide A, a Hybrid PKS/NRPS Metabolite from a Saipan Cyanobacterium, cf. *Caldora penicillata* (Supplementary Materials)

Table S1. Brine Shrimp Assay Results of the 10 Fractions (A-J) and Crude Extract of the Sample													
Conc.	Tray #		Α	В	С	D	Ε	F	G	Н	Ι	J	Crude
3 μg/mL	1	death rate	-0.24	0.08	1	0.18	0	0	0.18	0	0	0	0
3 μg/mL	2	death rate	-0.1	0	1	0	0.14	0.06	0.11	0	0	0	0.06
		averag e	-0.17	0.04	1	0.09	0.07	0.03	0.15	0	0	0	0.03
30 μg/mL 30 μg/mL	3	death rate	0.25	1	0.95	1	1	0.89	0.71	0.86	0	0.14	1
	4	death rate	0.29	0.83	1	1	1	1	1	0.79	0.09	0.12	1
		averag e	0.27	0.92	0.98	1	1	0.94	0.86	0.82	0.05	0.13	1

Chen Zhang ¹, C. Benjamin Naman ², Niclas Engene ³ and William H. Gerwick ^{2,4*}

Table S1. Brine Shrimp Assay Results of the 10 Fractions (A-I) and Crude Extract of the Sample

Figure S1. (a) Fragmentation analysis of curacin D (3). (b) MS of curacin D (3) (positive ion mode). (c) MS/MS (positive ion mode) spectra of curacin D (3).

Figure S2. ¹H NMR spectra of curacin D (3) in C₆D₆.

S2 of S10

Figure S3. HPLC chromatogram of laucysteinamide A (1).

Figure S4. HRESITOFMS results of laucysteinamide A (1).

Figure S5. ¹H NMR spectra of laucysteinamide A (1) in C₆D₆.

Figure S6. ¹³C NMR spectra of laucysteinamide A (1) in C₆D₆.

Mar. Drugs 2017, 15, doi:10.3390/md15040121

Figure S7. COSY spectra of laucysteinamide A (1) in C₆D₆.

Mar. Drugs 2017, 15, doi:10.3390/md15040121

Figure S8. ¹H-¹³C HSQC spectra of laucysteinamide A (1) in C₆D₆.

Figure S9. H2BC spectra of laucysteinamide A (1) in C₆D₆.

S6 of S10

Figure S10. HMBC spectra of laucysteinamide A (1) in C₆D₆.

Figure S11. ECCD Spectrum of laucysteinamide A (1). The compound was dissolved in dichloromethane for the experiment. The region above 200 nm is obscured by solvent absorptions.

S7 of S10

8

Figure S12. Biosynthetic scheme proposed for laucysteinamide A. (**a**) A hypothesized hybrid PKS/NRPS pathway of biosynthetic precursors. (**b**) The hybrid PKS/NRPS pathway prediction before chain termination with enzymatic domain. The last three steps show the predicted chain termination mechanism in laucysteinamide A (**1**) biosynthesis. This proposed biosynthetic pathway is based on that described for curacin A biosynthesis process[1,2]. Abbreviations: ACP, acyl carrier protein; KS, β-ketoacyl-ACP synthase; KR, β-ketoacyl-ACP reductase; AT, acyl transferase; DH, β-hydroxy-acyl-ACP dehydratase; ER, enoyl reductase; MT, N-methyl transferase; PCP, peptidyl carrier protein; Cy, condensaton/cyclization domain; A, adenylation domain; ST, sulfotransferase; PAPS, adenosine 3-phosphate 5-phosphate; TE, thioesterase.

Figure S13. (a) Low resolution MS (positive ion mode) of laucysteinamide A (1). (b) MS/MS (positive ion mode) spectra of 1.

References

- 1. Gu, L. C.; Wang, B.; Kulkarni, A.; Gehret, J. J.; Lloyd, K. R.; Gerwick, L.; Gerwick, W. H.; Wipf, P.; Hakansson, K.; Smith, J. L.; Sherman, D. H., Polyketide Decarboxylative Chain Termination Preceded by O-Sulfonation in Curacin A Biosynthesis. *J Am Chem Soc* **2009**, 131, (44), 16033-16035.
- Chang, Z. X.; Sitachitta, N.; Rossi, J. V.; Roberts, M. A.; Flatt, P. M.; Jia, J. Y.; Sherman, D. H.; Gerwick, W. H., Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. *J Nat Prod* 2004, 67, (8), 1356-1367.