Supplementary Materials:

5-Hydroxycyclopenicillone, a New β-Amyloid Fibrillization Inhibitor from a Sponge-Derived Fungus *Trichoderma* sp. HPQJ-34

Fang Fang, Jiaying Zhao, Lijian Ding, Chunhui Huang, C. Benjamin Naman, Shan He, Bin Wu, Peng Zhu, Qijun Luo, William H. Gerwick, Xiaojun Yan, Qinwen Wang, Zaijun Zhang and Wei Cui

List of Supplementary Materials:

Figure S1. HRESIMS for compound 1.

Figure S2. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 1.

Figure S3. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 1.

Figure S4. COSY spectrum (CD₃OD, 500 MHz) of compound 1.

Figure S5. HSQC spectrum (CD3OD, 500 MHz ¹H and 125 MHz ¹³C) of compound 1.

Figure S6. HMBC spectrum (CD3OD, 500 MHz ¹H and 125 MHz ¹³C) of compound 1.

Figure S7. NOESY spectrum (CD₃OD, 500 MHz) of compound 1.

Text S8. ITS rDNA gene sequence from strain HPQJ-34.

Text S9. Computational molecular model coordinates for an energy minimized conformer of compound **1**.

Text S10. Computational molecular model coordinates for an energy minimized conformer of compound **5**.

Table S11. Comparison of the NMR data of compound 1 and 5.

Figure S4. COSY spectrum (CD₃OD, 500 MHz) of compound 1.

Text S8. ITS rDNA gene sequence from strain HPQJ-34.

Text S9. Computational molecular model coordinates for an energy minimized conformer of compound **1**.

HEADER

HETATM	1	С	UNK	0001	-1.637	-1.053	0.131
HETATM	2	С	UNK	0001	-0.687	-0.037	-0.488
HETATM	3	С	UNK	0001	-1.230	1.170	-0.597
HETATM	4	С	UNK	0001	-2.600	1.142	-0.015
HETATM	5	С	UNK	0001	-2.773	-0.191	0.725
HETATM	6	0	UNK	0001	-3.403	2.017	-0.086
HETATM	7	С	UNK	0001	-0.694	2.436	-1.193
HETATM	8	0	UNK	0001	-2.193	-1.884	-0.854
HETATM	9	С	UNK	0001	-2.587	0.056	2.220
HETATM	10	С	UNK	0001	0.690	-0.465	-0.926
HETATM	11	С	UNK	0001	1.707	-0.333	0.213
HETATM	12	С	UNK	0001	3.132	-0.750	-0.181
HETATM	13	С	UNK	0001	4.099	-0.585	0.962
HETATM	14	0	UNK	0001	0.571	-1.806	-1.366
HETATM	15	С	UNK	0001	5.146	0.218	1.041
HETATM	16	С	UNK	0001	5.667	1.184	0.012
HETATM	17	Η	UNK	0001	-1.148	-1.658	0.887
HETATM	18	Η	UNK	0001	0.229	2.281	-1.740
HETATM	19	Η	UNK	0001	-1.429	2.863	-1.866
HETATM	20	Η	UNK	0001	-0.509	3.173	-0.418
HETATM	21	Η	UNK	0001	-1.484	-2.303	-1.327
HETATM	22	Η	UNK	0001	-3.353	0.738	2.567
HETATM	23	Η	UNK	0001	-2.690	-0.881	2.754
HETATM	24	Η	UNK	0001	-1.614	0.483	2.439
HETATM	25	Η	UNK	0001	1.009	0.153	-1.760
HETATM	26	Η	UNK	0001	1.718	0.702	0.541
HETATM	27	Η	UNK	0001	1.371	-0.931	1.055
HETATM	28	Η	UNK	0001	3.133	-1.798	-0.475
HETATM	29	Η	UNK	0001	3.451	-0.179	-1.047
HETATM	30	Η	UNK	0001	3.886	-1.208	1.818
HETATM	31	Η	UNK	0001	1.364	-2.080	-1.806
HETATM	32	Η	UNK	0001	5.716	0.192	1.956
HETATM	33	Н	UNK	0001	6.685	0.927	-0.268
HETATM	34	Η	UNK	0001	5.070	1.210	-0.890
HETATM	35	Η	UNK	0001	5.696	2.191	0.421
HETATM	36	0	UNK	0001	-4.031	-0.751	0.557

HETATM	37	Н	UNK	000)1	-4.044	-1.232	-0.261
CONECT	1	17	2	5	8			
CONECT	2	1	3	10				
CONECT	3	2	4	7				
CONECT	4	3	5	6				
CONECT	5	4	1	9	36			
CONECT	6	4						
CONECT	7	3	18	19	20			
CONECT	8	1	21					
CONECT	9	5	22	23	24			
CONECT	10	2	11	14	25			
CONECT	11	10	12	26	27			
CONECT	12	11	13	28	29			
CONECT	13	12	15	30				
CONECT	14	10	31					
CONECT	15	13	16	32				
CONECT	16	15	33	34	35			
CONECT	17	1						
CONECT	18	7						
CONECT	19	7						
CONECT	20	7						
CONECT	21	8						
CONECT	22	9						
CONECT	23	9						
CONECT	24	9						
CONECT	25	10						
CONECT	26	11						
CONECT	27	11						
CONECT	28	12						
CONECT	29	12						
CONECT	30	13						
CONECT	31	14						
CONECT	32	15						
CONECT	33	16						
CONECT	34	16						
CONECT	35	16						
CONECT	36	37	5					
CONECT	37	36						
END								

Text S10. Computational molecular model coordinates for an energy minimized conformer of compound **5**.

HEADER

HETATM	1	С	UNK	0001	-1.879	-1.202	0.182
HETATM	2	С	UNK	0001	-0.933	-0.161	-0.408
HETATM	3	С	UNK	0001	-1.443	1.067	-0.395
HETATM	4	С	UNK	0001	-2.783	1.036	0.240
HETATM	5	С	UNK	0001	-3.124	-0.403	0.589
HETATM	6	0	UNK	0001	-3.467	1.989	0.459
HETATM	7	С	UNK	0001	-0.868	2.370	-0.866
HETATM	8	0	UNK	0001	-2.252	-2.186	-0.741
HETATM	9	С	UNK	0001	-3.551	-0.554	2.049
HETATM	10	С	UNK	0001	0.456	-0.536	-0.868
HETATM	11	С	UNK	0001	1.495	-0.240	0.222
HETATM	12	С	UNK	0001	2.935	-0.575	-0.192
HETATM	13	С	UNK	0001	3.920	-0.255	0.902
HETATM	14	0	UNK	0001	0.446	-1.912	-1.198
HETATM	15	С	UNK	0001	4.901	0.632	0.889
HETATM	16	С	UNK	0001	5.310	1.561	-0.221
HETATM	17	Η	UNK	0001	-1.413	-1.669	1.048
HETATM	18	Η	UNK	0001	-3.938	-0.713	-0.058
HETATM	19	Η	UNK	0001	0.037	2.238	-1.448
HETATM	20	Η	UNK	0001	-1.595	2.896	-1.473
HETATM	21	Η	UNK	0001	-0.638	3.012	-0.021
HETATM	22	Η	UNK	0001	-1.463	-2.594	-1.074
HETATM	23	Η	UNK	0001	-4.402	0.082	2.258
HETATM	24	Η	UNK	0001	-3.826	-1.581	2.261
HETATM	25	Η	UNK	0001	-2.749	-0.272	2.725
HETATM	26	Η	UNK	0001	0.701	0.038	-1.757
HETATM	27	Η	UNK	0001	1.436	0.812	0.480
HETATM	28	Η	UNK	0001	1.230	-0.801	1.114
HETATM	29	Η	UNK	0001	3.011	-1.639	-0.412
HETATM	30	Η	UNK	0001	3.183	-0.046	-1.106
HETATM	31	Η	UNK	0001	3.784	-0.829	1.805
HETATM	32	Η	UNK	0001	1.235	-2.141	-1.668
HETATM	33	Н	UNK	0001	5.498	0.715	1.783
HETATM	34	Н	UNK	0001	6.337	1.367	-0.519
HETATM	35	Η	UNK	0001	4.687	1.475	-1.102
HETATM	36	Η	UNK	0001	5.269	2.593	0.116

CONECT	1	17	2	5	8
CONECT	2	1	3	10	
CONECT	3	2	4	7	
CONECT	4	3	5	6	
CONECT	5	4	1	9	18
CONECT	6	4			
CONECT	7	3	19	20	21
CONECT	8	1	22		
CONECT	9	5	23	24	25
CONECT	10	2	11	14	26
CONECT	11	10	12	27	28
CONECT	12	11	13	29	30
CONECT	13	12	15	31	
CONECT	14	10	32		
CONECT	15	13	16	33	
CONECT	16	15	34	35	36
CONECT	17	1			
CONECT	18	5			
CONECT	19	7			
CONECT	20	7			
CONECT	21	7			
CONECT	22	8			
CONECT	23	9			
CONECT	24	9			
CONECT	25	9			
CONECT	26	10			
CONECT	27	11			
CONECT	28	11			
CONECT	29	12			
CONECT	30	12			
CONECT	31	13			
CONECT	32	14			
CONECT	33	15			
CONECT	34	16			
CONECT	35	16			
CONECT	36	16			
END					

Position	δc , type.	δ н, mult. (J in Hz)	δc, type.	δ н, mult. (J in Hz)	
		1	5		
1	210.4, C		210.3, C		
2	135.8, C		136.4, C		
3	171.7, C		173.5, C		
4	75.3, CH	4.49, d (1.0)	77.6, CH	4.46, br s	
5	74.5, C		50.9, CH	2.18, q (7.8)	
6	8.4, CH ₃	1.75, d (1.0)	8.3, CH ₃	1.73, br s	
7	23.1, CH₃	1.23, s	13.8, CH₃	1.16, d (7.8)	
1′	69.4, CH	4.72, dd (8.6, 4.8)	69.7, CH	4.75, dd (8.4, 4.2)	
2'		1.86, dtd (14.2, 8.6, 5.5),		1.85, m,	
Z	30.0, CH2	1.76, m	36.9, CH ₂	1.64, m	
3′	29.8, CH ₂	2.12, m	29.8, CH ₂	2.18, m, 2.10 m	
4′	131.6, CH	5.49, m	131.7, CH	5.49, m	
5′	126.7, CH	5.48, m	126.6, CH	5.48, m	
6′	18.1, CH ₃	1.64, d (4.8)	18.1, CH ₃	1.63, d (6.6)	

Table S11. Comparison of the NMR data of compound 1^{*a*} and 5^{*b*}

^{*a*} Isolated in this study; "NMR spectra were obtained at 500 MHz for ¹H NMR and 125 MHz for ¹³C NMR on a Bruker AVANCE-500 spectrometer. Chemical shifts (δ) are referenced to the residual solvent peaks of CD₃OD (δ H 3.31 and δ c 49.0) and given in ppm".

^{*b*} Not isolated in this study; "... in CD₃OD. Data were recorded on a Bruker Avance 600 spectrometer; chemical shifts (δ) are given in parts per million with references to the center peak of CD₃OD with δ 3.30 for ¹H and δ 49.0 for ¹³C." from manuscript reference 19 [Lin, S.; Shi, T.; Chen, K. Y.; Zhang, Z. X.; Shan, L.; Shen, Y. H.; Zhang, W. D. Cyclopenicillone, a unique cyclopentenone from the cultures of *Penicillium decumbens. Chem. Commun.* **2011**, 47, 10413–10418.].