Supporting Information

Anti-Acanthamoeba activity of brominated sesquiterpenes from Laurencia johnstonii

Sara García-Davis^{1,2}, Ines Sifaoui³, María Reyes-Batlle³, Ezequiel Viveros-Valdez², José E. Piñero³, Jacob Lorenzo-Morales³, José J. Fernández^{1,4*} and Ana R. Díaz-Marrero^{1*}

- ¹ Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, España; sara.garciadv@uanl.edu.mx (S.G.D.); adiazmar@ull.edu.es (A.R.D.M); jjfercas@ull.edu.es (J.J.F.)
- ² Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Biológicas. Av. Pedro de Alba s/n, 66450 San Nicolás de los Garza, Nuevo León, México; jose.viverosvld@uanl.edu.mx (E.V.V.)
- ³ Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, España.; <u>ines.sifaoui@hotmail.com</u> (I.S.); <u>jmlorenz@ull.edu.es</u> (J.L.M.)
- ⁴ Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, España

TABLE OF CONTENTS

	Page
Scheme S1. Isolation process of sesquiterpenes 1-5 from Laurencia johnstonii	3
Figure S1. ¹ H-NMR spectrum for laurinterol (1) (500 MHz, CDCl ₃)	4
Figure S2. ¹ H-NMR spectrum for isolaurinterol (2) (500 MHz, CDCl ₃)	5
Figure S3. ¹ H-NMR spectrum for aplysin (3) (500 MHz, CDCl ₃)	6
Figure S4. ¹ H-NMR spectrum for α -bromocuparane (4) (500 MHz, CDCl ₃)	7
Figure S5. ¹ H-NMR spectrum for α -isobromocuparane (5) (500 MHz, CDCl ₃)	8
Figure S6. ¹ H-NMR spectrum of 8-bromoaplysin (6) (600 MHz, CDCl ₃)	9
Figure S7. COSY spectrum of 8-bromoaplysin (6) (600 MHz, CDCl ₃)	10
Figure S8. HSQC-ed spectrum of 8-bromoaplysin (6) (600 MHz, CDCl ₃)	11
Figure S9. HMBC spectrum of 8-bromoaplysin (6) (600 MHz, CDCl ₃)	12
Figure S10. ¹³ C NMR spectrum of 8-bromoaplysin (6) (150 MHz, CDCl ₃)	13
Figure S11. HREIMS spectrum of 8-bromoaplysin (6)	14
Figure S12. ¹ H NMR spectrum of 3α -bromojohnstane (7) (600 MHz, CDCl ₃)	15
Figure S13. COSY spectrum of 3α -bromojohnstane (7) (600 MHz, CDCl ₃)	16
Figure S14. HSQC-ed spectrum of 3α -bromojohnstane (7) (600 MHz, CDCl ₃)	17
Figure S15. HMBC spectrum of 3α -bromojohnstane (7) (600 MHz, CDCl ₃)	18
Figure S16. ¹³ C NMR spectrum of 3α -bromojohnstane (7) (150 MHz, CDCl ₃)	19
Figure S17. 1D-NOE experiments of 3α -bromojohnstane (7) (600 MHz, CDCl ₃)	20
Figure S18. HREIMS spectrum of 3α -bromojohnstane (7)	21
Figure S19. ¹ H NMR spectrum of 8,10-dibromoisoaplysin (8) (500 MHz, CDCl ₃)	22
Figure S20. ¹ H NMR spectrum of 8,10-dibromoaplysinol (9) (500 MHz, CDCl ₃)	23

Scheme S1. Isolation process of sesquiterpenes 1-5 from Laurencia johnstonii

Figure S1. ¹H-NMR spectrum for laurinterol (1) (500 MHz, $CDCl_3$).

Figure S2. ¹H-NMR spectrum for isolaurinterol (**2**) (500 MHz, CDCl₃).

Figure S3. ¹H-NMR spectrum for aplysin (3) (500 MHz, $CDCI_3$).

Figure S5. ¹H-NMR spectrum of α -isobromocuparane (5) (500 MHz, CDCl₃).

Figure S6. ¹H-NMR spectrum of 8-bromoaplysin (6) (600 MHz, CDCl₃).

Br√

15

Figure S11. HREIMS spectrum of 8-bromoaplysin (6).

Elemental Composition Report

Multiple Mass Analysis: 1974 mass(es) processed - displaying only valid results

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions 24346 formula(e) evaluated with 21 results within limits (all results (up to 1000) for each mass) Elements Used: C: 15-15 H: 18-18 O: 0-1 79Br: 0-2 81Br: 0-2

Ana 05Marz18-A 38 100⊐	8 (2.126)	358.9417			373.	.9578				Magnet El+ 6.55e4
1 A 4	356	.9676 360.9727			371.9958	375.98	85			
%										
			361.9744	370.97	724		377.00	69		
0.1.1.1	355.0	360.0	365.0	370).0	375.0	31.13	380.0	385.0	111111111111
Minimum: Maximum:	0.10 100.00		5.0	10.0	-1.5 50.0					
Mass	RA	Calc. Mass	mDa	PPM	DBE	Form	ula			
375.9718 375.9698	58.99 53.56	375.9683 375.9683	3.5	9.3 4.0	6.0 6.0	C15 C15	H18 H18	0 81Br: 0 81Br:	2	
375.9677 375.9656	47.91 42.16	375.9683	-0.6	-1.6	6.0	C15 C15	H18 H18	0 81Br	2	
373.9723	100.00	373.9704	1.9	5.1	6.0	C15	H18	0 79Br	81Br	
373.9702	100.00	373.9704	-0.2	-0.5	6.0	C15	H18	0 79Br	81Br	
373.9682	100.00	373.9704	-2.2	-5.9	6.0	C15	H18	0 79Br	2	
371.9732	51.29	371.9724	0.8	2.2	6.0	C15	H18	0 79Br	2	
371 9711	49.60	371,9724	-1.3	-3.5	6.0	C15	H18	0 79Br	2	
371,9690	44.63	371.9724	-3.4	-9.1	6.0	C15	H18	0 79Br	2	
359,9757	22.43	359.9734	2.3	6.4	6.0	C15	H18	81Br2		
359.9737	22.78	359.9734	0.3	0.8	6.0	C15	H18	81Br2		
359.9716	23.04	359.9734	-1.8	-5.0	6.0	C15	H18	81Br2		
357.9781	13.21	357.9755	2.6	7.3	6.0	C15	H18	79Br 8	1Br	
357.9761	13.42	357.9755	0.6	1.7	6.0	C15	H18	79Br 8	1Br	
357.9742	13.53	357.9755	-1.3	-3.6	6.0	C15	H18	79Br 8	1Br	
357.9721	13.42	357,9755	-3.4	-9.5	6.0	C15	H18	79Br 8	1Br	
355.9798	0.42	355.9775	2.3	6.5	6.0	C15	H18	79Br2		
355.9778	0.43	355.9775	0.3	0.8	6.0	C15	H18	79Br2		
355.9759	0.50	355.9775	-1.6	-4.5	6.0	C15	H18	79Br2		

N

Figure S12. ¹H NMR spectrum of 3α -bromojohnstane (7) (600 MHz, CDCl₃).

Figure S17. 1D-NOE experiments of 3α -bromojohnstane (7) (600 MHz, CDCl₃).

Figure S18. HREIMS spectrum of 3α -bromojohnstane (7).

Elemental Composition Report

Page 1 of

Multiple Mass Analysis: 4297 mass(es) processed - displaying only valid results Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0

Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions 48456 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used: C: 15-15 H: 17-17 O: 1-1 79Br: 0-3 81Br: 0-3 Ana OTHER A 26 (2014)

07Marz18-A 3	6 (2.014)		451.8950 453.8949							Magnet EI+ 3.80e4	
436.8696 436.0000											
43	34.8629	440.8668		45	6.8961						
0-4 , , , , , , , , , , , , , , , , , , , 	435.0	440.0 445.0	450.0	455.0	460.0	465.0	470	0.0	475.	0 480.0	485.0
Minimum:	0.10				-1.5						
Maximum:	100.00		5.0	10.0	50.0						
Mass	RA	Calc. Mass	mDa	PPM	DBE	Form	ula				
455.8809	24.09	455.8768	4.1	9.0	6.0	C15	H17	0	81Br3		
455.8784	24.88	455.8768	1.6	3.5	6.0	C15	H17	0	81Br3		
455.8758	25.80	455.8768	-1.0	-2.2	6.0	C15	H17	0	81Br3		
455.8733	24.42	455.8768	-3.5	-7.7	6.0	C15	H17	0	81Br3		
453.8823	74.42	453.8789	3.4	7.5	6.0	C15	H17	0	79Br	81Br2	
453.8798	67.41	453.8789	0.9	2.0	6.0	C15	H17	0	79Br	81Br2	
453.8773	61.33	453.8789	-1.6	-3.5	6.0	C15	H17	0	79Br	81Br2	
453.8748	55.32	453.8789	-4.1	-9.0	6.0	C15	H17	0	79Br	81Br2	
451.8850	80.74	451.8809	4.1	9.1	6.0	C15	H17	0	79Br2	81Br	
451.8824	80.48	451.8809	1.5	3.3	6.0	C15	H17	0	79Br2	81Br	
451.8800	78.16	451.8809	-0.9	-2.0	6.0	C15	H17	0	79Br2	81Br	
451.8775	72.34	451.8809	-3.4	-7.5	6.0	C15	H17	0	79Br2	81Br	
449.8865	28.64	449.8829	3.6	8.0	6.0	C15	H17	0	79Br3		
449.8840	26.22	449.8829	1.1	2.4	6.0	C15	H17	0	79Br3		
449.8816	23.43	449.8829	-1.3	-2.9	6.0	C15	H17	0	79Br3		
449.8791	21.91	449.8829	-3.8	-8.4	6.0	C15	H17	0	79Br3		

Figure S19. ¹H NMR spectrum of 8,10-dibromoisoaplysin (8) (500 MHz, CDCl₃).

Figure S20. ¹H NMR spectrum of 8,10-dibromoaplysinol (9) (500 MHz, CDCl₃).

Т

.0