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Abstract: The biological invasion of the green algae Caulerpa cylindracea represents a serious scientific
and public issue in the Mediterranean Sea, essentially due to strong modifications both to habitat
structure and native benthic communities. Although alterations in health status and changes in flesh
quality of some marine species (dietary exposed to C. cylindracea) have been observed, no studies
on cause-effect relationships have been carried out. Here, for the first time, through a controlled
feeding experiment followed by 1H NMR Spectroscopy and multivariate analysis (PCA, OPLS-DA),
we showed that caulerpin taken with diet is directly responsible of changes observed in metabolic
profile of fish flesh, including alteration of lipid metabolism, in particular with a reduction ofω3 PUFA
content. The potential of caulerpin to directly modulate lipid metabolism opens up new questions
about causal mechanism triggered by algal metabolite also in view of a possible exploitation in the
nutraceutical/medical field.

Keywords: biological invasion; Caulerpa cylindracea; secondary metabolites; Diplodus sargus; metabolomics;
NMR spectroscopy

1. Introduction

Biological invasions are, nowadays, a serious environmental issue, representing one of the
most important cause of biodiversity loss, with severe ecological, socio-economic and human health
repercussions [1,2]. The growing awareness of the problem led to recognize the need of reaching a full
understanding of mechanisms by which invasive species (IS) can impact biodiversity and ecosystem
functioning. In fact, while their direct effects on biodiversity have been widely investigated, the subtle
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indirect impacts of molecules (e.g., secondary metabolites) produced by IS on marine ecosystems and
communities are almost unexplored [3,4]. Chemical compounds can play a key role in the invasion
processes influencing the abundance and distribution of a certain species. For instance, they can act as
allelochemicals ensuring the escape from enemy or facilitating the access to resource [3]. Moreover,
recent studies provided evidence that molecules from IS enter food chain and have a potential for
bioaccumulation phenomena, exerting unexpected and dramatic impacts on native communities [5–7].
This is the case of the green alga Caulerpa cylindracea, which has heavily affected marine benthic
ecosystems [8–10] to such an extent that it has been included in the 100 worst invaders for the
Mediterranean Sea [11]. Secondary metabolites are suggested to play a crucial role in interspecific
interaction processes, thus contributing to determine C. cylindracea invasiveness [12–15]. The most
studied secondary metabolites from C. cylindracea are the toxic sesquiterpene caulerpenyne, the
mixture of ceramides caulerpicin and the alkaloid caulerpin (CAU). All these compounds showed
many bioactive properties of potential interest for biotechnological applications [4]. In particular,
caulerpin has been showed to accumulate in the lipophilic tissues of the fish Diplodus sargus due to
their habit to feed on the green algae [16]. Cellular and molecular alterations, metabolic disorders
and an impoverishment in nutritional quality of fish flesh were found to correlate with levels of
caulerpin in fish tissues [6,7,17,18]. Two potential arguments were put forward for explaining the
correlations between the impoverishment of fish nutritional quality and the C. cylindracea based-diet.
First, a diet exclusively based on C. cylindracea, naturally poor in polyunsaturated fatty acids (PUFA),
could directly cause a reduction of PUFA in white seabream muscles [17]. Secondly, the observed
variations in fatty acids composition could be, at least partially modulated by active metabolites of
C. cylindracea. The potential role of the algal metabolites as causal factors of altered lipid metabolism in
D. sargus was suggested by the alteration of the peroxisomal enzymatic activity of acyl-CoA oxidase
involved in the β-oxidation of fatty acids and by the activation of gene transcription of peroxisomal
proliferator-activated receptor α [6,7]. Moreover, experimental evidence showed dyslipidaemic
effects in rats treated with crude C. cylindracea extracts [19]. Although the descriptive nature of
previous studies and the correlative approach adopted, the definition of causal relationships between
a C. cylindracea based-diet and the observed effects remained still unclear. Such a gap calls for a
complete understanding of the mechanisms triggered by the algal metabolites, even considering their
possible impact on the native biota, the public health and the economy. Through a controlled feeding
experiment, this study aims at investigating the potential cause-effect relationships between CAU and
metabolic alterations in native fish species. In the present work, Proton Nuclear Magnetic Resonance
(1H NMR) Spectroscopy was applied to analyse the flesh of controlled feeding D. sargus specimens
and potential variations of their metabolomic profiles were evaluated by multivariate analysis (MVA).

2. Results

NMR Spectroscopy and Multivariate Statistical Analysis (MVA)

The lipid extracts of fish muscle were characterized by the presence of lipids (TAGs, PUFA,
DUFA, MUFA, SFA) and minor components such as sterols (i.e., cholesterol) and phospholipids
(Table 1). Main lipid signals are marked in the 1H NMR spectra (Figure 1), corresponding
to -CH2 in alpha and beta-position to the carboxylic acid esters (COOCH2CH2), unsaturations
(CH=CH-CH2-CH=CH) of various types of UFA and PUFA (unsaturated and polyunsaturated fatty
acids), such as docosahexaenoic (DHA C22:6, ω3), eicosapentaenoic acids (EPA C20:5,ω3) or other
PUFA (two and more than two double bonds) of long fatty acids alkyl chain and terminal methyl
groups of phospholipids (-CH3). The multiplet signals of glycerol moiety of triglycerides (TAGs)
appeared at 4.14 and 4.11 ppm (sn 1,3), at very low intensities, showing a cross peak correlation with
a signal at 5.24 ppm (sn2), while the signals in the range of 2.32–2.27 ppm and 1.66–1.57 ppm were
assigned to protons of COOCH2 and COOCH2CH2, respectively, for all the fatty acids chains, except
for DHA (signal at 2.38 ppm, COOCH2CH2) and EPA (signal at 1.70 ppm COOCH2CH2). The presence
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of ω3 PUFA was confirmed by the appearance of triplet at 0.98 ppm due to terminal CH3, which is
clearly separated from other methyl groups, at 0.88 and 0.87 ppm, due to all other nonω3 fatty acids,
such as DUFA (diunsaturated), MUFA (unsaturated) and SFA (saturated fatty acids). The spectra
also indicated intense signals in the range 2.88–2.75 ppm due to bisallylic (CH=CH-CH2-CH=CH)
protons of long alkyl chain fatty acids components. In particular, the multiplet signal at 2.85–2.80
ppm was assigned to bisallylic protons (CH=CH-CH2-CH=CH) of DHA and EPA, while bisallylic
protons of DUFA appeared at 2.77 ppm, respectively. The presence of partially overlapping singlets at
3.22 and 3.03 ppm are due to the N(CH3)3 and CH2N groups of phospholipids and characteristic of
phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively. In order to confirm the
presence of phospholipids in the extracts, few samples were analysed by 31P NMR (spectra not shown).
Moreover, signals at 0.68–0.69, 0.92 and 1.01 ppm are the characteristic resonances of cholesterol
moieties (CHO).

Mar. Drugs 2018, 16, x 3 of 12 

 

which is clearly separated from other methyl groups, at 0.88 and 0.87 ppm, due to all other non ω3 
fatty acids, such as DUFA (diunsaturated), MUFA (unsaturated) and SFA (saturated fatty acids). The 
spectra also indicated intense signals in the range 2.88–2.75 ppm due to bisallylic 
(CH=CH-CH2-CH=CH) protons of long alkyl chain fatty acids components. In particular, the 
multiplet signal at 2.85–2.80 ppm was assigned to bisallylic protons (CH=CH-CH2-CH=CH) of DHA 
and EPA, while bisallylic protons of DUFA appeared at 2.77 ppm, respectively. The presence of 
partially overlapping singlets at 3.22 and 3.03 ppm are due to the N(CH3)3 and CH2N groups of 
phospholipids and characteristic of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), 
respectively. In order to confirm the presence of phospholipids in the extracts, few samples were 
analysed by 31P NMR (spectra not shown). Moreover, signals at 0.68–0.69, 0.92 and 1.01 ppm are the 
characteristic resonances of cholesterol moieties (CHO). 

  

TMS-CH
2 -C

H 2
of a

llF
A e

xce
pt 

DH
A a

nd 
EPA

-C H
3 of

 all
FA

-CH
3 ω

3 F
A

-(C
H 2)

nal
l FA

ally
lic-

C H
2  a

lle
xce

pt 
DH

A

-C H
2 -C

H 2-
CO

O-
EPA

-CH
2-C

H 2-
CO

O-
all 

FA 
exc

ept
 DH

A
-CH

2-C
H 2-

CO
O-

DH
A

=C
H–

CH
2=C

H D
UFA=C

H–
CH

2=C
H P

UFA
 (D

HA
, EP

A)

PE

-(C
H 3)

3-N
 PC

sn1
,3 C

H 2
TG

10 9 8 7 6 5 4 3 2 1 0 ppm

4.0 3.0 2.0 1.0

CHCl3 MeOH
CH=CH

 
Figure 1. Representative 1H NMR spectrum (down) and relative expansion (up), obtained at 600 
MHz of CD3OD/CDCl3 fish flesh lipid extract. 

Figure 1. Representative 1H NMR spectrum (down) and relative expansion (up), obtained at 600 MHz
of CD3OD/CDCl3 fish flesh lipid extract.
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Table 1. Chemical shifts 1H (ppm) and assignments of metabolite resonances in the 1H NMR spectrum
of muscle lipid extract (CHO, Cholesterol, DHA, Docosahexaenoic acid, EPA, Eicosapentaenoic
acid, SFA, Saturated Fatty Acids, MUFA, Monounsaturated Fatty Acids, DUFA, Diunsaturated
Fatty Acids, PUFA, Polyunsaturated Fatty Acids, TAGs, Triacilglycerols, PC, phosphatidylcholine,
PE, phosphatidylethanolamine).

Compound Assignment 1H (ppm, multiplicity)

CHO
-CH3-18
-CH3-21
-CH3-19

0.68–0.69 (s)
0.92 (d)
1.01 (s)

All FA (SFA, MUFA, DUFA) except ω3 FA -CH3 0.87–0.88 (t) *
ω3 PUFA -CH3 0.98 (t) *

All fatty acids -(CH2)n 1.22–1.34 (m)
All fatty chains except DHA and EPA COOCH2CH2 1.57–1.66 (m)

EPA COOCH2CH2 1.67–1.74 (m) *
All fatty acids except DHA -CH=CH-CH2 1.99–2.17 (m) *
All fatty acids except DHA COOCH2 2.27–2.35 (t) *

DHA COOCH2CH2 2.38 (dd) *
DUFA CH=CH-CH2-CH=CH 2.77 (t) *

PUFA (DHA, EPA) CH=CH-CH2-CH=CH 2.80–2.85 (t)
PE -CH2-N 3.03 (s)
PC -(CH3)3-N 3.22 (s)

TAGs CH2 (sn1,3)
CH (sn2)

4.11–4.14 (dd)
5.24 (m)

All FA CH=CH 5.28–5.43 (m)

* Signals selected for quantification of FA percentage.

Multivariate statistical analyses testing for differences in metabolic profiles among control (C),
low dose (LD) and high dose (HD) groups were performed. As a first attempt, in order to identify
and display natural groupings of the samples, without imposing any preconception about class
membership, a PCA analysis was carried out separately for each experiment (EXP-1 = 37 specimens,
EXP-2 = 20 specimens) (Figure S1 in Supplementary Materials). Despite the low number of HD samples
in the EXP2, a certain degree of separation was shown in both the two PCA models, especially for
LD with respect to C and HD samples. Moreover, a significant CAU effect of fish flesh lipid extracts
was observed by applying supervised statistical methods, as OPLS-DA (Figures 2 and 3 for EXP1
and 2, respectively). Specifically, a well descriptive but weakly predictive OPLS-DA model (2 + 1 + 0,
R2X = 0.696, R2Y = 0.563, Q2 = 0.362) was obtained for the EXP-1, made of 37 specimens (Figure 2a).
LD samples clearly differentiated along the predictive component (the x-axis, t[1]) from the other two
groups, (HD and C) samples, whereas the orthogonal component (the y-axis, t[2]) was responsible for C
and HD group separation. The study of the variables (NMR signals) responsible for the class separation
was observed in the corresponding Volcano Plot (Figure 2b). From this analysis, a high relative content
of SFA, MUFA and PUFA (in particular DHA) was observed for C samples, while a high relative
content of DUFA were found for LD samples. Finally, HD individuals resulted in a less intense NMR
patterns of signals, with respect to other two groups, with no relevant discriminating metabolites.
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according to the correlation scaled loading (p(corr)). The numbers indicated variables (ppm) in the 
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resulted well separated on the orthogonal component t[2]. Moreover, CAU at low dose seemed to 
reduce the high natural variability in the metabolic profiles between specimens; a much higher 
scattering between specimens fed with high or null level of CAU with respect to fish treated with 
low dose of alkaloid was, indeed, observed (Figure 3a). The molecules (the NMR variables) 
responsible for the class separation observed in the Volcano Plot (Figure 3b), revealed the presence 
of a high relative content of PUFA (in particular DHA and EPA) in C samples, whereas a higher 
relative content of UFA (in particular DUFA) were found in LD and HD samples. 
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Figure 2. (a) OPLS-DA (2 + 1 + 0, R2X = 0.696, R2Y = 0.563, Q2 = 0.362) score plot (triangle, C = control;
circle, LD = low dose; box, HD = high dose) obtained from 1H NMR lipid extracts for EXP-1 (3 days
treatment) and (b) relative volcano plot for the model displaying the predictive loadings, using
a combination of Variables Influence in Projection (VIP) and the p(corr). Variables are coloured
according to the correlation scaled loading (p(corr)). The numbers indicated variables (ppm) in the 1H
NMR spectra.

The OPLS-DA model (2 + 3 + 0, R2X = 0.912, R2Y = 0.798, Q2 = 0.462), obtained from 1H NMR lipid
extracts of 20 individuals from EXP-2 (Figure 3a), showed a clear-cut separation of C samples, which
are clearly distinct along the predictive t[1] axis and clustered on the left-hand side of the graph, from
the other two groups of fish fed with the addition of controlled doses of CAU, which, in turn, resulted
well separated on the orthogonal component t[2]. Moreover, CAU at low dose seemed to reduce the
high natural variability in the metabolic profiles between specimens; a much higher scattering between
specimens fed with high or null level of CAU with respect to fish treated with low dose of alkaloid was,
indeed, observed (Figure 3a). The molecules (the NMR variables) responsible for the class separation
observed in the Volcano Plot (Figure 3b), revealed the presence of a high relative content of PUFA
(in particular DHA and EPA) in C samples, whereas a higher relative content of UFA (in particular
DUFA) were found in LD and HD samples.
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Figure 3. (a) OPLS-DA (2 + 3 + 0, R2X = 0.912, R2Y = 0.798, Q2 = 0.462) score plot (triangle, C = control;
circle, LD = low dose; box, HD = high dose) obtained from 1H NMR lipid extracts for EXP-2 (10 days
treatment) and (b) relative volcano plot for the model displaying the predictive loadings, using
a combination of Variables Influence in Projection (VIP) and the p(corr). Variables are coloured
according to the correlation scaled loading (p(corr)). The numbers indicated variables (ppm) in the 1H
NMR spectra.
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Fatty acids (FA) percentages were calculated by the integration of the corresponding selected
NMR signals and differences were represented as Log2 fold change (FC) ratio [20,21]. Signals at
0.87–0.88 ppm (-CH3 of all except ω3 FA), 1.67–1.74 ppm (COOCH2CH2 of EPA), 1.99–2.17 ppm
(-CH=CH-CH2 of all FA except DHA), 2.27–2.35 ppm (COOCH2 of all FA except DHA), 2.38 ppm
(COOCH2CH2 of DHA) and 2.77 ppm (CH=CH-CH2-CH=CH of DUFA), were selected and integrated
for quantification of FA percentage [22–25]. Obtained values were calculated as Log2 fold change (FC)
ratio of the corresponding selected signals and One way-ANOVA (with Multiple Comparisons of
Means, Tukey’s honestly significant difference, HSD post hoc) test was performed on mean differences
(Tables S1–S6 in Supplementary Materials). Looking at the EXP-1 fish flesh lipid extracts, statistically
significant high levels of SFA, MUFA and DHA were found in C with respect to LD samples, whereas
these last showed a significant increase of UFA and DUFA. On the other hand, no significant differences
in FA composition were observed between C and HD groups (Figure 4a). Differently from EXP-1,
samples from EXP-2 had statistically significant high levels of PUFA (in particular EPA) in C with
respect to both LD and HD samples, with an increase of DUFA content in LD class (Figure 4b).
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Figure 4. Differences expressed as Fatty Acids percentages for (a) EXP-1 (3 days treatment) and
(b) EXP-2 (10 days treatment), calculated by NMR were represented as Log2 fold change (FC) ratio
of the corresponding selected signals. Log2 (FC) negative values have higher concentration in
“controls,” while positive values indicated FA content with higher concentration in LD and HD.
Abbreviations: SFA, saturated fatty acids; UFA, unsaturated fatty acids; MUFA, monounsaturated
fatty acids; DUFA, diunsaturated fatty acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid, PUFA, polyunsaturated fatty acids; Statistical significance (One way-ANOVA test with Multiple
Comparisons of Means, Tukey′s honestly significant difference, HSD post hoc test), Signif. codes: 0 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1 ‘ ‘ 1. (Tables S7 and S8).

3. Discussion

The 1H NMR-based controlled feeding experiments revealed that CAU causes some modifications
of metabolomic lipid profiles of juvenile D. sargus, with more pronounced differences observed after
the longest period of exposure (10 days, EXP-2). A general decrease of PUFA (especially of EPA and
DHA) and an increase of UFA, were found in fish fed with food enriched with CAU, supporting our
previous results, reported in Felline et al. [17]. On the other hand, a decrease of the percentage of
eicosapentaenoic, docosahexaenoic and arachidonic acids was found in wild fish naturally feeding on
C. cylindracea [17]. Differences in lipid composition of muscle and liver were attributed, at the time,
to the change from an omnivorous feeding habit to a diet almost exclusively based on C. cylindracea,
depriving fish from those essential fatty acids which they cannot biosynthesize [17,26]. For the first
time, the present study showed the causal relationship between algal metabolite and the alteration of
lipid profile in fish. Interestingly, differences were clearly observed between C and LD with respect
to C and HD. For both the statistical models studied, indeed, no evidence of significant differences
was found between C and HD groups, even if the patterns of metabolic profile remained the same,
with a general reduction of PUFA and an increase in UFA (and DUFA) in treated fish with respect to
the controls. These patterns could be explained with the gradually loss of appetite and voracity, due
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to an inadequate food intake, especially for the individuals fed with the highest dosage levels [27].
CAU shows structural similarity to endogenous indolamines that modulate animal behaviour and a
reduction of aggressive behaviour was described in fish exposed to CAU high dose [28]. Moreover,
as already reported in literature, this metabolite exerts a sedative effect via pathways involving
serotonin 5-HT3 receptors [29]. Therefore, the lower difference in metabolic profiles observed for
HD and C individuals may be also explained by the onset of anorexigenic effect with the consequent
reduction of the amount of CAU ingested. Although direct effect of CAU on lipid composition of fish
fillet has been demonstrated, it remains still unclear which are the cellular or molecular processes
triggered by CAU and involved in the observed alterations. Our previous results indicated that a
CAU-enriched diet affect the activity of acyl-CoA oxidase, a peroxisomal enzyme involved in the
β-oxidation of fatty acids and the gene expression of peroxisomal proliferator-activated receptor α [6,7],
suggesting the potential involvement of algal metabolites in the peroxisomal proliferator-activated
receptors (PPARs). In particular, CAU could act as PPAR-α agonist, a member of the nuclear hormone
receptor superfamily mediating peroxisome proliferation and the increase in fatty acyl-CoA oxidase
activity, that it is known to bind with several high affinity xenobiotic ligands, such as hypolipidaemic
agents, plasticizers, solvents and herbicides [30]. Moreover, it is known that treatments with PPAR-α
agonists tend to increase expression of peroxisomal ROS-generating enzymes without increasing
catalase, resulting in an imbalance between ROS production and elimination [31]. Similar pattern
was found in Gorbi et al. [7], where fish with high level of CAU were characterized by both a
significant increase in AOX activity and in gene expression of peroxisomal proliferator-activated
receptor α but not significant increase in catalase activity was observed. Since lipid metabolism
plays a multifunctional role in various mechanisms such as long-term energy storage, intercellular
and intracellular signalling and membrane homeostasis, this work sheds light on a critical aspect
of biological invasions with implication on health of local fish populations and related economies.
Abnormalities in lipid metabolism could reduce growth and development, impair fertility and cause
several pathologies or even death [32,33]; therefore, preserving lipid homeostasis is crucial for an
organism’s survival, health and reproduction [34]. In addition to detrimental effects on the fish health,
the reduction in the levels and quality of FA could seriously damage fishery economy by lowering fillet
nutritional quality of Mediterranean fish species, considering also that effects observed in D. sargus
could manifest in other commercial fish species eating this invasive algal species [16].

4. Materials and Methods

4.1. Sample Collection and Experiment Design

Fish specimens analysed are the same collected and studied in the parallel work focusing on
behavioural changes modulated by dietary caulerpin (CAU). The study was specifically approved by
the Animal Care and Use Committee of ISPA-Instituto Universtário (ORBEA-ISPA; Permit Number:
01-2017). It did not involve endangered or protected species and was conducted under the supervision
of an accredited expert in laboratory animal science (following FELASA category C recommendations).
Permission for capturing fish at the field site was granted by the Portuguese Environmental Agency
(APA) and by local authorities (Cascais Environmental Agency—Cascais Ambiente—and Coast
Guard—Capitania de Cascais) [28]. Juvenile fish were captured with hand nets in 2015 near Cascais, in
the central Portugal region and transferred in constantly aerated tanks at ISPA-IU. Fish were initially
monitored, measured and weighed, then stored in containers and randomly housed in sea water
aquaria. All individuals were juveniles and belonged to the same size class, with a mean body
weight of 1.82 ± 0.1 g and a mean standard length of 3.99 ± 0.1 cm. Physicochemical variables of
sea water were maintained constant throughout the experiment at following settings: temperature,
20–22 ◦C; dissolved oxygen, 7 mg L−1; pH 7–8; salinity 33–35 g L−1; NH4 and NO2 never exceeding
0.5 mg L−1. In order to investigate potential effects of algal metabolite on fish lipid metabolism,
D. sargus individuals were fed with 0.25 g of commercial pellet enriched with CAU at three different
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concentrations: Control groups (C), with fish fed with food without CAU, Low Dose groups (LD),
in which food was implemented with CAU at natural estimated levels in C. cylindracea (0.1 mg g−1)
and High Dose groups (HD), with a dose of CAU ten-fold higher (1.0 mg g−1). Moreover, two
different group experiments were performed, with 37 and 20 individuals respectively, randomly
assigned to tanks of Control (C) and Low Dose (LD) and High Dose (HD) of CAU. In the first group
experiment (EXP-1; 37 individuals, C = 8, LD = 13, HD = 16 specimens) the acclimation, treatment
and post-treatment phases were set at 3 days each, whereas for the second group experiment (EXP-2;
20 individuals, C = 6, LD = 10, HD = 4 specimens) the acclimation and treatment period was set at
10 days and the post-treatment phases lasted only 3 days. Prior to proceeding with the dissection of
muscle, fish were euthanized with an overdose of MS-222 (Pharmaq, Oslo, Norway). Muscle tissues
were frozen in liquid nitrogen and maintained at −80 ◦C till processed for chemical analyses.

4.2. Sample Preparation for NMR Analysis

Muscle samples were prepared according to a modified Bligh and Dyer two-step method [35,36].
Fish tissue (~150 mg) was added of 400 µL methanol and 200 µL deionized filtered water; then, the
sample was homogenized with a stainless-steel bead in the TissueLyser for 2–3 min at 25 Hz. Chloroform
(400 µL) and deionized filtered water (200 µL) were added to homogenate. The solution was mixed
and placed on ice for 10 min before centrifugation at 10,000 rpm for 20 min at 4 ◦C. The hydrophilic
and lipophilic phases were separated and dried by SpeedVac concentrator. Muscle lipid fractions
were dissolved in 700 µL CD3OD/CDCl3 (1:2 mix) and transferred to a 5-mm NMR tube. Hydrophilic
extracts were stored at −20 ◦C for further NMR analysis.

4.3. NMR Measurements

All measurements were performed on a Bruker Avance III 600 Ascend NMR spectrometer (Bruker,
Hamburg, Germany) operating at 600.13 MHz for 1H observation, equipped with a z axis gradient
coil and automatic tuning-matching (ATM). Experiments were acquired at 300 K in automation mode
after loading individual samples on a Bruker Automatic Sample Changer, interfaced with the software
IconNMR (Bruker). For each lipid extract a one-dimensional experiment (zg Bruker pulse program)
was run with 64 scans, 64 K time domain, spectral width 20.0276 ppm (12,019.230 Hz), 3 s delay, p1
10 µs and 2.73 s acquisition time. All spectra were referenced to the tetramethylsilane (TMS) signal
(δ = 0.00 ppm). 31P NMR spectra (zg0pg Bruker pulse program) were acquired with a spectral width
of 50.1172 ppm (12,175.324 Hz), p1 11 µs, 3 s delay and 1.34 s acquisition time and referenced to H3PO4

as external standard. The metabolites were assigned on the basis of 2D NMR spectra analysis (2D 1H
JRES, 1H COSY, 1H-13C HSQC and HMBC) and comparison with published data [18,23,37,38].

4.4. Data Analysis

NMR spectra were processed using Topspin 2.1 and using Amix 3.9.13 (Bruker, Biospin, Italy) for
simultaneous visual inspection and the successive bucketing process: the 1H NMR spectra of lipid
extract were segmented in rectangular buckets of fixed 0.04 ppm width and integrated. The spectral
regions between 7.8–7.2, 4.6–4.2 and 3.4–3.3 ppm were discarded because of the residual peak of
solvents (chloroform and methanol signals). The resulting data sets resulted in a matrix, made of
the bucketed 1H NMR spectra values (columns) measured each sample, that is, the lipid fish extract
(rows). The Pareto scaling procedure was applied to the data, which was performed by dividing the
mean-centred data by the square root of the standard deviation [39]. The data table generated with
all the spectra were submitted to multivariate data analysis (MVA). Both unsupervised (principal
component analysis, PCA) and supervised (orthogonal partial least squares discriminant analysis,
OPLS-DA) pattern recognition methods were performed to examine the intrinsic variation in the
data [40–42]. The robustness and predictive ability of the statistical models for discrimination purposes
were tested by cross-validation default method (7-fold) and further evaluated with permutation test
(400 permutations) of SIMCA 14 software, (Sartorius Stedim Biotech, Umeå, Sweden) [42]. The R2 and
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Q2 are the two parameters that describe the goodness of the models. The former (R2) explains the total
variations in the data, whereas the latter (Q2) is an internal cross validation parameter, which indicates
the predictability of the model [43]. By 1H NMR Spectroscopy, fatty acids composition was quantified
by analysing the integrals of selected distinctive unbiased NMR signals [23–25]. Differences were
represented as Log2 fold change (FC) ratio of the calculated average intensities of the corresponding
selected signals [20,21]. Results were validated by the analysis of variance (One Way-ANOVA)
with Tukey’s honestly significant difference (HSD) post hoc test, using the R statistical environment,
Version 3.4.1, on a 64bit Windows machine [44]. The levels of statistical significance were at least at
p-values < 0.05 with 95% confidence level.

4.5. Chemicals

All chemical reagents for analysis were of analytical grade. CDCl3, CD3OD (99.8 atom%D), TMS
(0.03 v/v%) were purchased from Armar Chemicals (Döttingen, Switzerland).

5. Conclusions

In conclusion, the present study provided the evidence of a direct effect of CAU on fish flesh lipid
metabolic profile, in particular with a significant loss of PUFA in fish fed for a long period of exposure
(10 days) with a CAU-enriched diet. Nevertheless, molecular mechanisms responsible for the fatty
acids changes still remained to be completely elucidated. Actually, longer period experiments are in
progress to further deepen impacts of algal metabolite on fish. In particular, laboratory in vitro, ex vivo,
in vivo assays and in silico models’ validation studies are ongoing to fully assess the mechanisms of
action of CAU, in order to clarify the complex indirect effects of pest metabolites on marine biodiversity
at the species and ecosystem level.
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LD Low Dose
MVA Multivariate Analysis
MUFA Monounsaturated Fatty Acids
OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis
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PC Phosphatidylcholine
PE Phosphatidylethanolamine
PLS-DA Partial Least Squares Discriminant Analysis
PUFA Polyunsaturated Fatty Acids
SFA Saturated Fatty Acids
TAGs Triacilglycerols
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