Supplementary data contents page

Title: Oxysterols from a Marine Sponge Inflatella sp. and their Action in 6-Hydroxydopamine-Induced Cell Model of Parkinson's Disease

- Authors: Sophia A. Kolesnikova^{1,*,†}, Ekaterina G. Lyakhova^{1,†}, Anatoly I. Kalinovsky¹, Roman S. Popov¹, Ekaterina A. Yurchenko¹, and Valentin A. Stonik^{1,2}
- Address: ¹G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia

²School of Natural Science, Far Eastern Federal University, Sukhanova St., 8, Vladivostok 690000, Russia

Correspondence: *sovin81@inbox.ru; Tel.: +7-423-231-1168

Contents:

- **S1** Experimental Section
- S2 HRESI MS Spectra (Positive Ion Mode) of compounds 1-4 in CDCl₃
- **S3** ¹H NMR (500.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene- 3β , 5α -diol (1) in CDCl₃
- S4 13 C NMR (125.76 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene-3 β ,5 α -diol (1) in CDCl₃
- S5 COSY NMR (700.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene- $3\beta,5\alpha$ -diol (1) in CDCl₃
- S6 ROESY NMR (500.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene-3β,5α-diol (1) in CDCl₃
- S7 HSQC NMR (700.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene- $3\beta,5\alpha$ -diol (1) in CDCl₃
- **S8** ¹H NMR (700.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene- $3\beta,4\alpha$ -diol (2) in CDCl₃
- **S9** ¹³C NMR (125.76 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene- 3β ,4 α -diol (2) in CDCl₃
- **S10** COSY NMR (700.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene- $3\beta,4\alpha$ -diol (2) in CDCl₃
- **S11** ROESY NMR (700.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene- 3β ,4 α -diol (2) in CDCl₃
- S12 HSQC NMR (700.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene- 3β ,4 α -diol (2) in CDCl₃
- **S13** ¹H NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3 β ,7 α -diol (3) in CDCl₃
- **S14** ¹³C NMR (176.04 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7α -diol (3) in CDCl₃
- **S15** COSY NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7α -diol (3) in CDCl₃
- **S16** ROESY NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7α -diol (3) in CDCl₃
- **S17** HSQC NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7α -diol (3) in CDCl₃
- **S18** HMBC NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3 β ,7 α -diol (3) in CDCl₃
- **S19** ¹H NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7β -diol (4) in CDCl₃
- **S20** ¹³C NMR (125.76 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7β -diol (4) in CDCl₃
- S21 COSY NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7β -diol (4) in CDCl₃
- S22 ROESY NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3β,7β-diol (4) in CDCl₃
- **S23** HSQC NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7β -diol (4) in CDCl₃
- S24 HMBC NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β ,7 β -diol (4) in CDCl₃
- S25 Viability of Neuro2a cells
- **S26** ROS formation in Neuro2a cells
- S27 Viability of Neuro2a cells treated with 6-OHDA

[†] These authors contributed equally to the work.

S1 Experimental Section

General experimental procedure:

¹H NMR (500.13, 700.13 MHz) and ¹³C NMR (125.75 MHz, 176.04 MHz) spectra were recorded in CDCl₃ on a Avance-III 700 and DRX-500 «Bruker». The ¹H and ¹³C NMR chemical shifts were referenced to the TMS or to solvent peak for CDCl₃ at $\delta_{\rm H}$ 7.26 and $\delta_{\rm C}$ 77.0.

HRESI-MS: Agilent 6510 Q-TOF LC/MS, 0.01 mg/ml (CDCl₃), 5µl min⁻¹. LSI-MS: AMD-604 (AMD Intectra), 1 mg/ml. HPLC: YMC-Pack ODS-A (5 μ , 250×4.6 mm).

TLC examination of fractions A-F :

TLC was carried out on silica gel plates (CTX-1A, 5-17 µm, Sorbfil, Russia), CHCl₃/EtOH (25:1).

Statistical analysis

All assays were performed at least in triplicate. The results are expressed as the mean \pm standard deviation (SD). A Student's *t*-test was used to evaluate the data with the significance level of p < 0.05. The means and standard errors for each treatment were calculated and plotted using SigmaPlot 3.02 software (Jandel Scientific, San Rafael, CA).

S2 HRESI MS Spectra (Positive Ion Mode) of compounds 1-4 in CDCl₃

S4¹³C NMR (176.04 MHz) spectrum for the 24-methylcholesta-6,24(28)-diene-3β,5α-diol (1) in CDCl₃

S6 ROESY NMR (500.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene-3β,5α-diol (1) in CDCl₃

S7 HSQC NMR (700.13 MHz) spectrum of the 24-methylcholesta-6,24(28)-diene-3β,5α-diol (1) in CDCl₃

S10 COSY NMR (700.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene-3β,4α-diol (2) in CDCl₃

S11 ROESY NMR (500.13 MHz) spectrum of the 24-methylcholesta-5,24(28)-diene-3β,4α-diol (2) in CDCl₃

S12 HSQC NMR (700.13 MHz) spectrum for the 24-methylcholesta-5,24(28)-diene-3β,4α-diol (2) in CDCl₃

S14 ¹³C NMR (176.04 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3 β ,7 α -diol (3) in CDCl₃

S15 COSY NMR (700.13 MHz) spectrum of the (22*E*)-24-nor-cholesta-5,22-diene-3β,7α-diol (3) in CDCl₃

S17 HSQC NMR (700.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene- 3β , 7α -diol (3) in CDCl₃

S19 ¹H NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3 β ,7 β -diol (4) in CDCl₃

S21 COSY NMR (500.13 MHz) spectrum of the (22*E*)-24-nor-cholesta-5,22-diene-3β,7β-diol (4) in CDCl₃

S22 ROESY NMR (500.13 MHz) spectrum of the (22*E*)-24-*nor*-cholesta-5,22-diene-3β,7β-diol (4) in CDCl₃

S23 HSQC NMR (500.13 MHz) spectrum of the (22E)-24-nor-cholesta-5,22-diene-3β,7β-diol (4) in CDCl₃

S25 Viability of Neuro2a cells

Influence of compounds 1-7 (a) and 8-14 (b) on viability of Neuro2a cells by MTT assay.

* Statistically significant differences ($p \le 0.05$) between results for control cells and cells incubated with compounds.

S26 ROS formation in Neuro2a cells

Influence of compounds 1-14 on ROS formation in Neuro2a cells.

*Statistically significant differences ($p \le 0.05$) between results for control cells and cells incubated with compounds.

Influence of compounds 1-7 (a) and 8-14 (b) on viability of Neuro2a cells treated with 6-OHDA (50 µM).

* Statistically significant differences ($p \le 0.05$) between results for 6-OHDA-treated cells and cells incubated with compounds.