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Abstract: A new spirotetronate glycoside tetrocarcin Q (1) and six known analogues tetrocarcin A (2),
AC6H (3), tetrocarcin N (4), tetrocarcin H (5), arisostatin A (6), and tetrocarcin F1 (7) were isolated
from the fermentation broth of the marine-derived actinomycete Micromonospora carbonacea LS276.
Their chemical structures were established on the basis of 1D- and 2D-NMR spectroscopy, as well as
HR-ESI-MS analysis. The absolute configurations of their stereogenic carbons were determined by
circular dichroism (CD) analysis. Compound 1 possesses 2-deoxy-allose, which is a unique sugar
type at the C-9 position. This type has not been found in the previously reported spirotetronate
glycosides. Compound 1 displayed moderate antibacterial activity against Bacillus subitlis ATCC
63501 with minimum inhibitory concentration (MIC) value of 12.5 µM.

Keywords: marine-derived actinomycete; Micromonospora; spirotetronate glycoside; antibiotic;
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1. Introduction

The spirotetronate family displays complicated chemical structures, potent bioactivities,
and significant pharmacological potential [1]. This family features an unusual macrolide that contains
a characteristic tetronic acid (spiro-linked to a cyclohexene ring) conjugated with a trans-decalin system.
The structure is also linked with two sugar side chains, one of which is D-tetronitrose (NS), while
the other comprises L-digitoxoses (DG) and L-amicetoses (AM) [2–4]. In terms of biological profile,
the spirotetronate exhibits broad biological activities, including antibacterial, antitumor, antiviral,
and antimalarial effects [5–10]. A representative of this group is the tetrocarcins, including tetrocarcins
A–P, AC6H, arisostatins A and B which were isolated from Micromonospora bacteria [4,5,11–14].
Various studies reported that tetrocarcin A and its analogues had the antibiotic activity against
several Gram-positive bacteria as well as anticancer activity [6,15,16]. Therefore, our objective is to
discover new tetronolides with antibacterial activity, provide more information for the structure-activity
relationship, as well as the possibility to improve their potential applications.

The ethyl acetate extract of the fermentation broth from the marine-derived M. carbonacea
LS276 [17] showed antibacterial activity (Figure 1a). Bioassay-guided fractionation of the extract
and further purification allowed for the isolation of seven spirotetronate glycosides (1–7). Among
them, tetrocarcin Q (1) has a unique oligosaccharide chain at the C-9 position, which is different from
other known spirotetronate glycosides. A major constituent, tetrocarcin A (2), was found to be the main
active component of this strain (Figure 1b,c). Herein, we report the isolation, structure elucidation,
and biological activities of these compounds.
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Figure 1. The bioassay and the HPLC fingerprint of the organic extracts, and the structures of the 
isolated compounds. (a) The antibacterial activity of the organic extracts (i: the ethyl acetate extract; 
ii: the methanol extract) against B. subitlis ATCC 63501 using paper disk method (5 mg/piece); (b) The 
HPLC fingerprint of the ethyl acetate extract, and the peaks of the tetrocarcins were marked in red 
box based on their UV spectra. Note: the peak numbers represent the structure numbers; (c) The 
chemical structures of 1–7 from M. carbonacea LS276. Note: the sugar types marked in green color 
include NS (tetronitrose), DG (digitoxose), 2-Deoxy-All (2-deoxy-allose), and AM (amicetose). 

2. Results and Discussion 

2.1. Structure Elucidation of Compounds 

Compound 1 was obtained as a white powder. Its molecular formula C69H98N2O26 was 
determined by the (+)-HR-ESI-MS peak at m/z 1393.6260 [M + Na]+, indicating 22 degrees of 
unsaturation. The 1H NMR spectrum of 1 (Table 1, Supplementary Figure S2) displayed one 
aldehydic proton at δH 9.58 (s, H-32), five olenic protons (δH: 5.74 (d, J = 10.2 Hz, H-11), 5.42 (m, H-
12), 5.16 (m, H-15), 5.21 (d, J = 10.2 Hz, H-19), 6.92 (s, H-22)), five glycosyl anomeric protons (δH: 4.44 
(dd, J = 9.6, 1.8 Hz, H-A-1), 4.92 (d, J = 4.8 Hz, H-B-1), 4.88 (brd, J = 3.0 Hz, H-C-1), 4.90 (dd, J = 9.6, 1.8 
Hz, H-D-1), 4.91 (brs, H-E-1)), one methoxy group at δH 3.71 (s, H-A4-NHCOOCH3), six methyl 

Figure 1. The bioassay and the HPLC fingerprint of the organic extracts, and the structures of the
isolated compounds. (a) The antibacterial activity of the organic extracts (i: the ethyl acetate extract;
ii: the methanol extract) against B. subitlis ATCC 63501 using paper disk method (5 mg/piece); (b) The
HPLC fingerprint of the ethyl acetate extract, and the peaks of the tetrocarcins were marked in red box
based on their UV spectra. Note: the peak numbers represent the structure numbers; (c) The chemical
structures of 1–7 from M. carbonacea LS276. Note: the sugar types marked in green color include NS
(tetronitrose), DG (digitoxose), 2-Deoxy-All (2-deoxy-allose), and AM (amicetose).

2. Results and Discussion

2.1. Structure Elucidation of Compounds

Compound 1 was obtained as a white powder. Its molecular formula C69H98N2O26 was
determined by the (+)-HR-ESI-MS peak at m/z 1393.6260 [M + Na]+, indicating 22 degrees of
unsaturation. The 1H NMR spectrum of 1 (Table 1, Supplementary Figure S2) displayed one aldehydic
proton at δH 9.58 (s, H-32), five olenic protons (δH: 5.74 (d, J = 10.2 Hz, H-11), 5.42 (m, H-12),
5.16 (m, H-15), 5.21 (d, J = 10.2 Hz, H-19), 6.92 (s, H-22)), five glycosyl anomeric protons (δH: 4.44
(dd, J = 9.6, 1.8 Hz, H-A-1), 4.92 (d, J = 4.8 Hz, H-B-1), 4.88 (brd, J = 3.0 Hz, H-C-1), 4.90 (dd,
J = 9.6, 1.8 Hz, H-D-1), 4.91 (brs, H-E-1)), one methoxy group at δH 3.71 (s, H-A4-NHCOOCH3),
six methyl singlets (δH: 2.08 (H-B4-OCOCH3), 2.07 (H-B6-OCOCH3), 1.63 (H-27), 1.60 (H-A3-CH3),
1.53 (H-31), 1.34 (H-30)), and six methyl doublets (δH: 1.32(d, J = 6.0 Hz, H-D-6), 1.23 (d, J = 6.0
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Hz, H-E-6), 1.16 (d, J = 6.6 Hz, H-C-6), 1.15 (d, J = 6.6 Hz, H-A-6), 1.09 (d, J = 7.2 Hz, H-29), 0.64 (d,
J = 6.0 Hz, H-28)). The 13C NMR (Table 1, Supplementary Figure S3) and Heteronuclear Single Quantum
Coherence (HSQC) (Supplementary Figure S4) spectra revealed 69 carbon signals, including seven
carbonyls or keto-enolic carbons (δC: 206.4, 201.5, 192.6, 170.9, 170.2, 166.7, 157.4), nine olefinic carbons
(δC: 149.6, 141.6, 136.5, 136.1, 126.2, 126.1, 123.1, 118.3, 100.9), five sugar anomeric carbons (δC: 99.5,
98.9, 96.5, 92.7, 92.0), one methoxyl (δC: 53.0), 12 methyls (δC: 25.4, 22.1, 21.0, 20.9, 19.0, 18.2, 17.8, 17.1,
16.3, 15.2, 14.5, 14.1). Comprehensive analysis of the 1H-1H Homonuclear chemical shift Correlation
Spectroscopy (COSY) (Supplementary Figure S6), HSQC (Supplementary Figure S4) and Heteronuclear
Multiple Bond Correlation (HMBC) (Supplementary Figure S5) spectra of 1, indicated the presence of
a spiroteronate skeleton, a tetronitrose (NS), and a tetrasaccharide, which is similar to tetrocarcin A (2).
The difference between 1 and tetrocarcin A (2) is that the 6-methyl group (δH 1.13 (3H, d, J = 6.6 Hz);
δC 17.6) of one digitoxose unit (sugar B) in tetrocarcin A (2) is replaced by a 6-oxymethylene (δH 4.32
(1H, dd, J = 12.0, 5.4 Hz) and 4.12 (1H, dd, J = 12.0, 1.8 Hz); δC 63.4) and an acetyl group (δH 2.07
(3H, s); δC 21.0, 170.9) (Table 1, Supplementary Figure S10, Supplementary Table 1). The HMBC
correlations of 6-oxymethylene protons (δH 4.32 and 4.12) to the ester carbonyl (δC 170.9, B6-OCOCH3)
and two oxygenated-carbons (δC 69.5, B-4 and δC 64.5, B-5) confirmed that the first sugar (sugar B) is
4,6-O-diacetyl-2-deoxysugar, which was supported by the (+)-HR-ESI-MS fragments (m/z 1013.4453
and 783.3577) corresponding to the ion of a subunit consisting of the spiroteronate skeleton with NS
(sugar A) and 4,6-O-diacetyl-sugar (sugar B), and a subunit of the spiroteronate skeleton with NS
(Figure 2, Supplementary Figure S1). On the basis of the above information, all protons and carbon
resonances were assigned and the planar structure of 1 was established.

Table 1. The 1H (600 MHz) and 13C NMR (150 MHz) data of tetrocarcin Q (1) in CDCl3. Underline: the
NMR data (3.71, 53.0) referred to the group CH3 in underline, while 157.4 referred to CO in underline.

No. δH Mult. (J in Hz) δC No. δH Mult. (J in Hz) δC

Spiroteronate Skeleton

1 - 166.7 17 4.28, brs 78.0
2 - 100.9 18 - 141.6
3 - 206.4 19 5.21, d (10.2) 118.3
4 - 51.3 20 3.06, t (9.6) 45.0
5 2.07, m 43.4 21 4.85, m 69.2
6 1.37, m 31.3 22 6.92, s 149.6
7 1.46, m; 1.60, m 41.6 23 - 136.5
8 2.20, m 34.5 24 2.56, m; 2.83, dt (2.5,18.9) 29.8
9 3.49, dd (5.1, 10.5) 84.8 25 - 84.1
10 2.10, t (9.8) 38.5 26 - 201.5
11 5.74, d (10.2) 126.1 27 1.63, s 15.2
12 5.42, m 126.2 28 0.64, d (6.0) 22.1
13 3.28, m 54.3 29 1.09, d (7.2) 14.1
14 - 136.1 30 1.34, s 14.5
15 5.16, m 123.1 31 1.53, s 16.2
16 2.28, m; 1.59, m 30.8 32 9.58, s 192.6

Sugars

A-1 4.44, dd (9.6, 1.8) 96.5 C-1 4.88, brd (3.0) 92.7
A-2 2.72, brd (9.6); 1.64, m 36.1 C-2 1.88, m; 1.75, m 29.6
A-3 - 91.6 C-3 2.03, m; 1.97, m 26.4
A-4 4.36, dd (10.2, 2.4) 53.8 C-4 3.21, td (9.6, 4.8) 81.3

A-4-NH 5.07, d (10.2) C-5 3.70, m 68.1
A-5 3.48, m 69.4 C-6 1.16, d (6.6) 18.2
A-6 1.15, d (6.6) 17.1 D-1 4.90, dd (9.6, 1.8) 99.5

A3-CH3 1.60, s 25.4 D-2 2.15, dt (14.4, 1.8);1.67, m 37.1
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Table 1. Cont.

No. δH Mult. (J in Hz) δC No. δH Mult. (J in Hz) δC

Sugars

A4-NHCOOCH3 3.71, s 53.0 D-3 4.25, m 64.0
A4-NHCOOCH3 - 157.4 D-4 3.46, dd (9.6, 3.0) 75.3

B-1 4.92, d (4.8) 98.9 D-5 3.85, dq (9.6, 6.0) 67.9
B-2 2.24, dd (14.4, 3.0); 1.79, m 31.2 D-6 1.32, d (6.0) 19.0
B-3 4.23, m 66.5 E-1 4.91, brs 92.0
B-4 4.83, dd (10.5, 3.0) 69.5 E-2 1.83, 2H, m 29.8
B-5 4.50, m 64.6 E-3 1.90, m; 1.74, m 27.5

B-6
4.32, dd(12.0, 5.4);

63.5 E-4 3.30, td (9.6, 4.8) 71.84.12, dd (12.0, 1.8)
B4-OCOCH3 2.08, s 20.9 E-5 3.63, dq (9.6, 6.0) 70.4
B4-OCOCH3 - 170.2 E-6 1.23, d (6.0) 17.8
B6-OCOCH3 2.07, s 21.0 - - -
B6-OCOCH3 - 170.9 - - -
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The relative configuration of 1 was the same as those of the previously reported tetrocarcins,
based on the similarity of their NMR spectral data of the aglycone, which was further supported
by key coupling constants in 1H NMR spectrum and the correlations observed in the Rotating
Frame Overhauser Effect Spectroscopy (ROESY) experiments (Figure 2, Supplementary Figure S7).
The Z-configuration of the ∆11,12 double bond was assigned on the basis of the coupling constant
JH-11/H-12 = 10.2 Hz. The ROESY correlations of H-13/H-15, H-16/H-30, H-17/H-19, and H-31/H-20
indicated that the E-configurations of the both double bonds ∆14,15 and ∆18,19. In addition, the ROESY
correlations of H-13/H-27, H-27/H-10, H-27/H-6, and H-29/H-10 revealed that these protons were on
the same side of the decalin ring, whereas the ROESY correlations of H-9/H-5 indicated that they were
on the other side of the ring. The absolute configurations of the stereogenic carbons in the aglycone
of 1 were the same as those of tetrocarcin A (2), since they displayed similar circular dichroism (CD)
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curves, which showed a negative Cotton effect at 224 nm and a positive Cotton effect at 264 and
300 nm [4] (Supplementary Figure S8). The relative configurations of sugars A-E were determined as
β, α, α, β, and α-orientations by the coupling constants of the anomeric protons (δH: 4.44 (dd, J = 9.6,
1.8 Hz, H-A-1), 4.92 (d, J = 4.8 Hz, H-B-1), 4.88 (brd, J = 3.0 Hz, H-C-1), 4.90 (dd, J = 9.6, 1.8 Hz, H-D-1),
4.91 (brs, H-E-1)), which was confirmed by the ROESY correlations (H-A-1/H-A-5, H-B-1/H-B-3,
H-D-1/H-D-5).

Compounds 2–7 were also obtained as white amorphous powders, and they were identified as
tetrocarcin A (2), AC6H (3), tetrocarcin N (4), tetrocarcin H (5), arisostatin A (6), and tetrocarcin F1 (7)
by comparison of their spectral data (MS, 1H, 13C NMR, specific rotation) with those reported in the
literature [4,5,12–14].

2.2. Biological Assays

All of the isolated compounds were evaluated for their antibacterial activity against Bacillus subitlis
ATCC 63501, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis ATCC 12228, Enterococcus
faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. Except for
7, the other six compounds exhibited antibacterial activity against B. subtilis with minimum inhibitory
concentration (MIC) from <0.048 µM to 50 µM, with 2 and 6 showing strong antibacterial activity
(Table 2). The MIC values of 2–7 were found to be similar to those previously reported [4,9,11,14,18].

Table 2. Minimum inhibitory concentrations (MICs) (µM) for B. subitlis ATCC 63501 of compounds 1–7.

Compounds MICs (µM)

1 2 3 4 5 6 7 Ampicillin

B. subitlis ATCC 63501 12.5 <0.048 0.5 1.562 50 0.048 >400 3.125

Compound 7 exhibited no activity, indicating that the oligosaccharide chain is required for the
antibacterial activity. Compound 3 was at least 10-fold less active than 2, suggesting that the NO2-sugar
is also important for the antibacterial activity. Compounds 4 and 5 were less active than 2, 3 and 6,
inferring that the aldehyde group at C-23 is also essential for the activity. These results are all in
accordance with the previously reported structure-activity relationship [1,4,9,11,14].

Compound 1 displayed a moderate antibacterial activity with MIC value of 12.5 µM, which was
less active than 2, implying that 6-CH3 of sugar B in the oligosaccharide chain at C-9 plays a key role
in the antibacterial activity (Table 2).

Compounds 1–7 were evaluated by MTT method for their in vitro antitumor activity against
five human cancer cell lines including: human non-small cell lung cancer cell (A549), human gastric
cancer cell (BGC823), human colonic carcinoma cell (HCT116), human hepatoma cell (HepG2), human
glioblastoma multiform cell (U87MG). In addition to moderate activity against the other four cell lines
with the IC50 values ranging from 5.33 µM to 19.7 µM, 2 and 6 exhibited the most potent antitumor
activity against U87MG cell line with IC50 values of 0.50 µM and 2.42 µM, respectively (Table 3).
The other compounds were considered to be weakly active or inactive (IC50 > 10 µM).

The structure-activity relationship of the seven compounds on the human tumor cell lines A549,
BGC823, HCT116, HepG2 and U87G was very similar to that obtained from antibacterial assay against
B. subitlis (Tables 2 and 3). The most active compounds were 2 and 6, which was in agreement with
the previous studies [9]. The activities of 3, 4 and 5 were decreased, suggesting the modification of
the tetronolide skeleton have influence on the in vitro antitumor activity in some extent. The lack of
activity of 7 implies that the sugar moiety at C-9 position could play an important role in the antitumor
activity, which was also in agreement with the previous structure-activity relationship study [15].
Compound 1 showed no or weak in vitro antitumor activity, suggesting that the deoxy sugar analogue
may also influence the antitumor activity.
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Table 3. In vitro antitumor activity (IC50, µM) of compounds 1–7.

Compounds IC50 (µM)

A549 BGC823 HCT116 HepG2 U87 MG

1 >50.0 28.3 32.4 49.3 13.3
2 5.71 7.45 5.97 18.2 0.50
3 19.2 25.4 28.2 >50.0 11.0
4 27.1 27.4 27.3 >50.0 21.3
5 >50.0 >50.0 >50.0 >50.0 44.7
6 5.33 19.7 6.53 18.8 2.42
7 >50.0 >50.0 >50.0 >50.0 >50.0

paclitaxel a 0.001 0.01 0.01 0.07 -
gefitinib b - - - - 8.30

a Positive control used in A549, BGC823, HCT116 and HepG2 cell lines; b Positive control used in U87MG cell line.

3. Materials and Methods

3.1. General

Optical rotations were measured on a JASCO P-2000 digital polarimeter (JASCO Corporation,
Tokyo, Japan). Circular dichroism (CD) spectrum was recorded using a JASCO J-815 CD spectro
polarimeters (JASCO Corporation, Tokyo, Japan). 1H and 13C NMR, and 2D NMR spectra were
obtained at 600 and 150 MHz, using a Bruker AVANCE 600-III spectrometer (Bruker Biospin Group,
Karlsruhe, Germany) in chloroform-d with TMS as an internal reference. HR-ESI-MS data were
measured using an Agilent 1100 LC/MSD Trap SL LC/MS/MS spectrometer (Agilent Technologies,
Santa Clara, CA, USA). Semipreparative HPLC was performed by an Agilent 1200 HPLC system
(Agilent Technologies, Santa Clara, CA, USA) using a Shiseido Capcell Pak C18 column (5 µm,
10 × 250 mm). Column chromatography was performed with RP-18 (40–60 µm, GE healthcare,
Fairfield, CT, USA) and Sephadex LH-20 (18–110 µm, GE healthcare, Fairfield, CT, USA).

3.2. Bacterial Material and Fermentation

The strain LS276 was isolated from a sponge Gelliodes carnosa collected from Ling shui Bay, Hainan
Province of China near Xincun Harbor (18◦24′5.49” N, 109◦59′37.76” E), in August 2007 [17]. It was
identified as M. carbonacea based on the morphology and 16S rRNA gene sequence analysis. The DNA
sequence was deposited in GenBank (Accession No. FJ937935.1). The strain LS276 was first cultivated
on agar plates (medium: starch 40.0 g; glucose 0.5 g; peptone 5.0 g; soybean powder 5.0 g; CaCO3

1.0 g; K2HPO4 0.5 g; MgSO4 0.5 g; agar 10.0 g; distilled water 1 L; pH 7.0–7.2) at 28 ◦C for five days.
Then, the mycelia were inoculated into 500-mL Erlenmeyer flasks, each containing 100 mL of liquid
medium (composed of starch 40.0 g; glucose 0.5 g; peptone 5.0 g; soybean powder 5.0 g; CaCO3 1.0 g;
K2HPO4 0.5 g; MgSO4 0.5 g; distilled water 1 L; pH 7.0–7.2). The flasks were incubated at 28 ◦C on a
rotary shaker (200 rpm) for three days. Seed culture (10 mL) was transferred into two hundred 500-mL
Erlenmeyer flasks each containing 100 mL of fermentation medium (composed of 10.0 g of starch;
20.0 g of glucose; 5.0 g of soybean powder; 1.0 g of KNO3; 0.5 g of NaCl; 0.5 g of K2HPO4; 0.01 g of
MgSO4 in 1 L of distilled H2O) and incubated at 28 ◦C on a rotary shaker (200 rpm) for nine days.

3.3. Extraction and Isolation

The culture broth (20 L) was repeatedly extracted with ethyl acetate (v/v 1:3, three times) by
ultrasound, and the organic solvent was evaporated to dryness under a vacuum to afford the crude
extract (4.0 g). The crude extract was first subjected to Sephadex LH-20 chromatography (3 × 60 cm,
100 g) using CH3OH (each 20 mL) as eluent and afforded six primary Fractions (Frs) 1–6. Fr.3
(2.0 g) was separated via semipreparative HPLC using 65% CH3CN in H2O, flow rate 2 mL/min
as eluent to give Fr.3.1 to Fr.3.6. Fr.3.1 was further purified by semipreparative HPLC with a linear
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gradient of CH3CN–0.02%CH3COOH/H2O (60% to 100%, 35 min) to provide compounds 1 (2.4 mg,
tR = 10.0 min), 4 (12.6 mg, tR = 10.8 min) and 5 (9.4 mg, tR = 10.4 min). Fr.3.2 was further purified by
semipreparative HPLC with a linear gradient of CH3CN–0.02%CH3COOH/H2O (65% to 72%, 40 min)
to yield compound 2 (46.7 mg, tR = 16.7 min). Fr.3.5 was further purified by semipreparative HPLC
with a linear gradient of CH3CN–0.02%CH3COOH/H2O (65% to 72%, 40 min) to yield compound 6
(2.6 mg, tR = 18.9 min). Fr.5. (300 mg) was purified by semipreparative HPLC afforded compound
3 (3.6 mg, linear gradient of 20–70% CH3CN in H2O for 50 min, flow rate 2 mL/min, tR = 28.2 min).
Purification of the Fr.4. (100 mg) by semipreparative HPLC provided compound 7 (7.8 mg, linear
gradient of 20–70% CH3CN in H2O for 50 min, flow rate 2 mL/min, tR = 37.3 min).

Tetrocarcin Q (1). White amorphous powder; [α]20
D −80.9 (c 0.05, MeOH); UV (MeOH) λmax

(log ε) 203 (4.13), 242 (3.02), and 274 (4.07) nm; CD (c 0.5 (w/v)%, MeOH) 224 (−22.6), 264 (6.00),
343 (−0.85) nm; 1H NMR (CDCl3, 600 MHz) and 13C NMR (CDCl3, 150 MHz) data, Table 1;
(+)-HR-ESI-MS m/z 1393.6260 [M + Na]+ (calcd. for C69H98N2O26Na, 1393.6270).

3.4. Biological Assays

Antibacterial and in vitro antitumor assays were performed for the isolated compounds with the
purity of >90% by HPLC.

3.4.1. Antibacterial Activity

The tested bacteria used in this study were as follows: B. subitlis ATCC 63501, S. aureus ATCC
29213, S. epidermidis ATCC 12228, E. faecalis ATCC 29212, P. aeruginosa ATCC 27853, and E. coli ATCC
25922, MIC values against the six bacterial strains were measured by using the 96-well plate-based
assay [19]. The bacterial strains cultured in respective medium were collected at OD600 of 0.3–0.5,
then further diluted to OD600 of 5 × 10−4. Aliquots of this suspension (100 µL) were placed into a
96-well plate. The tested compounds were added into the bacteria suspensions to give the desired
concentration. The wells containing the same number of cells but no compounds were set as control
groups. The positive control was ampicillin. The cultures were then added respective solutions and
further incubated at 37 ◦C for 18 h. The plate was then read using a microplate reader at 600 nm. Each
concentration had triplicate values, and the whole experiment was carried out at three times and the
MIC value was determined by taking the average of triplicate OD600 values for each concentration and
plotting it against concentration. The MIC value was determined, as the point in the curve where the
OD600 is similar to that of control without bacteria.

3.4.2. Antitumor Activity

The in vitro antitumor activity (represented by IC50 values) of the isolated compounds against
five tumor cell lines, including A549, BGC823, HCT116, HepG2 and U87MG, was determined by MTT
method as reported [20,21], and the dose-response curves were fitted with Sigma plot.

4. Conclusions

In summary, seven spirotetronate glycosides were isolated and characterized from the
marine-derived M. carbonacea LS276. Among them, tetrocarcin Q (1) is a new compound. It is worth
mentioning that the sugar B of compound 1 is 6-O-acetylated, while the other sugars in the previous
spirotetronate glycosides are 6-deoxy sugars (DG and AM), which expanded the structural variability
of such spirotetronate glycosides. We propose that the glycosyltransferase, especially TcaT3 [2], might
recognize other sugar donors, just having a preference for digitoxose to biosynthesize its “natural and
suitable” products. Another possibility is that the glycosyltransferase had accidentally evolved, which
could identify other sugar donors. Efforts are underway to verify our inference through the in vitro
enzymatic reaction. Thus, this study provides a new idea for the future biosynthesis of the novel and
potential spirotetronate glycosides.
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