Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge *Poecillastra compressa* (Bowerbank, 1866)

Kevin Calabro ^{1,2}, Elaheh Lotfi Kalahroodi ³, Daniel O. Rodrigues ^{3,4}, Caridad Díaz ⁵, Mercedes de la Cruz ⁵, Bastien Cautain ⁵, Rémi Laville ², Fernando Reyes ⁵, Thierry Pérez ⁴, Bassam Soussi ^{3,6,7} and Olivier P. Thomas ^{1,3,*}

- ¹ National University of Ireland Galway, School of Chemistry, Marine Biodiscovery, University Road, Galway, Ireland; kevin.calabro@unice.fr (K.C.); olivier.thomas@nuigalway.ie (O.T.)
- ² Cosmo International Ingredients, 855 avenue du Docteur Maurice Donat, 06250 Mougins., France; remi.laville@airlquide.com (R.L.)
- ³ Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 250 rue Albert Einstein, 06560 Valbonne, France; elaheh.lotfi-kalahroodi@univ-rennes1.fr (E.L.K.); daniel4rodrigues@gmail.com (D.R.)
- ⁴ Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale. CNRS Aix-Marseille Univ IRD Univ Avignon. Station Marine d'Endoume, rue de la batterie des lions, 13007, Marseille, France; thierry.perez@imbe.fr (T.P.)
- ⁵ Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, E-18016, Armilla, Granada, Spain; caridad.diaz@medinaandalucia.es (C.D.); mercedes.delacruz@medinaandalucia.es (M.C.); bastien.cautain@medinaandalucia.es (B.C.); fernando.reyes@medinaandalucia.es (F.R.)
- ⁶ Department of Marine Sciences, University of Gothenburg, PO Box 460, SE40530 Gothenburg, Sweden; bassam.soussi@gu.se (B.S.)
- ⁷ Oman Centre for Marine Biotechnology, PO Box 236, PC 103, Muscat, Oman

P4Figure S1. (–)-HRESIMS analysis of 1 Ρ5 Figure S2. ¹H NMR spectrum of 1 at 500 MHz in CD₃OD P6 Figure S3. COSY NMR spectrum of 1 at 500 MHz in CD₃OD P7 Figure S4. TOCSY NMR spectrum of 1 at 500 MHz in CD₃OD P8 Figure S5. NOESY NMR spectrum of 1 at 500 MHz in CD₃OD P9 Figure S6. ¹³C NMR spectrum of 1 at 125 MHz in CD₃OD P10 Figure S7. HSQC NMR spectrum of 1 at 500 MHz in CD₃OD P11 Figure S8. HMBC NMR spectrum of 1 at 500 MHz in CD₃OD Figure S9. (-)-HRESIMS analysis of 2 P12 P13 Figure S10. 1H NMR spectrum of 2 at 500 MHz in CD₃OD P14 Figure S11. COSY NMR spectrum of 2 at 500 MHz in CD₃OD P15 Figure S12. TOCSY NMR spectrum of 2 at 500 MHz in CD₃OD P16 Figure S13. NOESY NMR spectrum of 2 at 500 MHz in CD₃OD P17 Figure S14. ¹³C NMR spectrum of 2 at 125 MHz in CD₃OD P18 Figure S15. HSQC NMR spectrum of 2 at 500 MHz in CD₃OD P19 Figure S16. HMBC NMR spectrum of 2 at 500 MHz in CD₃OD P20 Figure S17. (-)-HRESIMS analysis of 3 P21 Figure S18. ¹H NMR spectrum of 3 at 500 MHz in CD₃OD P22 Figure S19. COSY NMR spectrum of 3 at 500 MHz in CD₃OD P23 Figure S20. TOCSY NMR spectrum of 3 at 500 MHz in CD₃OD P24 Figure S21. ¹³C NMR spectrum of 3 at 125 MHz in CD₃OD P25 Figure S22. HSQC NMR spectrum of 3 at 500 MHz in CD₃OD P26 Figure S23. PSYCHE_1D NMR spectrum of 3 at 500 MHz in CD₃OD P27 Figure S24. PS-HSQC NMR spectrum of 3 at 500 MHz in CD₃OD P28 Figure S25. HMBC NMR spectrum of 3 at 500 MHz in CD₃OD P29 Figure S26. (+)-HRESIMS analysis of 4 P30 Figure S27. ¹H NMR spectrum of 4 at 500 MHz in CD₃OD P31 Figure S28. COSY NMR spectrum of 4 at 500 MHz in CD₃OD P32 Figure S29. TOCSY NMR spectrum of 4 at 500 MHz in CD₃OD P33 Figure S30. ¹³C NMR spectrum of 4 at 125 MHz in CD₃OD P34 Figure S31. HSQC NMR spectrum of 4 at 500 MHz in CD₃OD P35 Figure S32. HMBC NMR spectrum of 4 at 500 MHz in CD₃OD P36 Figure S33. (+)-HRESIMS analysis of 5 P37 Figure S34. ¹H NMR spectrum of 5 at 500 MHz in CD₃OD Figure S35. COSY NMR spectrum of 5 at 500 MHz in CD₃OD P38 P39 Figure S36. NOESY NMR spectrum of 5 at 500 MHz in CD₃OD Figure S37. ¹³C NMR spectrum of 5 at 125 MHz in CD₃OD P40 Figure S38. HSQC NMR spectrum of 5 at 500 MHz in CD₃OD P41 P42 Figure S39. HMBC NMR spectrum of 5 at 500 MHz in CD₃OD P43 Figure S40. (+)-HRESIMS analysis of 6 P44 Figure S41. ¹H NMR spectrum of 6 at 600 MHz in CD₃OD P45 Figure S42. COSY NMR spectrum of 6 at 600 MHz in CD₃OD Figure S43. ¹³C NMR spectrum of 6 at 150 MHz in CD₃OD P46 P47 Figure S44. HSQC NMR spectrum of 6 at 600 MHz in CD₃OD P48 Figure S45. HMBC NMR spectrum of 6 at 600 MHz in CD₃OD

- P49 Figure S46. (+)-HRESIMS analysis of 7
- P50 **Figure S47.** ¹H NMR spectrum of **7** at 600 MHz in CD₃OD
- P51 **Figure S48.** COSY NMR spectrum of **7** at 600 MHz in CD₃OD
- P52 **Figure S49.** TOCSY NMR spectrum of **7** at 600 MHz in CD₃OD
- P53 **Figure S50.** ¹³C NMR spectrum of **7** at 150 MHz in CD₃OD
- P54 **Figure S51.** HSQC NMR spectrum of 7 at 600 MHz in CD₃OD
- P55 Figure S52. HMBC NMR spectrum of 7 at 600 MHz in CD₃OD
- P56 Figure S53. UPLC-qToF analysis of the four monosaccharide derivatives;
 Figure S54. Absolute configuration of pyranose moieties of 3;
 Figure S55. ESI-(+) spectrum of D-(+)-glucose derivative

Compound Formula	Name	RT	Algorithm
C40H68O13	Poecillastroside A	6.251	Spectrum Extraction

6 x10 MS Spectrum

Figure S1. (–)-HRESIMS analysis of **1**.

Figure S2. ¹H NMR spectrum of **1** at 500 MHz in CD₃OD

Figure S3. COSY NMR spectrum of 1 at 500 MHz in CD₃OD

Figure S4. TOCSY NMR spectrum of 1 at 500 MHz in CD₃OD

Figure S5. NOESY NMR spectrum of 1 at 500 MHz in CD₃OD

Figure S6. ¹³C NMR spectrum of 1 at 125 MHz in CD₃OD

Figure S7. HSQC NMR spectrum of 1 at 500 MHz in CD₃OD

Figure S8. HMBC spectrum of 1 at 500 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C41H70O13	Poecillastroside B	6.581	Spectrum Extraction

6 x10

Figure S9. (–)-HRESIMS analysis of 2.

Figure S10. ¹H NMR spectrum of **2** at 500 MHz in CD₃OD

Figure S11. COSY NMR spectrum of 2 at 500 MHz in CD₃OD

Figure S12. TOCSY NMR spectrum of 2 at 500 MHz in CD₃OD

Figure S13. NOESY NMR spectrum of 2 at 500 MHz in CD₃OD

Figure S14. ¹³C NMR spectrum of 2 at 125 MHz in CD₃OD

Figure S15. HSQC NMR spectrum of 2 at 500 MHz in CD₃OD

Figure S16. HMBC spectrum of 2 at 500 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C41H70O13	Poecillastroside C	6.559	Spectrum Extraction

6 x10

Figure S17. (–)-HRESIMS analysis of 3.

Figure S18. ¹H NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S19. COSY NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S20. TOCSY NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S21. ¹³C NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S22. HSQC NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S23. PSYCHE_1D NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S24. PS-HSQC NMR spectrum of 3 at 500 MHz in CD₃OD

Figure S25. HMBC spectrum of 3 at 500 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C41H68O13	Poecillastroside D	7.049	Spectrum Extraction

5 x10

Figure S26. (+)-HRESIMS analysis of 4.

Figure S27. ¹H NMR spectrum of **4** at 500 MHz in CD₃OD

Figure S28. COSY NMR spectrum of 4 at 500 MHz in CD₃OD

Figure S29. TOCSY NMR spectrum of 4 at 500 MHz in CD₃OD

Figure S30. ¹³C NMR spectrum of 4 at 125 MHz in CD₃OD

Figure S31. HSQC NMR spectrum of 4 at 500 MHz in CD₃OD

Figure S32. HMBC spectrum of 4 at 500 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C43H66O15	Poecillastroside E	7.109	Spectrum Extraction

5 x10 MS Spectrum

Cpd 1: Poecillastroside

Figure S33. (+)-HRESIMS analysis of 5.

Figure S34. ¹H NMR spectrum of **5** at 500 MHz in CD₃OD

Figure S35. COSY NMR spectrum of 5 at 500 MHz in CD₃OD

Figure S36. NOESY NMR spectrum of 5 at 500 MHz in CD₃OD

Figure S37. ¹³C NMR spectrum of 5 at 125 MHz in CD₃OD

Figure S38. HSQC NMR spectrum of 5 at 500 MHz in CD₃OD

Figure S39. HMBC spectrum of 5 at 500 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C41H66O13	Poecillastroside F	7.024	Spectrum Extraction

MS Spectrum

Figure S40. (+)-HRESIMS analysis of 6.

Figure S41. ¹H NMR spectrum of 6 at 600 MHz in CD₃OD

Figure S42. COSY NMR spectrum of 6 at 600 MHz in CD₃OD

Figure S43. ¹³C NMR spectrum of 6 at 150 MHz in CD₃OD

Figure S44. HSQC NMR spectrum of 6 at 600 MHz in CD₃OD

Figure S45. HMBC spectrum of 6 at 600 MHz in CD₃OD

Compound Formula	Name	RT	Algorithm
C43H68O14	Poecillastroside G	7.384	Spectrum Extraction

Figure S46. (+)-HRESIMS analysis of 7.

Figure S47. ¹H NMR spectrum of **7** at 600 MHz in CD₃OD

Figure S48. COSY NMR spectrum of 7 at 600 MHz in CD₃OD

Figure S49. TOCSY NMR spectrum of 7 at 600 MHz in CD₃OD

Figure S50. ¹³C NMR spectrum of 7 at 150 MHz in CD₃OD

Figure S51. HSQC NMR spectrum of 7 at 600 MHz in CD₃OD

Figure S52. HMBC spectrum of 7 at 600 MHz in CD₃OD

Figure S53. UPLC-qToF analysis of the four monosaccharide derivatives

Figure S54. Absolute configuration of the pyranose moieties of 3

Figure S55. ESI-(+) mass spectrum of D-(+)-glucose derivative