Identification of novel gymnodimines and spirolides from the marine dinoflagellate *Alexandrium ostenfeldii*

Supporting Information

Christian Zurhelle, Joyce Nieva, Urban Tillmann, Tilmann Harder, Bernd Krock^* , Jan Tebben *

All raw NMR data (Topspin) and annotated Mestre files are available in the data repository PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.895116

Figure S1: Structures of known and novel gymnodimines.	3
Figure S2: Structures of known and novel spirolides.	4
Figure S3: 1D Proton spectra of 1 (600 MHz, pyridine-d ₅).	5
Figure S4: 1D ¹³ C-spectra of 1 .	6
Figure S5: Multiplicity-edited 2D HSQC spectra of 1.	7
Figure S6: Slice 1 of multiplicity-edited 2D HSQC spectra of 1 .	8
Figure S7: Slice 2 of multiplicity-edited 2D HSQC spectra of 1.	9
Figure S8: 2D COSY spectra of 1.	10
Figure S9: Slice 1 of 2D COSY spectra of 1 .	11
Figure S10: Slice 2 of 2D COSY spectra of 1.	12
Figure S11: 2D double quantum filtered COSY spectra of 1.	13
Figure S12: 2D TOCSY spectra of 1 .	14
Figure S13: Slice 1 of 2D TOCSY spectra of 1 .	15
Figure S14: Slice 2 of 2D TOCSY spectra of 1 .	16
Figure S15: HSQC-TOCSY spectra of 1 .	17
Figure S16: Slice 1 of HSQC-TOCSY spectra of 1 .	18
Figure S17: Slice 2 of HSQC-TOCSY spectra of 1 .	19
Figure S18: Slice 3 of HSQC-TOCSY spectra of 1 .	20
Figure S19: 2D IMPACT-HMBC spectra of 1.	21
Figure S20: Slice 1 of 2D IMPACT-HMBC spectra of 1 .	22
Figure S21: Slice 2 of 2D IMPACT-HMBC spectra of 1 .	23
Figure S22: ROESY spectra of 1.	24
Figure S23: Measured CD-spectra of 1 and 4 and simulated CD-spectra of 1	25
Figure S24: 1D Proton spectra of 2 .	26
Figure S25: Multiplicity-edited 2D HSQC spectra of 2.	27
Figure S26: Slice 1 of Multiplicity-edited 2D HSQC spectra of 2.	28
Figure S27: Slice 2 of Multiplicity-edited 2D HSQC spectra of 2.	29
Figure S28: 2D COSY spectra of 2 .	30
Figure S29: Slice of COSY spectra of 2 .	31
Figure S30: 2D HSQC-TOCSY spectra of 2 .	32
Figure S31: Slice of 2D HSQC-TOCSY spectra of 2.	33
Figure S32: 1D Proton spectra of 10.	34
Figure S33: 1D ¹³ C-spectra of 10 .	35
Figure S34: Slice of 1D 13 C-spectra of 10 .	36

1

Figure S35: 2D HSQC spectra of 10 .	37
Figure S36: COSY spectra of 10 .	38
Figure S37: 2D TOCSY spectra of 10 .	39
Figure S38: Slice of 2D TOCSY spectra of 10.	40
Figure S39: HSQC-TOCSY spectra of 10.	41
Figure S40: Slice of HSQC-TOCSY spectra of 10.	42
Figure S41: HMBC spectra of 10.	43
Figure S42: 1D Proton spectra of 10 .	44
Figure S43: 2D HSQC spectra of 10 .	45
Figure S44: Slice 1 of 2D HSQC spectra of 10 .	46
Figure S45: Slice 2 of 2D HSQC spectra of 10.	47
Figure S46: 2D COSY spectra of 10 .	48
Figure S47: Slice of 2D COSY spectra of 10 .	49
Figure S48: 2D TOCSY spectra of 10 .	50
Figure S49: Slice of 2D TOCSY spectra of 10 .	51
Figure S50: 2D HSQC-TOCSY spectra of 10.	52
Figure S51: Slice of 2D HSQC-TOCSY spectra of 10 .	53
Figure S52: 2D HMBC spectra of 10.	54
Figure S53: Slice of 2D HMBC spectra of 10.	55
Figure S54: 1D Proton spectra of 11 .	56
Figure S55: 2D HSQC spectra of 11.	57
Figure S56: Slice of 2D HSQC spectra of 11 .	58
Figure S57: 2D COSY spectra of 11.	59
Figure S58: Slice of 2D COSY spectra of 11 .	60
Figure S59: 2D TOCSY spectra of 11 .	61
Figure S60: Slice of 2D TOCSY spectra of 11 .	62
Figure S61: 2D HMBC spectra of 11 .	63
Figure S62: Slice of 2D HMBC spectra of 11 .	64
Table S1: Mass transitions of spiroimines included in LC-MS/MS analysis.	65
Figure S63: LC-MS/MS chromatogram of station SL92-2.	66

4 GYM A: R=H 7 12-methylGYM A: R=CH₃

5 GYM B: R₁=H, R₂=H, R₃=OH **8** 12-MethylGYM B: R₁=CH₃, R₂=H, R₃=OH **6** GYM C: R₁=H, R₂=OH, R₃=H

Figure S1: Structures of known and novel gymnodimines.

SPX A SPX B SPX C SPX D 13-desMe SPX C (9) 27-OH-13-desMe SPX C 13,19-didesMe SPX C 27-OH-13,19-didesMe SPX C 27-Oxo-13,19-didesMe SPX C 20-OH-13,19-didesMe SPX D (11)

 $\Delta^{2,3} R_{1,2} = CH_3, R_{3,4,5} = H$ $R_{1,2} = CH_3, R_{3,4,5} = H$ $\Delta^{2,3} R_{1,2,5} = CH_3, R_{3,4} = H$ $R_{1,2} = CH_3, R_{3,4,5} = H$ $\Delta^{2,3} R_{2,5} = CH_3, R_{1,3,4} = H$ $\Delta^{2,3} R_{2,5} = CH_3, R_{1,3} = H, R_4 = OH$ $\Delta^{2,3} R_5 = CH_3, R_{1,2,3,4} = H$ $\Delta^{2,3} R_5 = CH_3, R_{1,2,3} = H, R_4 = OH$ $\Delta^{2,3} R_5 = CH_3, R_{1,2,3} = H, R_4 = O =$ 20-OH-13,19-didesMe SPX C (10) $\Delta^{2,3}$ R₅ = CH₃, R_{1,2,4} = H, R₃ = OH $R_5 = CH_3, R_{1,2,4} = H, R_3 = OH$

 $\Delta^{2,3} R_5 = CH_3, R_2 = H$ SPX G 20-Me SPX G $\Delta^{2,3} R_{2,5} = CH_3$

Figure S2: Structures of known and novel spirolides.

Figure S3: 1D Proton spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S4: 1D ¹³C-spectra of 16-Desmethylgymnodimine D (150 MHz, pyridine-d₅).

Figure S5: Multiplicity-edited 2D HSQC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-d₅).

Figure S6: Slice 1 of multiplicity-edited 2D HSQC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-d₅).

Figure S7: Slice 2 of multiplicity-edited 2D HSQC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S8: 2D COSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S9: Slice 1 of 2D COSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S10: Slice 2 of 2D COSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S11: 2D double quantum filtered COSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S12: 2D TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-d₅).

Figure S13: Slice 1 of 2D TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-ds).

Figure S14: Slice 2 of 2D TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz, pyridine-ds).

Figure S15: HSQC-TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-d₅).

Figure S16: Slice 1 of HSQC-TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-d₅).

Figure S17: Slice 2 of HSQC-TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S18: Slice 3 of HSQC-TOCSY spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S19: 2D IMPACT-HMBC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-d₅).

Figure S20: Slice 1 of 2D IMPACT-HMBC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S21: Slice 2 of 2D IMPACT-HMBC spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S22: ROESY spectra of 16-Desmethylgymnodimine D (600 MHz Proton frequency, pyridine-ds).

Figure S23: Measured (black) and simulated CD-spectra of 16-desmethyl GYM D (1) with R (grey) and S (blue) configuration at C-4 in comparison to the measured CD spectrum for GYM A (red).

Figure S24: 1D Proton spectra of Gymnodimine E (600 MHz, pyridine-ds).

Figure S25: Multiplicity-edited 2D HSQC spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-d₅).

Figure S26: Slice 1 of Multiplicity-edited 2D HSQC spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-ds).

Figure S27: Slice 2 of Multiplicity-edited 2D HSQC spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-d₅).

Figure S28: 2D COSY spectra of Gymnodimine E (600 MHz, pyridine-d₅).

Figure S29: Slice of COSY spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-d₅).

Figure S30: 2D HSQC-TOCSY spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-d₅).

Figure S31: Slice of 2D HSQC-TOCSY spectra of Gymnodimine E (600 MHz Proton frequency, pyridine-d₅).

Figure S32: 1D Proton spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, CD₃OD).

Figure S33: 1D ¹³C-spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (150 MHz, CD₃OD).

Figure S34: Slice of 1D ¹³C-spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (150 MHz, CD₃OD).

Figure S35: 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, CD₃OD).

Figure S36: COSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, CD₃OD).

Figure S37: 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, CD₃OD).

Figure S38: Slice of 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, CD₃OD).

Figure S39: HSQC-TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, CD₃OD).

Figure S40: Slice of HSQC-TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, CD₃OD).

Figure S41: HMBC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, CD₃OD).

Figure S42: 1D Proton spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, pyridine-ds).

Figure S43: 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-ds).

Figure S44: Slice 1 of 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-d₅).

Figure S45: Slice 2 of 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-d₅).

Figure S46: 2D COSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, pyridine-d₅).

Figure S47: Slice of 2D COSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, pyridine-d₅).

Figure S48: 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, pyridine-ds).

Figure S49: Slice of 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz, pyridine-ds).

Figure S50: 2D HSQC-TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-d5).

Figure S51: Slice of 2D HSQC-TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-ds).

Figure S52: 2D HMBC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-d₅).

Figure S53: Slice of 2D HMBC spectra of 20-Hydroxy-13,19-didesMethyl-SPX C (600 MHz Proton frequency, pyridine-d₅).

Figure S54: 1D Proton spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz, CD₃OD).

Figure S55: 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz Proton frequency, CD₃OD).

Figure S56: Slice of 2D HSQC spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz Proton frequency, CD₃OD).

Figure S57: 2D COSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz, CD₃OD).

Figure S58: Slice of 2D COSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz, CD₃OD).

Figure S59: 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz, CD₃OD).

Figure S60: Slice of 2D TOCSY spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz, CD₃OD).

Figure S61: 2D HMBC spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz Proton frequency, CD₃OD).

Figure S62: Slice of 2D HMBC spectra of 20-Hydroxy-13,19-didesMethyl-SPX D (600 MHz Proton frequency, CD₃OD).

Mass Transition	Common Name	Reference	Retention		m/z	m/z		
(m/z)			Reference	Time (min)	Group 1	Group 2	Group 3	Group 4
			Spirolides					
$650 \rightarrow 164$	Spirolide H	[18]		650/632/614	402/384	206	164	
$652 \rightarrow 164$	Spirolide I	[18]		652/634/616	402/384	206	164	
$678 \rightarrow 164$	13,19-didesMethyl-spirolide C	[19,20]		678/660/642/624	448/430/412/394		164	
$692 \rightarrow 150$	Spirolide A	[13]		692/674/624	444/390	190	150	
$692 \rightarrow 164$	<u>13-desMethyl-spirolide C</u>	[6,13]	<u>12.76</u>	<u>692/674/656/638</u>	462/444/426		<u>164</u>	
$692 \rightarrow 164$	Spirolide G	[21]		692/674/656/638	378		164	
$694 \rightarrow 150$	Spirolide B	[22,23]		694/676/658/640	462/444/426		150	
$694 \rightarrow 164$	13-desMethyl spirolide D	[24]		694/676/658/640	444/426	230/204/177	164	
$694 \rightarrow 164$	<u>(10)</u>	[6]	<u>12.33</u>	694/676/658/640/622	446/428/410	<u>292/274/248</u>	<u>164</u>	
$696 \rightarrow 164$	<u>(11)</u>	[6]	<u>12.39</u>	696/678/660/642/624	464/446/428/410	292/274/248	<u>164</u>	
$706 \rightarrow 164$	Spirolide C	[13]		706/688/638	458/404	204	164	
$706 \rightarrow 164$	20-Methyl-spirolide G	[25]		706/688/670/652	392/374/346	258	164	
$708 \rightarrow 164$	Spirolide D	[22,25]		708/690/672/654	458/440	230/206/204/177	164	
$708 \rightarrow 180$	<u>27-Hydroxy-13-desMethyl-spirolide C</u>	[6]	<u>13.06</u>	708/690/672/654/636	478/460/442/424		<u>180</u>	
$710 \rightarrow 164$	<u>(12)</u>	[6]	<u>12.97</u>	710/692/674/656/638	462/444/426		<u>164</u>	
$720 \rightarrow 164$	<u>(13)</u>	[6]	<u>13.29</u>	720/702/684/666	490/472/454		<u>164</u>	
$722 \rightarrow 164$	<u>(14)</u>	[6]	<u>13.40</u>	722/704/686/668	490/472/454		<u>164</u>	
		(Gymnodimines	5				
$508 \rightarrow 490$	<u>Gymnodimine A</u>	[6,12]	<u>11.81</u>	508/490/392/286/246/202/174/162/136/121				
$510 \rightarrow 492$	<u>(1)</u>	[6]	<u>12.21</u>	510/492/482/332/302/136/120				
$522 \rightarrow 504$	<u>12-Methyl-gymnodimine A</u>	<u>[5,6]</u>	<u>12.17</u>	522/504/406/300/246/202/174/162/136/120				
$526 \rightarrow 508$	<u>(2)</u>	[6]	<u>11.32</u>	526/508/348/262/174/162/136/120				

Table S1: Mass transitions of spiroimines included in LC-MS/MS analysis (m/z; precursor ion \rightarrow fragment ion), retention times and characteristic group fragments. Compounds detected in *A. ostenfeldii* strain OKNL48 originally isolated from Ouwerkerkse Kreek, the Netherlands, and their respective data are underlined.

Figure S63: LC-MS/MS chromatogram of station SL92-2.