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Abstract: Sigma receptors are a fascinating receptor protein class whose ligands are actually under
clinical evaluation for the modulation of opioid analgesia and their use as positron emission
tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated
with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic
and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has
been well documented, with significantly higher levels in proliferating tumor cells compared to
quiescent ones. This acknowledged feature has found practical application in the development of
cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands
that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this
paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small”
marine natural products constructed by the union of the Seaweed Metabolite and the Chemical
Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters
that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative
Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2

receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97
(SGMR2_HUMAN) receptor.

Keywords: virtual screening; database marine products; sigma-2 receptor; sigma-2 receptor ligands

1. Introduction

Sigma (σ) receptors include a particular pharmacologically defined family of membrane-bound
receptors that bind compounds belonging to a variety of structural classes. Discovered in 1976
and recognized in two distinct subtypes in the early 1990s, they represent a potential target for the
diagnosis and therapy of cancer and central nervous system (CNS) diseases [1,2]. Indeed, both σ

receptor subtypes are highly expressed in several tissues and distinguished from each other through
their affinity for different ligands and biological profiles.

The sigma-1 (σ1) receptor is a 25.3-kDa chaperone protein that resides in the endoplasmic
reticulum–mitochondrion interface as well as in nuclear and plasma membranes [3–5], firstly cloned
from Guinea pig liver cells [6] (Uni-ProtID Q60492, Gene names SIGMAR1, CHEMBL4153). The human
σ1 receptor was characterized by X-ray crystallography and the crystal structures in complex with
two ligands have been reported (PDB ID 5HK1 and 5HK2) [7]. Several synthetic small molecules
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with different structures bind with high affinity and selectivity to the σ1 receptor. The σ1 receptor
agonists have shown neuroprotective, antiamnestic, and antidepressant effects; in contrast, the σ1

receptor antagonists possess modulatory effects on opioid analgesia, as well as antiproliferative and
antiangiogenic activities [8–14].

The sigma-2 (σ2) receptor is an enigmatic protein that has attracted significant attention due to
its involvement in several diseases, such as cancer and neurological disorders. However, despite the
increasingly apparent medical importance of the σ2 receptor, its biological role has been stymied since
the gene that encodes the receptor has never been identified, and a crystal structure of the receptor
has never been released. The σ2 receptor has been reported to have a molecular weight between
18–21.5 kDa. For a long time, it has been contemplated as part of the progesterone receptor membrane
component one (PGRMC-1), which is a heme-binding protein that is involved in cell survival and
apoptosis [15]. Recently, it has been purified, revealing its identity as the Transmembrane Protein 97
(TMEM97), which is an endoplasmic reticulum-resident transmembrane protein that regulates the
sterol transporter Niemann-Pick disease protein (NPC-1), which is involved in regulating intracellular
Ca2+ concentration [2,11,16,17].

The σ2/Tmem97 ligands can produce a transient rise in intracellular Ca2+ levels [17] or overcome
Ca2+ influx in the presence of an inducer [18]. The σ2 receptor ligands determine tumor cell death
through apoptotic and non-apoptotic pathways [2,16]. The apoptotic processes mediated by the σ2

receptor include cell cycle arrest in the G1 phase, which seems to be induced by an expression of cyclinD
and CDK2 proteins, as well as by a reduction in intracellular ATP levels [19]. Meanwhile, non-apoptotic
mechanisms may include DNA fragmentation, lysosomal leakage, and oxidative stress [20–22].
Overexpressed in several tumor cell lines, the σ2 receptor ligands are actually under clinical evaluation
as positron emission tomography (PET) radiotracers and indicated for the ligand-targeting therapy
and as fluorescence imaging agents [23–28]. In this context, the development of new ligands that target
the σ2 receptor may be particularly beneficial; on the other hand, few selective ligands have been found
for the σ2 receptor, and in some cases, their finding occurred through an accidental discovery [26].

The spreading of computer science, and in particular the possibility of consulting hundreds of
chemical databases, gives the opportunity to find novel compounds that are able to bind a specific
receptor, enabling a rational investigation. This task may be carried out by means of virtual screening,
which helps the end user in filtering many compounds based on virtual model specifications. In absence
of virtual methods that are able to evenly handle an unlimited amount of compounds, this task must be
manually accomplished by medicinal chemists, which has obvious limitations [29]. On these grounds
and motivated by our ongoing interest in developing new compounds that selectively target the
σ2 receptor, we have recently developed a two-dimensional (2D) [30,31] and a three-dimensional
Quantitative Structure–Activity Relationship (3D-QSAR) model [32], which was built using the whole
set of selective σ2 receptor ligands as retrieved from the σ2 receptor selective ligand database (S2RSLDB)
(http://www.researchdsf.unict.it/S2RSLDB) [33].

Since structure and ligand-based computer-aided drug design are nowadays effective and useful
tools in rational drug design [34–39], we used them to allow the identification of new virtually
potent and selective molecules that are able to interact with the σ2 receptor. Therefore, herein,
we report an investigation of new potentially σ2/TMEM97 receptor ligands among a database of
1517 “small” marine natural products, here named the Blue DataBase (BDB, Table S1), which was
composed by the merging of the Seaweed Metabolite (http://www.swmd.co.in/) [40], the Chemical
Entities of Biological Interest (ChEBI, http://www.ebi.ac.uk/chebi/) [41] databases, and from the
reference [42]. The chemical structures were passed through two filters constituted by our developed
2D and 3D-QSAR statistical models that showed high statistical quality and robust predictive potential
capability, and successively docked upon the σ2/TMEM97 receptor homology model. To the best of
our knowledge, this is the first report on the build of a 3D structure of the σ2/TMEM97, by mixing
the classic homology modeling approach with the evolutionary coupling analysis. Moreover, the
robustness of this model has been confirmed by docking on it 200 σ2-ligands that were randomly
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selected from the S2RSLDB. Finally, the results of the two filters and docking have been merged,
ordering them by the mean of the obtained pKi (−log10Ki) to draw up a list of the 15 best candidates
(mean of 2D, 3D-QSAR, and docking pKi results) as possible powerful σ2 receptor marine ligands.
Four of them are already known in the literature for their antiproliferative and cytotoxic effects against
A549 and HT29 cancer cell lines, which are two typical cancer cell lines characterized by σ2 receptor
overexpression. In particular, compound 848 resembles progesterone, which in itself is a potent σ2

receptor ligand.

2. Results and Discussion

2.1. 2D Ligand-Based Filter

The BDB was filtered through an in-house hybrid σ2 receptor affinity filter [30], returning
for each chemical entity a predicted σ2 receptor pKi. This 2D-QSAR model [30,31] has been
built by using a Monte Carlo-based QSAR analysis employing the software CORAL (version 2016,
http://www.insilico.eu/coral/index.html) [43,44]. CORAL allows for a hybrid representation of
molecular structures that includes a simplified molecular input line entry system (SMILES) and
a molecular graph. Hybrid representation using SMILES together with the molecular graph may
give better models with higher statistical quality with respect to those models, and with a unique
representation of the molecular structure [45,46]. The here-used 2D-QSAR model, being constructed
with a large and structurally diverse set of 548 compounds, allows for a prediction of different
populations of chemical compounds endpoints (σ2 receptor pKi).

The chemical structures of the 1517 “blue” compounds were transformed into SMILES and
converted into freebase, while those compounds presenting a carboxylate were left as is. Eventually,
the aromatic rings were converted into the kekulé forms. These conversions have been performed in
order to generate SMILES with the same depiction as those used for building the hybrid σ2 receptor
affinity filter, since this model works by chopping the SMILES or the molecular graphs into small
fragments, and iteratively overmatching them with the SMILES and molecular graphs fragments that
compose the training set [30,31].

Among 1517 compounds, 1313 have been defined by the model to be outliers, which means that
their chemical structures were expressed as SMILES or a molecular graph that was not described by the
model, entirely or for a significant part. Indeed, for these compounds, the type of SMILES or molecular
graphs fragments generated do not overmatch, entirely or for a significant part, with the SMILES
or molecular graphs fragments that compose the training set. For these molecules, the software still
predicts an endpoint, but it highlights them for not falling in the field of applicability, and thus being
outliers. The remaining 204 “blue” compounds were returned with a predicted endpoint, and were
indicated as falling within the domain of applicability. From this subset, 42 compounds have been
predicted to possess a σ2 receptor, Ki, which was higher or equal to 100 nM (pKi ≥ 7), and is empirically
considered an appropriate value for processing a compound into more complex phenotypic assays.
These compounds are reported in Table S2.

2.2. 3D Ligand-Based Filter

The same dataset of compounds was also evaluated using a second ligand-based filter. All
of the 3D structures of the compounds were aligned to our previously published 3D-QSAR model
for the σ2 receptor. The alignment of the molecules in the 3D-QSAR pharmacophore model was
performed with Forge (v10.4.2, Cresset, New Cambridge House, Hertfordshire, UK) [47]. Once aligned,
the compounds were scored assuming that if the fields (the local extrema of the electrostatic,
van der Waals, and hydrophobic potentials of the molecule) of the newly evaluated molecules were
very similar to those of the original compounds, the resulting compounds will have similar biological
properties [47]. The 15 most potent compounds resulted from the 3D-ligand based filter are reported
in Table 1, while the full set of compounds is present in Table S2. The selected compounds resulted
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in an excellent distance to the model (i.e., description by the model), which means that all or most
of the features in the molecules were present in the training set of the 3D-QSAR model, and hence
that the predicted activity is reliable. In the full set of evaluated compounds, there are also several
compounds that are not well described by the QSAR equation; the external user should pay attention to
the “3D Applicability” column in the supplementary material (Table S2). Values of “Excellent” or “OK”
indicate the predictive reliability. Worse values (i.e., “Bad” or “Poor”) indicate that the molecule has
field points in places that are not described by the equation, resulting in unreliable predicted activities.

Table 1. Structure and predicted pKi values of the 15 most potent marine products resulted from the
three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) filter. BDB: Blue DataBase.

BDB ID Structure Predicted pKi

621
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Table 1. Cont.
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2.3. Homology Model and Molecular Docking

To further reinforce the results obtained through the 2D and 3D filters, we decided to add a third
filter based on molecular docking. Exploiting the recent identification of the σ2 receptor as the TMEM97,
we built its 3D molecular structure by the homology modeling approach, starting from the Q5BJF2
(SGMR2_HUMAN) sequence deposited in the UniProt Knowledgebase (https://www.uniprot.org/
uniprot/). To pursue this challenging task, due to the scarcity of crystallized structures possessing the
sufficient sequence identity (>30%), we have chosen to employ an approach based on two strategies
used in parallel. Indeed, this task has been developed by mixing the classical first three steps (i. finding
the homologous template proteins of the known structure, ii. selecting the best template or set of
templates, and iii. optimizing the multiple sequence alignment between the query and template
protein sequences) [48] with the evolutionary coupling analysis [49].

Eventually, we performed the typical fourth step, which consisted of the build of the homology
model for the query sequence that resembles the structures of the templates as closely as possible,
accommodating for the deletions and insertions of query residues with respect to the template
structures, in order to obtain a series of hybrid models that have been ordered by their overall
z-score [50].

The obtained 3D model was docked with PB-28, which is a known σ2 receptor ligand
(exp. Ki =2.0 nM [51]); the best-obtained complex was then immersed in a simulated endoplasmic
reticulum membrane, in physiological environment conditions, and subjected to a molecular dynamics
(MD) simulation of 10 ns to accommodate the ligand, verified by the Root-mean-square deviation
(RMSD) of the ligand. After the minimization of the frame with the best binding energy (belonging to
the last 3 ns of MD simulation, where the ligand RMSD is constant), the re-docking of the ligand gave a
calculated Ki of 1.5 nM, which was in excellent agreement with the experimental value. To additionally
validate the 3D model, we docked 200 σ2 receptor ligands that were randomly selected from the
S2RSLDB among those that possess a Ki in the range 0.01–1000 nM. The results (Table S3) are reported
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in Figure 1 as a plot of the experimental versus calculated Ki, and highlight a very good prediction
power with an R2 of 0.91.
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Figure 1. Plot of experimental Ki vs. calculated ones for 200 σ2-ligands randomly chosen from the set
of selective σ2 receptor ligands as retrieved from the σ2 receptor selective ligand database (S2RSLDB).
In red, the straight line corresponding to the linear regression analysis.

On this model, we docked the best-predicted σ2 receptor ligands returned from the two 2D and
3D QSAR filters (524 compounds, being 13 in common). The 15 most potent compounds resulted from
the docking analysis are reported in Table 2, while the full set of compounds is reported in Table S2.

Table 2. Structure and calculated pKi values of the 15 most potent marine products resulted
from docking.

BDB ID Structure Calcd. pKi

1169
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Table 2. Cont.
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The 3D structures of the complex with the two best-docked molecules have been represented
in Figure 2. Both molecules reside in the pocket constituted by the two ASP29 and ASP56 residues;
in particular, compound 1169 shows two hydrogen bonds with ASP29.
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An accurate literature search for the 15 most promising hits highlighted that four of them (848, 984,
1169, and 1172) were reported to show clearly antiproliferative and cytotoxic effects against typical
cancer cell lines such as A549 and HT29 (Table 4) [52–58]. These biological data were in agreement
with specific σ2 receptors overexpression that was related to the same cell lines [59–62].

Table 4. ED50 (µg/mL) of four BDB compounds on A549 and HT29 cell lines that are known to
overexpress the σ2 receptor.

BDB ID A-549 HT-29

848 1.00 0.63
984 2.5 2.5

1169 10 10
1172 2.5 2.5

In particular, compound 848 possess a steroidal structure resembling that of progesterone;
this compound has been demonstrated to act as a potent σ2 receptor ligand with a Ki of 441 nM [63].
To further validate our model and the goodness of the predicted data, we docked progesterone,
obtaining a calculated Ki of 749 nM that became 369 nM after allowing a best accommodation by 100 ps
step-10 annealing and 100 ps steepest descent minimization, followed by a local re-docking, which is
in good agreement with the experimental Ki.

3. Materials and Methods

3.1. Dataset of Marine Compounds

The chemical structures of the marine dataset were retrieved from the Seaweed Metabolite
(http://www.swmd.co.in/), the Chemical Entities of Biological Interest (http://www.ebi.ac.uk/
chebi/) databases, and from reference [42]. All of the molecules were manually checked, and the
duplicates were removed to achieve a final number of 1517 compounds. The full list of molecules
is available as SMILES for external users in the supplementary material (Table S1). In Figure 3,
the workflow that was used has been schematized.
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3.2. Structures 2D to 3D Building and Minimization

The structures of the marine products were built using Marvin Sketch (v. 18.24, ChemAxon
Ltd., Budapest, Hungary) [64]. The 2D structures were subjected to molecular mechanics energy
minimization by Merck molecular force field (MMFF94) using the Marvin Sketch geometrical
descriptors plugin [64]. The protonation states of the molecules were calculated assuming a pH
of 7.0. Before the alignment for the 3D-QSAR filter, the geometry of the obtained 3D structures
was further optimized at the semi-empirical level using the parameterized model number 3 (PM3)

http://www.swmd.co.in/
http://www.ebi.ac.uk/chebi/
http://www.ebi.ac.uk/chebi/
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Hamiltonian as implemented in the MOPAC package (MOPAC2016 v. 18.151, Stewart Computational
Chemistry, Colorado Springs, CO, USA) [65–67].

3.3. 2D-QSAR

The software CORAL (CORrelation And Logic, version 2016, Istituto di Ricerche Farmacologiche
Mario Negri, Milano, Italy) was used for building the 2D-QSAR model using 548 σ2 receptor selective
ligands over the σ1 receptor, as previously reported [33,34]. The unique SMILES composing the
blue dataset were converted in order to have a SMILES depiction that was equal to that used for
generating the model (vide supra). To each SMILES, a random endpoint value was associated in order
for the software to compare this value with the predicted one. The following regression was used for
predicting the endpoints:

pKiσ2 = 3.5937472(± 0.0139734) + 0.0352642(± 0.0001213) ∗ DCW(0, 16)

where DCW is defined as the “descriptor of correlation weights”. The regression for the σ2 receptor
pKi has been developed in a previously published 2D regression model [30].

3.4. Compound Alignment for the 3D-Ligand Based Filter

All of the optimized structures were imported into the software Forge (v10.4.2, Cresset,
New Cambridge House, Hertfordshire, UK) for the evaluation of the dataset in the field-based
3D-QSAR model that was previously published [32]. All of the molecules were aligned with the
training set of the 3D-QSAR model. The negative, positive, shape, and hydrophobic field points of
each molecule were generated using the extended electron distribution (XED) force field in Forge.
The molecules were then aligned with the training set of the 3D-QSAR model by a maximum common
substructure algorithm using a customized set-up. The software’s parameters that were used for
the conformation hunt and alignment are presented in the supplementary material (Figures S1 and
S2). The maximum number of conformations that was generated for each molecule was set to 500,
as suggested by the software. The root mean square deviation of atomic positions’ cutoff for duplicate
conformers was set to 0.5 Å (the similarity threshold below which two conformers are assumed to
be identical). The gradient cutoff for conformer minimization was set to 0.1 kcal/mol. The energy
window was set to 2.5 kcal/mol. Conformers with a minimized energy outside the energy window
were discarded.

3.5. Homology Model and Docking

All of the simulations and molecular modeling experiments have been conducted with YASARA
software (v. 18.4.24, YASARA Biosciences GmbH, Vienna, Austria). The homology model was built
starting from the Q5BJF2 (SGMR2_HUMAN) sequence deposited in the UniProt Knowledgebase
(https://www.uniprot.org/uniprot/) and using the crystallographic structures corresponding to the
following PDB IDs as templates: 4LGC, 1VT4, 4M58, 2PFF, 2MGY, AND 1T33. To these structures
have been added the best two structures obtained by the evolutionary coupling analysis, which were
executed with the EVfold web-server (http://evfold.org/evfold-web/newprediction.do), and the
ensemble has been processed with the hm_build macro of YASARA. In the end, an optimized
hybrid model was built through iteratively replacing bad regions in the top scoring model with
the corresponding fragments from the other models.

This model was docked with the σ2 receptor ligand PB-28 (see below for details), and the best
pose ligand/receptor complex structure was then immersed in a simulated endoplasmic reticulum
membrane [68], in physiological environment conditions, and subjected to a molecular dynamics
(MD) simulation of 10 ns to accommodate the ligand. The simulation was set up automatically by
first scanning the protein for exposed transmembrane helices [i.e., helices longer than 16 residues,
with more than seven hydrophobic residues and more than three exposed ones (accessible side-chain

https://www.uniprot.org/uniprot/
http://evfold.org/evfold-web/newprediction.do
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surface area >30% of maximum)]. The major axis vectors of these helices (i.e., the direction vectors
of the least-squares lines through the Calpha atoms) were summed up to obtain the major axis of the
protein, which was then oriented along the Y-axis, normally with respect to the plane of the membrane
and the X–Z plane. The best shift of the membrane along this major axis was obtained by scanning the
protein for the region with the largest number of exposed hydrophobic residues (see definition above)
and a width of 28 Å (corresponding to the membrane core).

Having placed an equilibrated membrane structure (consisting of 55% of phosphatidylcholine,
30% of phosphatidylethanolamine, 10% of phosphatidylserine, and 5% of phosphatidylinositol
molecules [68]) at this location named ‘MemCenterY’, the system was enclosed in a simulation cell
of size [X*Y*Z] Å, the protein was temporarily scaled by 0.9 along the X–Z axes, and then, strongly
clashing membrane lipids were deleted (lipids with an atom closer than 0.75 Å to a protein atom).

The temporary protein scaling, which was needed to avoid the deletion of too many lipids around
the protein, was then slowly removed during a short simulation at 298 K in vacuum. The protein
(with all of the atoms kept fixed) was scaled by 1.02 along the X–Z axes every 200 femtoseconds,
while the membrane was allowed to move, but was restrained to ideal geometry (by pulling lipid
residues with an atom further than 21.5 Å away from MemCenterY back into the membrane, and by
pushing phosphorus atoms closer than 14 Å to MemCenterY back outwards). The force field was
AMBER14, with Lipid17/GAFF2/AM1BCC parameters for non-standard residues. As soon as the
protein had reached its original size again, the protein side-chain pKas were predicted, protonation
states were assigned according to pH 7.4, and the simulation cell was filled with water, 0.9% NaCl,
and counter ions (proteins 57, 678–683). The main simulation was then run with PME, and an 8.0 Å
cutoff for non-bonded real space forces, a four fs time-step, constrained hydrogen atoms, and at
constant pressure and temperature (NPT ensemble), as described in detail previously. During the
initial 250 picoseconds, the membrane was restrained to avoid distortions while the simulation cell
adapted to the pressure exerted by the membrane (see above, additionally water molecules that got
closer than 14 Å to MemCenterY were pushed outside). The source code of this simulation protocol
and visualizations of the individual steps can be found at www.yasara.org/membranemd.

Docking experiments were effectuated, employing the AutoDock (4.2.5.1, The Scripps Research
Institute, San Diego, California Jupiter, Florida, US) software implemented in YASARA. The maps
were generated by the program AutoGrid (4.2.5.1, The Scripps Research Institute, San Diego, California
Jupiter, Florida, US) with a spacing of 0.375 Å, and dimensions that encompass all of the atoms
extending 5 Å from the surface of the PM3 minimized structure of PB-28. All of the parameters
were inserted at their default settings. In the docking tab, the macromolecule and ligand are selected,
and Lamarckian Genetic Algorithm (LGA) parameters are set as ga_runs = 100, ga_pop_size = 150,
ga_num_evals = 20,000,000, ga_num_generations = 27,000, ga_elitism = 1, ga_mutation_rate = 0.02,
ga_crossover_rate = 0.8, ga_crossover_mode = two points, ga_cauchy_alpha = 0.0, ga_cauchy_beta = 1.0,
number of generations for picking worst individual = 10.

4. Conclusions

In this study, we describe the screening of new potentially σ2/TMEM97 receptor ligands that
were reported in a database of 1517 “small” marine natural products, and formulated by the union of
the Seaweed Metabolite (http://www.swmd.co.in/) and the Chemical Entities of Biological Interest
(ChEBI, http://www.ebi.ac.uk/chebi/). The structures were selected by our developed 2D and
3D-QSAR statistical models, and successively verified by a robust σ2/TMEM97 receptor homology
model appropriately built by us. This work provided 15 best candidates as powerful σ2 receptor
marine ligands; four of them are clearly reported in the literature as antiproliferative and cytotoxic
compounds against typical cancer cell lines such as A549 and HT29, and are in agreement with the
specific σ2 receptor overexpression that is related to the same cell lines. In particular, compound
848 resembles progesterone, which in itself is a potent σ2 receptor ligand. These findings will ensure
prospectively advantageous applications to speed up the design and identification of new natural hit

www.yasara.org/membranemd
http://www.swmd.co.in/
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compounds as potent and selective σ2 receptor ligands. In vitro and biological screenings of the most
promising compounds are in due course.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/10/384/
s1, Figure S1: Forge’s parameters used for the conformation hunt, Figure S2: Forge’s parameters used for the
alignment, Figure S3: Homology model of the σ2-receptor immersed in the endoplasmic reticulum membrane,
Table S1: Dataset of marine products, Table S2: Complete results of the three filters by color code, Table S3:
Experimental and calculated Ki by docking.
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