Microginins from a *Microcystis* sp. bloom material collected from the Kishon Reservoir, Israel

Anat Lodin-Friedman and Shmuel Carmeli *

Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv Tel- Aviv 69978, Israel; anatlodin@gmail.com (ALF), carmeli@post.tau.ac.il (SC)

Supplementary Material

Table of content

S4. Table S1. Isolated Microginins. S6. Table S2. NMR Data (500/125 MHz) of Microginin KR767 (1) in DMSO-d₆ S8. ¹H NMR Spectrum of Microginin KR767 (1) in DMSO- d_6 S9. ¹³C NMR Spectrum of Microginin KR767 (1) in DMSO-d₆ S10. HSQC Spectrum Microginin KR767 (1) in DMSO-d₆ S11. HMBC Spectrum of Microginin KR767 (1) in DMSO- d_{4} S12. COSY Spectrum of Microginin KR767 (1) in DMSO- d_6 S13. TOCSY Spectrum of Microginin KR767 (1) in DMSO- d_6 S14. ROESY Spectrum of Microginin KR767 (1) in DMSO-d₆ S15. HR ESI MS data of Microginin KR767 (1) S16. Table S3. NMR Data (500/125 MHz) of Microginin KR801 (2) in DMSO-d₆ S18. ¹H NMR Spectrum of Microginin KR801 (2) in DMSO- d_{4} S19. ¹³C NMR Spectrum of Microginin KR801 (2) in DMSO- d_{ϵ} S20. HSQC Spectrum Microginin KR801 (2) in DMSO-d₆ S21. HMBC Spectrum of Microginin KR801 (2) in DMSO-d₆ S22. COSY Spectrum of Microginin KR801 (2) in DMSO- d_6 S23. TOCSY Spectrum of Microginin KR801 (2) in DMSO- d_6 S24. ROESY Spectrum of Microginin KR801 (2) in DMSO- d_6 S25. HR ESI MS data of Microginin KR801 (2) S26. Table S4. NMR Data (500/125 MHz) of Microginin KR835 (3) in DMSO-d₆ S28. ¹H NMR Spectrum of Microginin KR835 (3) in DMSO- d_6 S29. ¹³C NMR Spectrum of Microginin KR835 (3) in DMSO- d_6 S30. HSQC Spectrum Microginin KR835 (3) in DMSO-d₆ S31. HMBC Spectrum of Microginin KR835 (3) in DMSO- d_6 S32. COSY Spectrum of Microginin KR835 (3) in DMSO- d_6 S33. TOCSY Spectrum of Microginin KR835 (3) in DMSO-d₆ S34. ROESY Spectrum of Microginin KR835 (3) in DMSO-d₆ S35. HR ESI MS data of Microginin KR835 (3) S36. Table S5. NMR Data (500/125 MHz) of Microginin KR787 (4) in DMSO-d₆ S38. ¹H NMR Spectrum of Microginin KR787 (4) in DMSO- d_{6}

S39. ¹³C NMR Spectrum of Microginin KR787 (4) in DMSO- d_6 S40. HSQC Spectrum Microginin KR787 (4) in DMSO-d₆ S41. HMBC Spectrum of Microginin KR787 (4) in DMSO-d₆ S42. COSY Spectrum of Microginin KR787 (4) in DMSO- d_6 S43. TOCSY Spectrum of Microginin KR787 (4) in DMSO- d_6 S44. ROESY Spectrum of Microginin KR787 (4) in DMSO- d_{ϵ} S45. HR ESI MS data of Microginin KR787 (4) S46. Table S6. NMR Data (500/125 MHz) of Microginin KR604 (5) in DMSO-d₆ S48. ¹H NMR Spectrum of Microginin KR604 (5) in DMSO- d_6 S49. ¹³C NMR Spectrum of Microginin KR604 (5) in DMSO- d_6 S50. HSQC Spectrum Microginin KR604 (5) in DMSO-d₆ S51. HMBC Spectrum of Microginin KR604 (5) in DMSO- d_{4} S52. COSY Spectrum of Microginin KR604 (5) in DMSO-d₆ S53. TOCSY Spectrum of Microginin KR604 (5) in DMSO- d_6 S54. ROESY Spectrum of Microginin KR604 (5) in DMSO-d₆ S55. HR ESI MS data of Microginin KR604 (5) S56. Table S7. NMR Data (500/125 MHz) of Microginin KR638 (6) in DMSO-d₆ S58. ¹H NMR Spectrum of Microginin KR638 (6) in DMSO- d_{6} S59. ¹³C NMR Spectrum of Microginin KR638 (6) in DMSO- d_6 S60. HSQC Spectrum Microginin KR638 (6) in DMSO-d₆ S61. HMBC Spectrum of Microginin KR638 (6) in DMSO-d₆ S62. COSY Spectrum of Microginin KR638 (6) in DMSO- d_6 S63. TOCSY Spectrum of Microginin KR638 (6) in DMSO-d₆ S64. ROESY Spectrum of Microginin KR638 (6) in DMSO- d_6 S65. HR ESI MS data of Microginin KR638 (6) S66. Table S8. NMR Data (500/125 MHz) of Microginin KR781 (7) in DMSO-d₆ S68. ¹H NMR Spectrum of Microginin KR781 (7) in DMSO- d_6 S69. ¹³C NMR Spectrum of Microginin KR781 (7) in DMSO- d_6 S70. HSQC Spectrum Microginin KR781 (7) in DMSO-d₆ S71. HMBC Spectrum of Microginin KR781 (7) in DMSO- d_{6} S72. COSY Spectrum of Microginin KR781 (7) in DMSO- d_6

S73. TOCSY Spectrum of Microginin KR781 (7) in DMSO- d_6 S74. ROESY Spectrum of Microginin KR781 (7) in DMSO- d_6 S75. HR ESI MS data of Microginin KR781 (7) S76. Table S9. NMR Data (500/125 MHz) of Microginin KR815 (8) in DMSO-d₆ S78. ¹H NMR Spectrum of Microginin KR815 (8) in DMSO- d_6 S79. ¹³C NMR Spectrum of Microginin KR815 (8) in DMSO- d_6 S80. HSOC Spectrum Microginin KR815 (8) in DMSO-d₆ S81. HMBC Spectrum of Microginin KR815 (8) in DMSO-d₆ S82. COSY Spectrum of Microginin KR815 (8) in DMSO- d_{4} S83. TOCSY Spectrum of Microginin KR815 (8) in DMSO- d_6 S84. ROESY Spectrum of Microginin KR815 (8) in DMSO-d₆ S85. HR ESI MS data of Microginin KR815 (8) S86. Table S10. NMR Data (500/125 MHz) of Microginin FR3 (9) in DMSO- d_{ϵ} S88. ¹H NMR Spectrum of Microginin FR3 (9) in DMSO- d_{6} S89. ¹³C NMR Spectrum of Microginin FR3 (9) in DMSO- d_6 S90. HSQC Spectrum Microginin FR3 (9) in DMSO- d_6 S91. HMBC Spectrum of Microginin FR3 (9) in DMSO- d_6 S92. COSY Spectrum of Microginin FR3 (9) in DMSO- d_6 S93. TOCSY Spectrum of Microginin FR3 (9) in DMSO- d_6 S94. ROESY Spectrum of Microginin FR3 (9) in DMSO- d_6 S95. HR ESI MS data of Microginin FR3 (9) S96. Table S11. NMR Data (500/125 MHz) of Microginin FR4 (10) in DMSO- d_6 S98. ¹H NMR Spectrum of Microginin FR4 (10) in DMSO- d_6 S99. ¹³C NMR Spectrum of Microginin FR4 (10) in DMSO- d_6 S100. HSQC Spectrum Microginin FR4 (10) in DMSO-d₆ S101. HMBC Spectrum of Microginin FR4 (10) in DMSO- d_{6} S102. COSY Spectrum of Microginin FR4 (10) in DMSO-d₆ S103. TOCSY Spectrum of Microginin FR4 (10) in DMSO-d₆ S104. ROESY Spectrum of Microginin FR4 (10) in DMSO-d₆ S105. HR ESI MS data of Microginin FR4 (10)

Name	Residue 1 ^a	2	3	4	5	6	Activity
Microginin ¹	(2 <i>S</i> ,3 <i>R</i>)-Ahda	L-Ala	L-Val	NMe-L-Tyr	L-Tyr	-	ACE
Microginin 299-A ²	Cl-(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Val	NMe-L-Val	<i>N</i> Me-L-Tyr	L-Pro	L-Tyr	APM (5.2 uM), ACE-ni
Microginin 299-B ²	Cl ₂ -(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Val	NMe-L-Val	NMe-L-Tyr	L-Pro	L-Tyr	APM (7.1 uM), ACE-ni
Microginin FR1 ³	(2 <i>S</i> ,3 <i>R</i>)-Ahda	L-Ala	L-Leu	NMe-L-Tyr	L-Tyr		ACE (16 uM), cAPM (1.3 uM), mAPM (6 nM)
Microginin 299-C ⁴	(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Val	NMe-L-Val	NMe-L-Tyr	L-Pro	L-Tyr	APM (2.3 uM), ACE-ni
Microginin 299-D ⁴	Cl ₂ -(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Val	NMe-L-Val	NMe-L-Tyr	L-Pro		APM (8.5 uM), ACE-ni
Microginin 99-A ⁴	Cl-(3 <i>R</i>)-Ada	L-Tyr	L-Leu	NMe-L-Tyr	L-Pro		APM, ACE-ni
Microginin 99-B ⁴	Cl ₂ -(3 <i>R</i>)-Ada	L-Tyr	L-Leu	NMe-L-Tyr	L-Pro		APM, ACE-ni
Microginin T1 ⁵	Cl-Ahda	L-Ala	L-Pro	L-Tyr	L-Tyr		ACE (6.8 uM), AMP (2.7 uM)
Microginin T2 ⁵	Ahda	L-Ala	L-Pro	L-Tyr	L-Tyr		ACE (10 uM), AMP (2.9 uM)
Microginin 478 ⁶	NMe-(2S,3S)-Ahda	L-Val	NMe-L-Val	NMe-L-Tyr	L-Tyr		APM (132 uM), ACE (13.2 uM)
Microginin 51-A ⁶	(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Tyr	NMe-L-Val	NMe-L-Tyr	L-Pro	L-Tyr	APM (4.9 uM), ACE-ni
Microginin 51-B ⁶	NMe-(2S,3S)-Ahda	L-Tyr	NMe-L-Val	NMe-L-Tyr	L-Pro	L-Tyr	APM, ACE-ni
Microginin 91-A ⁶	(2 <i>R</i> ,3 <i>R</i>)-Ahda	L-Ile	NMe-L-Leu	L-Pro			APM, ACE-ni
Microginin 91-B ⁶	Cl-(2 <i>R</i> ,3 <i>R</i>)-Ahda	L-Ile	NMe-L-Leu	L-Pro			APM, ACE-ni
Microginin 91-C ⁶	(2 <i>R</i> ,3 <i>R</i>)-Ahda	L-Ile	NMe-L-Leu	L-Pro	L-Tyr		APM (71.1 uM), ACE-ni
Microginin 91-D ⁶	Cl-(2 <i>R</i> ,3 <i>R</i>)-Ahda	L-Ile	NMe-L-Leu	L-Pro	L-Tyr		APM (43.4 uM), ACE-ni
Microginin 91-E ⁶	Cl ₂ -(2 <i>R</i> ,3 <i>R</i>)-Ahda	L-Ile	NMe-L-Leu	L-Pro	L-Tyr		APM (19.5 uM), ACE-ni
Microginin SD755 ⁷	NMe-Ahoa	L-Val	NMe-L-Ile	NMe-L-Tyr	L-Tyr		APN (18.5 uM)
Nostoginin BN741 ⁸	(2 <i>S</i> ,3 <i>S</i>)-Ahoa	L-Val	NMe-L-Ile	NMe-L-Tyr	L-Tyr		APN (1.3 uM)
Nostoginin BN578 ⁸	(2 <i>S</i> ,3 <i>S</i>)-Ahoa	L-Val	NMe-L-Ile	NMe-L-Tyr	-		ND
Cyanostatin A ⁹	(2 <i>S</i> ,3 <i>R</i>)-Ahda	L-Ala	L-Val	NMe-L-Tyr	L-Hty		APM (55 uM), ACE (150 uM)
Cyanostatin B ⁹	(2 <i>S</i> ,3 <i>R</i>)-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr		APM (16 uM), ACE (170 uM)
Microginin AL584 ¹⁰	Cl-(2 <i>S</i> ,3 <i>S</i>)-Ahda	L-Ala	NMe-L-Val	L-Tyr			APN-ni
Microginin HG787 ¹¹	Cl-Ahda	L-Tyr	NMe-L-Ile	L-Pro	L-Tyr		APN (7.7 uM)
Microginin 680 ¹²	(2S*,3R*)-Cl ₂ -Ahoa	L-Tyr	NMe-L-Tyr	L-Pro			
Microginin 646 ¹²	(2S*,3R*)-Cl-Ahoa	L-Tyr	NMe-L-Tyr	L-Pro			
Microginin 612 ¹²	(2S*,3R*)-Ahoa	L-Tyr	NMe-L-Tyr	L-Pro			

S4. Table S1. Isolated Microginins.

Microginin 565 ¹³	Ahda	Ala	NMe-Leu	Tyr		
Microginin KR767 ¹⁴	(2R, 3R)-NMe-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr	APM (0.5 nM)
Microginin KR801 ¹⁴	(2R,3R)-NMe-Cl-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr	APM (0.1 nM)
Microginin KR835 ¹⁴	(2R,3R)- <i>N</i> Me-Cl ₂ -Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr	APM (0.4 nM)
Microginin KR604 ¹⁴	(2R,3R)-NMe-Ahda	L-Tyr	NMe-L-Leu	L-Pro		APM (7.5 nM)
Microginin KR638 ¹⁴	(2R,3R)-NMe-Cl-Ahda	L-Tyr	NMe-L-Leu	L-Pro		APM (3.8 nM)
Microginin KR815 ¹⁴	(2 <i>R</i> ,3 <i>R</i>)- <i>N</i> Me-Cl-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr-OMe	APM (72.0 nM) esterification product
Microginin KR781 ¹⁴	(2R,3R)-NMe-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr-OMe	APM (? nM) esterification product
Microginin KR787 ¹⁴	(2R,3R)-Cl-Ahda	L-Tyr	NMe-L-Leu	L-Pro	L-Tyr	APM (5.7 nM)
Microginin FR3 ¹⁴	(2 <i>S</i> ,3 <i>R</i>)-Ahda	L-Thr	L-Pro	L-Tyr	L-Tyr	APM (6.2 nM)
Microginin FR4 ¹⁴	(2S,3R)-NMe-Ahda	L-Thr	L-Pro	L-Tyr	L-Tyr	APM (1.8 nM)
Microginin 674 ¹⁵	(2 <i>S</i> ,3 <i>S</i>)-Ahda	NMe-L-Met	L-Tyr	L-Tyr		ACE inhibitor
Microginin 690 ¹⁶	(2 <i>S</i> ,3 <i>S</i>)-Ahda	NMe-L- Met(O)	L-Tyr	L-Tyr		ACE inhibitor oxidation product of 674

References

- 1. Okino, T.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Tetrahedron Lett. 1993, 34, 501-504.
- 2. Ishida, K.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Tetrahedron 1997, 53, 10281-10288.
- 3. Neumann, U.; Forchert, A.; Flury, T.; Weckesser, J. FEMS Microbiol. Lett. 1997, 153, 475-478.
- 4. Ishida, K.; Matsuda, H.; Murakami, M. Tetrahedron 1998, 54, 13475-13484.
- 5. Kodani, S.; Susuki, S.; Ishida, K.; Murakami, M. FEMS Microbiol. Lett. 1999, 178, 343-348.
- 6. Ishida, K.; Kato, T.; Murakami, M.: Watanabe, M.; Watanabe, M. F. Tetrahedron 2000, 56, 8643-8656.
- 7. Resef, V.; Carmeli, S. Tetrahedron 2001, 57, 2885-2894.
- 8. Ploutno, A.; Carmeli, S. Tetrahedron 2002, 58, 9949-9957.
- 9. Sano, T.; Takagi, H.; Morrison, L. F.; Metcalf, J. S.; Codd, G. A.; Kaya, K. Phytochem. 2005, 66, 543-548.
- 10. Gesner-Apter, S.; Carmeli, S. Tetrahedron 2008, 64, 6628-6634.
- 11. Lifshits, M.; Zafrir-Ilan, E.; Raveh, A.; Carmeli, S. Tetrahedron 2011, 67, 4017-4024.
- 12. Strangman, W. K., Wright, L. C. Tet. Lett. 2016, 57, 1801-1803.
- 13. Bagchi, S. N.; Sondhia, S.; Agrawal, M. K.; Banerjee, S. J. Appl. Phycol. 2016, 28, 177-180.
- 14. Lodin-Fridman, A, Carmeli, S. This manuscript.
- 15. Product of LKT Laboratories, Inc.
- 16. Product of Santa Cruz Biotechnology.

Position	δ_{C}	$\delta_{\rm C}$ $\delta_{\rm H}$ Multiplicity, J HMBC correlations (Hz)		COSY correlations	NOESY correlations		
Ahda 1	170.1 C		Ahda-2,2-OH, ¹ Tyr-2,NH				
2	68.5 CH	4.30 brs	Ahda-2-OH	Ahda-2-OH,3	Ahda-2-OH,3,3-NH ₂ , <i>N</i> CH ₃ ,4,4',5',5', ¹ Tyr-NH		
2-OH		6.47 d, 6.1		Ahda-2	Ahda-2,3,3- <i>N</i> CH ₃ ,4,6, ¹ Tyr-NH		
3	60.3 CH	3.27 brm	Ahda-2,2-OH,3-NCH ₃	Ahda-2,3-NH ₂ ,4,4'	Ahda-2,2-OH,3-NH ₂ , <i>N</i> CH ₃ ,4,4',5',5', ¹ Tyr-NH		
3-NH <u>2</u>		8.35 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3- <i>N</i> CH ₃		
		8.49 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3- <i>N</i> CH ₃		
3- <i>N</i> CH ₃	30.8 CH ₃	2.56 brt, 4.7		Ahda-3-NH ₂	Ahda-2,2-OH,3,3-NH ₂ , 4,4'		
4	26.1 CH ₂	1.39 m	Ahda-2	Ahda-3,4',5,5'	Adha-2,3		
		1.33 m		Ahda-3,4,5,5'	Adha-2,3		
5	25.2 CH ₂	1.25 m	Ahda-4,4'	Ahda-4,4',5',6	Adha-2,3		
		1.13 m		Ahda-4,4',5,6	Adha-2,3		
6	29.2 CH ₂	1.18 m	Ahda-7,8				
		1.13 m		Ahda-7			
7	28.6 CH ₂	1.19 m	Ahda-5,5',6,6'	Ahda-6'			
8	31.4 CH ₂	1.20 m	Ahda-9,10	Ahda-9			
9	$22.2 \ \mathrm{CH}_2$	1.24 m	Ahda-8,10	Ahda-8,10			
10	14.1 CH ₃	0.84 t, 7.3	Ahda-9	Ahda-9			
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃				
2	50.6 CH	4.86 ddd, 8.2,7.7,6.3	¹ Tyr-3,3',NH	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> Me		
2-NH		8.10 d, 8.2		¹ Tyr-2	¹ Tyr-2,3,3',5,5', Ahda-2,2-OH,3		
3	36.4 CH ₂	2.86 m	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,3',5,5'		
		2.74 m		¹ Tyr-2,3	¹ Tyr-2,3,5,5'		
4	126.1 C		¹ Tyr-2,3,3',6,6'				
5,5'	130.2 CH	7.00 d, 8.4	¹ Tyr-3,3',5',5,6,6'	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6'		

S6. Table S2. NMR Data (500/125 MHz) of Microginin KR767 (1) in DMSO- d_6 .

6,6'	115.1 CH	6.62 d, 8.4	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH
7	156.2 C		¹ Tyr-5,5',6,6',7-OH		
7 - OH		9.25 s			¹ Tyr-6,6'
NMeLeu 1	168.5 C		<i>N</i> MeLeu-2,3,3'		
2	51.9 CH	5.23 dd, 8.1,6.6	NMeLeu-3,3',NMe	NMeLeu-3,3'	<i>N</i> MeLeu-3,3',5,6, <i>N</i> Me, Pro-5,5'
2- <i>N</i> CH ₃	30.2 CH ₃	2.89 s	NMeLeu-2		<i>N</i> MeLeu-2,3,3'
3	37.2 CH ₂	1.48 m	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	<i>N</i> MeLeu-2,5,6, <i>N</i> Me Pro-5,5'
		1.42 m		NMeLeu-2,3,4	NMeLeu-2,5,6,NMe, Pro-5,5'
4	24.2 CH	1.37 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-NMe
5	22.4 CH ₃	0.81 d, 6.6	NMeLeu-3,3',4,6	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
6	23.0 CH ₃	0.85 d, 6.6	NMeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	171.4 C		Pro-2,3', ² Tyr-NH		
2	59.4 CH	4.31 m	Pro-4'	Pro-3,3'	Pro-3,4,5'
3	29.1 CH ₂	1.94 m	Pro-2,4,4',5'	Pro-2,3',4,4'	Pro-2,4'
		1.79 m		Pro-2,3,4,4'	
4	24.3 CH ₂	1.80 m	Pro-2,3,5'	Pro-3,3',5,5'	Pro-2
		1.73 m		Pro-3,3',5,5'	Pro-3
5	46.7 CH ₂	3.40 m	Pro-2	Pro-4,4',5'	Pro-4,4',5', NMeLeu-2,3,3'
		3.18 dt, 9.0, 7.3		Pro-4,4',5	Pro-2,3,4,4',5, NMeLeu-2,3,3'
² Tyr 1	173.1 C		² Tyr-2,3,3'		
2	54.0 CH	4.27 td, 7.6,5.6	² Tyr-3,3',NH	² Tyr-3,3',NH	² Tyr-3,3',5,5',NH
2-NH		7.92 d, 7.6		² Tyr-2	² Tyr-2,3,3',5,5', Pro-3'
3	36.1 CH ₂	2.86 m	² Tyr-2,NH,5,5'	² Tyr-2,3'	² Tyr-2,3',5,5',NH
		2.79 m		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.5 C		² Tyr-2,3,3',6,6'		
5,5'	130.3 CH	7.01d, 8.4	² Tyr-3,3',5',5,6,6'	² Tyr-6,6'	² Tyr-2,3,3',6,6',NH
6,6'	115.1 CH	6.64 d, 8.4	² Tyr-5,5',6',6,7-OH	² Tyr-5,5'	² Tyr-5,5',7-OH
7	156.1 C		² Tyr-5,5',6,6',7-OH		
7 - OH		9.20 s			² Tyr-6,6'

S9. ¹³C NMR Spectrum of Microginin KR767 (1) in DMSO- d_6

S10. HSQC Spectrum Microginin KR767 (1) in DMSO-d₆

S11. HMBC Spectrum of Microginin KR767 (1) in DMSO-d₆

S12. COSY Spectrum of Microginin KR767 (1) in DMSO- d_6

S13. TOCSY Spectrum of Microginin KR767 (1) in DMSO- d_6

S15. HR ESI MS data of Microginin KR767 (1)

Position	ition $\delta_{\rm C}$ $\delta_{\rm H}$ Multiplicity, J H (Hz)		HMBC correlations	COSY correlations	NOESY correlations	
Ahda 1	170.1 C		Ahda-2, ¹ Tyr-2,NH			
2	68.4 CH	4.30 brs	Ahda-2-OH	Ahda-2-OH,3	Ahda-2-OH,3,3-NH <u>2</u> ,NCH ₃ ,4,4',5',5',_ ¹ Tyr- NH	
2-OH		6.47 d, 5.6		Ahda-2	Ahda-2,3,3- <i>N</i> CH ₃ ,4,4'5,_ ¹ Tyr-NH	
3	60.3 CH	3.27 brm	Ahda-2,4',3- <i>N</i> CH ₃	Ahda-2,3-NH <u>2</u> ,4,4'	Ahda-2,2-OH,3-NH <u>2,</u> <i>N</i> CH ₃ ,4,4',5',5', ¹ Tyr- NH	
3-NH <u>2</u>		8.36 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3- <i>N</i> CH ₃	
		8.49 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3- <i>N</i> CH ₃	
3- <i>N</i> CH ₃	30.8 CH ₃	2.56 brt, 4.8		Ahda-3-NH ₂	Ahda-2,2-OH,3,3-NH ₂ , 4,4'	
4	26.0 CH ₂	1.39 m		Ahda-3,4',5,5'	Adha-2,3,2-OH	
		1.32 m		Ahda-3,4,5,5'	Adha-2,3,2-OH	
5	25.1 CH ₂	1.23 m	Ahda-4,4',6,7	Ahda-4,4',5',6	Adha-2,3,2-OH	
		1.11 m		Ahda-4,4',5,6	Adha-2,3	
6	29.0 CH ₂	1.13 m	Ahda-5,8	Ahda-7		
7	28.2 CH ₂	1.18 m	Ahda-8,9	Ahda-6,8		
8	26.3 CH ₂	1.33 m	Ahda-7,9,10	Ahda-7,9		
9	32.2 CH ₂	1.68 tt, 7.3,6.6	Ahda-8,10	Ahda-8,10		
10	45.4 CH ₂	3.60 t, 6.6	Ahda-8,9	Ahda-9		
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃			
2	50.6 CH	4.86 ddd, 8.5,7.7,6.2	¹ Tyr-3,3',NH	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> Me	
2-NH		8.09 d, 8.5		¹ Tyr-2	¹ Tyr-2,3,3',5,5', Ahda-2,2-OH,3	
3	36.4 CH ₂	2.86 m	¹ Tyr-2,5,5',NH	¹ Tyr-2,3'	¹ Tyr-2,3',5,5',NH	
		2.74 m		¹ Tyr-2,3	¹ Tyr-2,3,5,5',NH	
4	126.9 C		¹ Tyr-2,3,3',6,6'			
5,5'	130.3 CH	7.00 d, 8.1	¹ Tyr-3,3',5',5,6,6'	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6'	
6,6'	115.1 CH	6.62 d, 8.1	¹ Tyr-5,5',6',6	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH	

S16. Table S3. NMR Data (500/125 MHz) of Microginin KR801 (2) in DMSO- d_6 .

7	156.2 C		¹ Tyr-5,5',6,6'		
7 - OH		9.26 s			^l Tyr-6,6'
NMeLeu 1	168.5 C		<i>N</i> MeLeu-2,3,3'		
2	51.9 CH	5.23 dd, 8.0,6.4	NMeLeu-3,3',4,NMe	NMeLeu-3,3'	NMeLeu-3,3',4,5,6,NMe, Pro-5,5'
2- <i>N</i> CH ₃	$30.2 \ \mathrm{CH}_3$	2.90 s	NMeLeu-2		<i>N</i> MeLeu-2,3,3',4
3	37.1 CH ₂	1.45 m	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	NMeLeu-2,5,6,NMe Pro-5
		1.42 m		NMeLeu-2,3,4	NMeLeu-2,5,6,NMe, Pro-5
4	24.3 CH	1.35 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-NMe
5	22.3 CH ₃	0.81 d, 6.3	NMeLeu-3,3',4,6	NMeLeu-4	NMeLeu-2,3,3'
6	23.1 CH ₃	0.85 d, 6.4	<i>N</i> MeLeu-3,3',4,5	NMeLeu-4	NMeLeu-2,3,3'
Pro 1	171.5 C		Pro-2,3,3', ² Tyr-NH		
2	59.4 CH	4.31 m	Pro-3,3',4,4'	Pro-3,3'	Pro-3,3'
3	29.1 CH ₂	1.95 m	Pro-2,4,5'	Pro-2,3',4,4',5,5'	Pro-2,4'
		1.79 m		Pro-2,3,4,4'	Pro-2
4	$24.2 \ \mathrm{CH}_2$	1.76 m	Pro-2,3,3',5'	Pro-3,3',5,5'	Pro-2
		1.73 m		Pro-3,3',5,5'	Pro-3
5	46.7 CH ₂	3.40 m	Pro-2,3',4,4'	Pro-3,4,4',5'	Pro-3,5', NMeLeu-2,3,3'
		3.18 dt, 9.0, 7.8		Pro-3,4,4',5	Pro-3,4,4',5, <i>N</i> MeLeu-2, <i>N</i> Me
² Tyr 1	173.1 C		² Tyr-2,3,3'		
2	54.0 CH	4.27 td, 7.6,5.6	² Tyr-3,3',NH	² Tyr-3,3',NH	² Tyr-3,3',5,5',NH
2-NH		7.92 d, 7.6		² Tyr-2	² Tyr-2,3,3', Pro-2,3'
3	36.1 CH ₂	2.86 m	² Tyr-2,5,5',NH	² Tyr-2,3'	² Tyr-2,3',5,5',NH
		2.78 m		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.5 C		² Tyr-2,3,3',6,6'		
5,5'	130.3 CH	7.01 d, 8.3	² Tyr-3,3',5',5,6,6'	² Tyr-6,6'	² Tyr-2,3,3',6,6',NH
6,6'	115.1 CH	6.64 d, 8.3	² Tyr-5,5',6',6	² Tyr-5,5'	² Tyr-5,5',7-OH
7	156.1 C		² Tyr-5,5',6,6'		
7 - OH		9.21 s			² Tyr-6,6'

S18. ¹H NMR Spectrum of Microginin KR801 (**2**) in DMSO-*d*₆ -7000 -6500 -6000 -5500 -5000 -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 Μ -0 --500).0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 6.5 5.0 f1 (ppm)

S19. ¹³C NMR Spectrum of Microginin KR801 (2) in DMSO-*d*₆ -34000 -32000 -30000 -28000 -26000 -24000 -22000 -20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 2000 nteresperies and a second a (unal and a line μo --2000 70 60 50 30 10 20 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 80 40 90 ò

S20. HSQC Spectrum Microginin KR801 (2) in DMSO- d_6

S21. HMBC Spectrum of Microginin KR801 (2) in DMSO-d₆

S22. COSY Spectrum of Microginin KR801 (2) in DMSO- d_6

S23. TOCSY Spectrum of Microginin KR801 (2) in DMSO- d_6

S24. ROESY Spectrum of Microginin KR801 (2) in DMSO-d₆

S25. HR ESI MS data of Microginin KR801 (2)

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.1 C		Ahda-2,2-OH, ¹ Tyr-2,NH		
2	68.5 CH	4.30 brd, 5.6	Ahda-2-OH	Ahda-2-OH,3	Ahda-2-OH,3,3-NH <u>2.</u> <i>N</i> CH ₃ ,4,4',5',5', ¹ Tyr- NH
2-OH		6.46 d, 6.0		Ahda-2	Ahda-2,3,3- <i>N</i> CH ₃ ,4,6, ¹ Tyr-NH
3	60.2 CH	3.27 brm	Ahda-2,2-OH,3-NCH ₃	Ahda-2,3-NH ₂ ,4,4'	Ahda-2,2-OH,3-NH ₂ , <i>N</i> CH ₃ ,4,4',5',5'
3-NH <u>2</u>		8.35 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3-NCH ₃
		8.48 brs		Ahda-3,3-NH',3-NCH ₃	Ahda-2,3,3- <i>N</i> CH ₃
3-NCH ₃	30.8 CH ₃	2.56 brt, 4.7		Ahda-3-NH ₂	Ahda-2,2-OH,3,3-NH ₂ , 4,4'
4	26.0 CH ₂	1.40 m	Ahda-2	Ahda-3,4',5,5'	Adha-2,3
		1.33 m		Ahda-3,4,5,5'	Adha-2,3
5	25.0 CH ₂	1.24 m	Ahda-4,4',6,6'	Ahda-4,4',5',6,6'	Adha-2,3
		1.14 m		Ahda-4,4',5,6,6'	Adha-2,3
6	28.9 CH ₂	1.22 m	Ahda-5,7,8		
		1.15 m			
7	27.8 CH ₂	1.24 m	Ahda-8,9		
8	25.4 CH ₂	1.43 m	Ahda-9,10	Ahda-7,9	
9	43.0 CH ₂	2.12 td, 7.3,5.9	Ahda-7,8,10	Ahda-8,10	
10	75.0 CH	6.29 t, 5.9	Ahda-8,9	Ahda-9	
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
2	50.6 CH	4.86 ddd, 8.0,7.7,6.4	¹ Tyr-3,3',NH	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5'
2-NH		8.09 d, 8.0		¹ Tyr-2	¹ Tyr-2,3,3', Ahda-2,2-OH,3
3	36.4 CH ₂	2.86 m	¹ Tyr-2,5,5',NH	¹ Tyr-2,3'	¹ Tyr-2,3',5,5',NH
		2.74 m		¹ Tyr-2,3	¹ Tyr-2,3,5,5',NH
4	126.9 C		¹ Tyr-2,3,3',6,6'		
5,5'	130.3 CH	7.00 d, 8.3	¹ Tyr-3,3',5',5,6,6'	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6'
6,6'	115.1 CH	6.62 d, 8.3	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH

S26. Table S4. NMR Data (500/125 MHz) of Microginin KR835 (3) in DMSO- d_6

7	156.2 C		¹ Tyr-5,5',6,6',7-OH		
7-OH		9.26 s			¹ Tyr-6,6'
NMeLeu 1	168.5 C		<i>N</i> MeLeu-2,3,3'		
2	51.9 CH	5.23 dd, 8.2,6.6	NMeLeu-3,3',4,NMe	NMeLeu-3,3'	<i>N</i> MeLeu-3,3',5,6, <i>N</i> Me, Pro-5
2-NCH3	$30.2 \ \mathrm{CH}_3$	2.90 s	NMeLeu-2		<i>N</i> MeLeu-2,3,3', ² Tyr-2,3
3	37.2 CH ₂	1.46 m	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	NMeLeu-2,5,6,NMe
		1.42 m		NMeLeu-2,3,4	NMeLeu-2,5,6,NMe
4	24.2 CH	1.37 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-5,6
5	$22.4~\mathrm{CH}_3$	0.81 d, 6.2	NMeLeu-3,3',4,6	NMeLeu-4	NMeLeu-2,3,3',4,6
6	23.1 CH ₃	0.85 d, 6.3	<i>N</i> MeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3',4,5
Pro 1	171.5 C		Pro-2,3,3', ² Tyr-NH		
2	59.4 CH	4.32 dd, 8.5,5.0	Pro-4'	Pro-3,3'	Pro-3', ² Tyr-NH
3	29.1 CH ₂	1.94 m	Pro-2,4,5'	Pro-2,3',4,4',5'	Pro-2,3',4
		1.79 m		Pro-2,3,4,4'	Pro-2,3,4'
4	$24.3 \ \mathrm{CH}_2$	1.80 m	Pro-2,3,3',5,5'	Pro-3,3',5,5'	Pro-3,5'
		1.73 m		Pro-3,3',5,5'	Pro-3'
5	46.7 CH ₂	3.40 m	Pro-2	Pro-4,4',5'	Pro-4, NMeLeu-2, ² Tyr-7-OH
		3.19 dt, 9.3,7.3		Pro-3,4,4',5	Pro-2,4,5, NMeLeu-2
² Tyr 1	173.1 C		² Tyr-2,3,3',NH		
2	54.0 CH	4.26 td, 7.7,5.7	² Tyr-3,3',NH	² Tyr-3,3',NH	² Tyr-3,5,5',NH
2-NH		7.92 d, 7.7		² Tyr-2	² Tyr-2,3', Pro-2
3	36.1 CH ₂	2.87 m	² Tyr-2,5,5',NH	² Tyr-2,3'	² Tyr-2,3',5,5'
		2.78 m		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.6 C		² Tyr-2,3,3',6,6'		
5,5'	130.3 CH	7.01d, 8.0	² Tyr-3,3',5',5,6,6'	² Tyr-6,6'	² Tyr-2,3,6,6'
6,6'	115.1 CH	6.64 d, 8.0	² Туг-5,5',6',6,7-ОН	² Tyr-5,5'	² Tyr-5,5',7-OH
7	156.1 C		² Tyr-5,5',6,6',7-OH		
7 - OH		9.20 s			² Tyr-6,6'

S29. ¹³C NMR Spectrum of Microginin KR835 (3) in DMSO- d_6

S30. HSQC Spectrum Microginin KR835 (3) in DMSO-d₆

S31. HMBC Spectrum of Microginin KR835 (3) in DMSO- d_6

S33. TOCSY Spectrum of Microginin KR835 (3) in DMSO- d_6

S34. ROESY Spectrum of Microginin KR835 (3) in DMSO- d_6

S35. HR ESI MS data of Microginin KR835 (3)

Elemental Composition Report

2. 27

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

.

Monoisotopic Mass, Even Electron Ions 446 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass) Elements Used: C: 35-45 H: 55-65 N: 0-10 O: 5-15 CI: 0-5 AL36.7 Anat Iodin carmeli682 39 (1.736) Cm (39:52-{70:72+69:72}x10.000)

			-							3.22e+004
100-7		836.	.3765							
				838.	3778					
%-			837.	3822						
83	34.6000 835.007	0 835.6380	837.0073	837.9334	839	9.3832 840. 840.1901	3823	841.3887 841.734	842.1943.842.7455	843.5449
834.0	835.0	836.0	837.0	838.0	839.0	840.0	841.0) 842.0	843.0	844.0
Minimum: Maximum:		10.0	-1.5 3.0 50.0							
Mass	Calc. Mass	mDa.	PPM DBE	i-FIT	i-FIT (I	Norm) Formula				
836.3765	836.3768 836.3760 836.3755 836.3750 836.3781 836.3786 836.3786	-0.3 0.5 1.0 1.5 -1.6 1.9 -2.1	-0.4 13.5 0.6 9.5 1.2 8.5 1.8 18.5 -1.9 18.5 2.3 4.5 -2.5 8.5	76.8 76.6 73.8 79.6 78.8 79.9 73.8	3.8 3.6 0.8 6.6 5.8 6.9 0.7	C41 H6 C36 H6 C40 H6 C42 H5 C42 H5 C35 H6 C40 H6	0 N5 09 1 N9 07 4 N 013 5 N7 09 6 N9 05 5 N5 01 5 N3 09	C12 C13 C12 C1 C12 C12 C12 C13 C13		

Page 1

1: TOF MS ES+
Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.2 C		¹ Tyr-NH		
2	70.9 CH	4.14 dd, 5.4,2.5		Ahda-2-OH,3	Ahda-2-OH,3,3-NH ₂ ,4,4',5',5', ¹ Tyr-NH
2-OH		6.35 d, 5.4		Ahda-2	Ahda-2, ¹ Tyr-NH
3	53.4 CH	3.27 brm	Ahda-2,NH ₂	Ahda-2,3-NH ₂ ,4,4'	Ahda-2,3-NH ₂ ,4',5,5', ¹ Tyr-NH
3-NH <u>2</u>		7.83 brd, 2.6		Ahda-3	Ahda-2,3
4	26.8 CH ₂	1.37 m		Ahda-3,4',5,5'	Adha-3
		1.22 m		Ahda-3,4,5,5'	Adha-2,3
5	25.0 CH ₂	1.26 m		Ahda-4,4',5',6	Adha-2,3
		1.12 m		Ahda-4,4',5,6	Adha-2,3
6	29.0 CH ₂	1.13 m	Ahda-5,8	Ahda-7	
7	28.2 CH ₂	1.22 m	Ahda-9	Ahda-6,8	
8	26.4 CH ₂	1.34 m	Ahda-9,10	Ahda-7,9	
9	32.2 CH ₂	1.68 tt, 7.6,6.7	Ahda-8,10	Ahda-8,10	Ahda-10
10	45.6 CH ₂	3.60 t, 6.7	Ahda-8,9	Ahda-9	Ahda-7,8,9
¹ Tyr 1	171.2 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
2	50.7 CH	4.84 ddd, 8.2,7.4,6.2	¹ Tyr-3,3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> Me
2-NH		8.04 d, 8.2		¹ Tyr-2	¹ Tyr-2,3,3',5,5', Ahda-2,2-OH,3
3	36.3 CH ₂	2.88 m	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,3',5,5',NH
		2.74 dd, 13.6,7.9		¹ Tyr-2,3	¹ Tyr-2,3,5,5',NH
4	127.0 C		¹ Tyr-2,3,3',6,6'		
5,5'	130.4 CH	7.00 d, 8.1	¹ Tyr-3,3',5',5,6,6'	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6',NH
6,6'	115.2 CH	6.62 d, 8.1	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH
7	156.2 C		¹ Tyr-5,5',6,6',7-OH		
7 - OH		9.24 s			¹ Tyr-6,6'
NMeLeu 1	168.5 C		NMeLeu-2,3,3'		
2	52.0 CH	5.23 dd, 8.1,6.9	NMeLeu-3,3',4,NMe	NMeLeu-3,3'	<i>N</i> MeLeu-3,3',4,5,6, <i>N</i> Me, Pro-5,5'

S36. Table S5. NMR Data (500/125 MHz) of Microginin KR787 (4) in DMSO- d_6

2-NCH ₃	30.2 CH ₃	2.89 s	NMeLeu-2		NMeLeu-2,3,3',4, Pro-5'
3	37.2 CH ₂	1.45 m	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	NMeLeu-2,5,6,NMe
		1.42 m		NMeLeu-2,3,4	NMeLeu-2,5,6,NMe
4	24.3 CH	1.37 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-NMe
5	22.3 CH ₃	0.80 d, 6.1	NMeLeu-3,3',4,6	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
6	23.2 CH ₃	0.85 d, 6.2	NMeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	171.5 C		Pro-2, ² Tyr-NH		
2	59.4 CH	4.30 m		Pro-3,3'	Pro-3,3', ² Tyr-NH
3	29.1 CH ₂	1.94 m	Pro-5'	Pro-2,3',4,4',5,5'	Pro-2,3'
		1.81 m		Pro-2,3,4,4'	Pro-2,3, ² Tyr-NH
4	24.1 CH ₂	1.81 m	Pro-2	Pro-3,3',5,5'	Pro-2
		1.76 m		Pro-3,3',5,5'	
5	46.7 CH ₂	3.40 m		Pro-3,4,4',5'	Pro-3,5, NMeLeu-2,
		3.18 dt, 9.0,7.2		Pro-3,4,4',5	Pro-3,4,4', NMeLeu-2,NMe
² Tyr 1	173.1 C		² Tyr-2,3,3'		
2	54.1 CH	4.27 td, 7.6,5.9	² Tyr-3,3',NH	² Tyr-3,3',NH	² Tyr-3,3',5,5',NH
2-NH		7.93 d, 7.6		² Tyr-2	² Tyr-2,3,3',5,5 Pro-2,3'
3	36.2 CH ₂	2.88 m	² Tyr-2,5,5'	² Tyr-2,3'	² Tyr-2,3',5,5',NH
		2.78 dd, 16.7,8.5		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.6 C		² Tyr-2,3,3',6,6'		
5,5'	130.3 CH	7.00 d, 8.3	² Tyr-3,3',5',5,6,6'	² Tyr-6,6'	² Tyr-2,3,3',6,6',NH
6,6'	115.2 CH	6.64 d, 8.3	² Tyr-5,5',6',6,7-OH	² Tyr-5,5'	² Tyr-5,5',7-OH
7	156.1 C		² Tyr-5,5',6,6'		
7 - OH		9.19 s			² Tyr-6,6'

S39. ¹³C NMR Spectrum of Microginin KR787 (4) in DMSO- d_6

S40. HSQC Spectrum Microginin KR787 (4) in DMSO-d₆

S41. HMBC Spectrum of Microginin KR787 (4) in DMSO- d_6

S42. COSY Spectrum of Microginin KR787 (4) in DMSO- d_6

S43. TOCSY Spectrum of Microginin KR787 (4) in DMSO- d_6

S44. ROESY Spectrum of Microginin KR787 (4) in DMSO-d₆

S45. HR ESI MS data of Microginin KR787 (4)

Elemental Composition Report

Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 98 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 38-45 H: 55-65 N: 0-10 O: 0-15 CI: 1-1 AL129.1 Anat Iodin cameli888b 27 (1.210) Cm (27:30)

Page 1

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.5 C		Ahda-2, ¹ Tyr-NH		
2	68.7 CH	4.26 brd, 2.0		Ahda-3	Ahda-3,3- <i>N</i> CH ₃ , ¹ Tyr-NH
2-OH		6.35 brs			
3	60.5 CH	3.14 brs	Ahda-2,3-NCH ₃	Ahda-2,4,4'	Ahda-2,3-NCH ₃
3-NH		8.00 brs			
3- <i>N</i> CH ₃	31.4 CH ₃	2.51 brs			Ahda-2,3
4	25.4 CH ₂	1.34 m		Ahda-3,4',5,5'	
		1.28 m		Ahda-3,4,5,5'	
5	24.2 CH ₂	1.27 m	Ahda-4	Ahda-4,4',5',6	
		1.13 m		Ahda-4,4',5,6	
6	28.6 CH ₂	1.14 m	Ahda-5	Ahda-6	
7	29.2 CH ₂	1.19 m	Ahda-8		
8	31.3 CH ₂	1.20 m	Ahda-9,10		
9	$22.2 \ \mathrm{CH}_2$	1.26 m	Ahda-8,10	Ahda-8,10	
10	14.1 CH ₃	0.84 t, 6.6	Ahda-9	Ahda-9	
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
2	50.4 CH	4.87 dt, 8.1,7.4	¹ Tyr-3,3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3', <i>N</i> MeLeu- <i>N</i> Me
2-NH		8.03 d, 8.1		¹ Tyr-2	¹ Tyr-2,3,3', Ahda-2
3	36.6 CH ₂	2.87 dd, 13.8,6.4	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,3',5,5'
		2.74 dd, 13.8,7.6		¹ Tyr-2,3	¹ Tyr-2,3,5,5'
4	126.9 C		¹ Tyr-2,3,3',6,6'		
5,5'	130.3 CH	6.98 d, 8.3	¹ Tyr-3,3',5',5,6,6'	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6', <i>N</i> MeLeu- <i>N</i> Me
6,6'	115.1 CH	6.61 d, 8.3	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH, <i>N</i> MeLeu- <i>N</i> Me
7	156.2 C		¹ Tyr-5,5',6,6',7-OH		
7 - OH		9.24 s			¹ Tyr-6,6'
NMeLeu 1	168.3 C		<i>N</i> MeLeu-2,3,3'		

S46. Table S6. NMR Data (500/125 MHz) of Microginin KR604 (5) in DMSO- d_6

2	51.6 CH	5.24 dd, 7.8,6.6	NMeLeu-3,3',NMe	NMeLeu-3,3'	<i>N</i> MeLeu-3,3',5,6, <i>N</i> Me, Pro-5,5'
2- <i>N</i> CH ₃	30.1 CH ₃	2.86 s	NMeLeu-2		<i>N</i> MeLeu-2,3',4
3	37.2 CH ₂	1.53 dt, 6.6,6.0	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	<i>N</i> MeLeu-2,5,6
		1.36 m		<i>N</i> MeLeu-2,3,4	NMeLeu-2,5,6,NMe
4	24.2 CH	1.39 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-NMe
5	22.4 CH ₃	0.82 d, 6.2	NMeLeu-3,3',4,6	NMeLeu-4	NMeLeu-2,3,3'
6	22.8 CH ₃	0.85 d, 6.2	NMeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	173.4 C		Pro-2,3,3'		
2	58.8 CH	4.17 dd, 8.9,3.8	Pro-3,4,4'	Pro-3,3'	Pro-3,4'
3	$28.8 \ \mathrm{CH}_2$	2.10 m	Pro-2,4,4',5,5'	Pro-2,3',4,4'	Pro-2,3',4'
		1.82 m		Pro-2,3,4,4'	Pro-3
4	$24.6\ \mathrm{CH}_2$	1.86 m	Pro-2,3,3',5,5'	Pro-3,3',5,5'	Pro-3,4'
		1.81 m		Pro-3,3',5,5'	Pro-2,4
5	46.5 CH ₂	3.40 dt, 9.9,5.2		Pro-4,4',5'	Pro-4,4',5'
		3.24 dt, 9.9,6.9		Pro-4,4',5	Pro-4,4',5

S48. ¹H NMR Spectrum of Microginin KR604 (**5**) in DMSO- d_6

S49. ¹³C NMR Spectrum of Microginin KR604 (5) in DMSO- d_6

S50. HSQC Spectrum Microginin KR604 (5) in DMSO- d_6

S51. HMBC Spectrum of Microginin KR604 (5) in DMSO- d_6

S52. COSY Spectrum of Microginin KR604 (5) in DMSO- d_6

S53. TOCSY Spectrum of Microginin KR604 (5) in DMSO- d_6

S54. ROESY Spectrum of Microginin KR604 (5) in DMSO- d_6

S55. HR ESI MS data of Microginin KR604 (5)

Elemental Composition Report

Page 1

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.1 C		Ahda-2, ¹ Tyr-NH		
2	68.4 CH	4.29 brs		Ahda-2-OH,3	Ahda-3,3-NCH ₃ , ¹ Tyr-NH
2-ОН		6.41 brs		Ahda-2	
3	60.2 CH	3.24 m	Ahda-2,3-NCH ₃	Ahda-2,4,4'	Ahda-2,5,5',3- <i>N</i> CH ₃ , ¹ Tyr-NH
3-NH		7.24 brs			
3- <i>N</i> CH ₃	30.8 CH ₃	2.55 brs			Ahda-2,3
4	26.1 CH ₂	1.41 m	Ahda-2	Ahda-3,4',5,5'	
		1.33 m		Ahda-3,4,5,5'	
5	25.2 CH ₂	1.38 m	Ahda-4,4',6,7	Ahda-4,4',5',6	Adha-3
		1.14 m		Ahda-4,4',5,6	Adha-3
6	29.1 CH ₂	1.15 m	Ahda-7	Ahda-6	
7	$28.2~\mathrm{CH}_2$	1.22 m	Ahda-6,8,9		
8	26.4 CH ₂	1.34 tt. 7.7,7.4	Ahda-9,10	Ahda-7',9	Ahda-10
9	32.2 CH ₂	1.68 tt, 7.4,6.8	Ahda-8,10	Ahda-8,10	Ahda-10
10	45.5 CH ₂	3.60 t, 6.8	Ahda-8,9	Ahda-9	Ahda-8,9
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
2	50.5 CH	4.86 ddd, 8.2,7.7,6.3	¹ Tyr-3,3',NH	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> M
2-NH		8.09 d, 8.2		¹ Tyr-2	¹ Tyr-2,3,3', Ahda-2,3
3	36.5 CH ₂	2.87 dd, 14.3,6.3	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,3',5,5'
		2.75 dd, 14.3,7.7		¹ Tyr-2,3	¹ Tyr-2,3,5,5'
4	126.9 C		¹ Tyr-3,3',6,6'		
5,5'	130.3 CH	6.99 d, 8.2	¹ Tyr-3,3',5',5	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6, <i>N</i> MeLeu- <i>N</i> Me
6,6'	115.0 CH	6.62 d, 8.2	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH, <i>N</i> MeLeu- <i>N</i> Me
7	156.0 C		¹ Tyr-5,5',6,6',7-OH		
7 - OH		9.25 s			¹ Tyr-6,6'
NMeLeu 1	168.3 C		NMeLeu-2,3,3'		

2	51.7 CH	5.24 dd, 7.6,6.8	NMeLeu-3,3',NMe	NMeLeu-3,3'	NMeLeu-3,3',5,6,NMe, Pro-5,5'
2- <i>N</i> CH ₃	30.2 CH ₃	2.87 s	NMeLeu-2		<i>N</i> MeLeu-2,3,3'
3	37.2 CH ₂	1.53 m	NMeLeu-2,4,5,6	<i>N</i> MeLeu-2,3',4	NMeLeu-2,5,6,NMe
		1.38 m		NMeLeu-2,3,4	NMeLeu-2,5,6,NMe
4	24.2 CH	1.39 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-NMe
5	22.5 CH ₃	0.82 d, 6.2	NMeLeu-3,3',4,6	NMeLeu-4	NMeLeu-2,3,3'
6	22.9 CH ₃	0.86 d, 6.2	<i>N</i> MeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	173.2 C		Pro-2,3,3'		
2	58.8 CH	4.18 dd, 8.9,3.8	Pro-3,4,4',5'	Pro-3,3'	Pro-3,4'
3	28.8 CH ₂	2.11 m	Pro-2,4,4',5,5'	Pro-2,3',4,4'	Pro-2,3',4'
		1.82 m		Pro-2,3,4,4'	Pro-3
4	24.6 CH ₂	1.86 m	Pro-2,3,3',5,5'	Pro-3,3',5,5'	Pro-2
		1.81 m		Pro-3,3',5,5'	Pro-3
5	46.5 CH ₂	3.41 m	Pro-2,3'	Pro-4,4',5'	Pro-4,4',5'
		3.26 m		Pro-4,4',5	Pro-2,3,4,4',5

S60. HSQC Spectrum Microginin KR638 (6) in DMSO-d₆

S61. HMBC Spectrum of Microginin KR638 (6) in DMSO- d_6

S62. COSY Spectrum of Microginin KR638 (6) in DMSO- d_6

S63. TOCSY Spectrum of Microginin KR638 (6) in DMSO- d_6

S64. ROESY Spectrum of Microginin KR638 (6) in DMSO- d_6

S65. HR ESI MS data of Microginin KR638 (6)

Elemental Composition Report

Single Mass Analysis Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions 283 formula(e) evaluated with 31 results within limits (up to 5 closest results for each mass) Elements Used: C: 28-35 H: 48-58 N: 0-10 O: 0-10 Na: 0-1 S: 0-1 CI: 1-1 A47.1 A47.1 Anat Iodin carmeit404d 166 (7.294) Cm (159:166)

Page 1

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.2 C		Ahda-2, ¹ Tyr-2,NH		
2	68.5 CH	4.30 brs		Ahda-2-OH	Ahda-2-OH,3,3-NCH ₃ , ¹ Tyr-NH
2-OH		6.35 brm		Ahda-2	Ahda-2,3
3	60.3 CH	3.22 brm	Ahda-2,3-NCH ₃	Ahda-4,	Ahda-2,2-OH
3-NH		8.43 brm		3-NCH ₃ (TOCSY)	Ahda-3-NCH ₃
3-NCH ₃	30.8 CH ₃	2.53 brs		Ahda-3-NH(TOCSY)	Ahda-2,2-OH,3,3-NH
4	26.1 CH ₂	1.36 m	Ahda-2	Ahda-3,4',5,5'	
		1.32 m		Ahda-4,5,5'	
5	25.3 CH ₂	1.24 m		Ahda-4,4',5',6	
		1.13 m		Ahda-4,4',5,6	
5	29.2 CH ₂	1.17 m	Ahda-5,5',7,7'	Ahda-6	
		1.13 m			
7	$28.6 \ \mathrm{CH_2}$	1.20 m	Ahda-6,6',8		
8	31.4 CH ₂	1.20 m	Ahda-9,10	Ahda-9	
Ð	22.3 CH ₂	1.25 m	Ahda-8,10	Ahda-8,10	
10	14.1 CH ₃	0.84 t, 7.4	Ahda-9	Ahda-9	
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
2	50.6 CH	4.86 ddd, 7.7,7.4,6.5	¹ Tyr-3,3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> Me
-NH		8.05 d, 7.4		¹ Tyr-2	¹ Tyr-2,3,3', Ahda-2
	$36.4~\mathrm{CH}_2$	2.87 m	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,2-NH,3',5,5'
		2.74 dd, 13.8,8.0		¹ Tyr-2,3	¹ Tyr-2,2-NH,3,5,5'
ļ	126.9 C		¹ Tyr-2,3,3',6,6'		
5,5'	130.3 CH	6.99 d, 8.3	¹ Tyr-3,3',5',5	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6'
6,6'	115.2 CH	6.62 d, 8.3	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH
7	156.2 C		¹ Tyr-5,5',6,6',7-OH		
7-OH		9.25 s			¹ Tyr-6,6'

	S66.	Table S8.	. NMR Data	(500/125 MHz) of Microginin	KR781 (7) in DMSO-de
--	------	-----------	------------	--------------	-----------------	----------	--------------

NMeLeu 1	168.4 C		NMeLeu-2,3,3'		
2	51.9 CH	5.23 dd, 8.0,6.5	NMeLeu-3,3',NMe	NMeLeu-3,3'	NMeLeu-3,3',5,6,NMe, Pro-5,5'
2- <i>N</i> CH ₃	30.2 CH ₃	2.88 s	NMeLeu-2		NMeLeu-2, ¹ Tyr-2
3	$37.2~\mathrm{CH}_2$	1.47 m	<i>N</i> MeLeu-2,4,5,6	NMeLeu-2,3',4	<i>N</i> MeLeu-2,5,6
		1.42 m		NMeLeu-2,3,4	<i>N</i> MeLeu-2,5,6
4	24.3 CH	1.38 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-2
5	22.4 CH ₃	0.81 d, 6.6	<i>N</i> MeLeu-3,3',4,6	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
6	23.0 CH ₃	0.85 d, 6.6	<i>N</i> MeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	171.7 C		Pro-2, ² Tyr-NH		
2	59.3 CH	4.29 m		Pro-3,3'	Pro-3,3',5'
3	29.2 CH ₂	1.95 m	Pro-4,4'	Pro-2,3',4,4'	Pro-2
		1.73 m		Pro-2,3,4,4'	Pro-2
4	$24.2 \ \mathrm{CH}_2$	1.80 m	Pro-3,5'	Pro-3,3',5,5'	
		1.75 m		Pro-3,3',5,5'	
5	46.7 CH ₂	3.39 m		Pro-4,4',5'	Pro-5', NMeLeu-2
		3.17 m		Pro-4,4',5	Pro-2,5, NMeLeu-2
² Tyr 1	172.2 C		² Tyr-2,3,3', OCH ₃		
2	54.3 CH	4.31 m	² Tyr-3,3'	² Tyr-3,3',NH	² Tyr-3,3',5,5',NH
2-NH		8.15 d, 7.3		² Tyr-2	² Tyr-2,3,3'
3	36.1 CH ₂	2.86 m	² Tyr-2,5,5'	² Tyr-2,3'	² Tyr-2,3',5,5',NH
		2.82 m		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.2 C		² Tyr-2,3,3',6,6'		
5,5'	130.2 CH	7.00 d, 8.4	² Tyr-3,3',5',5	² Tyr-6,6'	² Tyr-2,3,3',6,6'
6,6'	115.2 CH	6.64 d, 8.4	² Tyr-5,5',6',6,7-OH	² Tyr-5,5'	² Tyr-5,5',7-OH
7	156.2 C		² Tyr-5,5',6,6',7-OH		
7 - OH		9.23 s			² Tyr-6,6'
OCH ₃	51.9 CH ₃	3.53 s			

S70. HSQC Spectrum Microginin KR781 (7) in DMSO- d_6

S72. COSY Spectrum of Microginin KR781 (7) in DMSO- d_6

S73. TOCSY Spectrum of Microginin KR781 (7) in DMSO- d_6

S74. ROESY Spectrum of Microginin KR781 (7) in DMSO- d_6

S75. HR ESI MS data of Microginin KR781 (7)

Elemental Composition Report

.

Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 65 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 40-45 H: 60-65 N: 0-10 O: 0-15 AL43.4 Anat Lodin Carmeli411b 62 (2.380) Cm (62)

Page 1

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.1 C		Ahda-2, ¹ Tyr-2,NH		
	68.4 CH	4.30 brs		Ahda-2-OH,3	Ahda-2-OH,3,3-NCH ₃ , ¹ Tyr-NH
-OH		6.40 brm		Ahda-2	Ahda-2,3
	60.3 CH	3.24 brm	Ahda-2,3-NCH ₃	Ahda-2,4,4'	Ahda-2,2-OH
ΙH		8.42 brm		3- <i>N</i> CH ₃	Ahda-3-NCH ₃
/CH ₃	30.8 CH ₃	2.55 brs		Ahda-3-NH	Ahda-2,2-OH,3,3-NH
	26.0 CH ₂	1.39 m	Ahda-2,5,5'	Ahda-3,4',5,5'	
		1.31 m		Ahda-3,4,5,5'	
	25.1 CH ₂	1.24 m	Ahda-4,4',6	Ahda-4,4',5',6	
		1.13 m		Ahda-4,4',5,6	
	29.0 CH ₂	1.13 m	Ahda-4,5,7,8	Ahda-7	
	$28.2~\mathrm{CH}_2$	1.22 m	Ahda-5,5'6,8	Ahda-8	
	$26.4 \ \mathrm{CH}_2$	1.33 tt, 7.6,7.1	Ahda-6'7,9,10	Ahda-7,9	
	$32.2~\mathrm{CH}_2$	1.67 tt, 7.6,6.6	Ahda-8,10	Ahda-8,10	
	45.5 CH ₂	3.60 t, 6.6	Ahda-9,8	Ahda-9	
1	171.0 C		¹ Tyr-2,3,3', <i>N</i> MeLeu-2, <i>N</i> CH ₃		
	50.6 CH	4.86 ddd, 8.0,6.6,6.0	¹ Tyr-3,3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5', <i>N</i> MeLeu- <i>N</i> Me
		8.09 d, 8.0		¹ Tyr-2	¹ Tyr-2,3,3', Ahda-2
	36.4 CH ₂	2.85 m	¹ Tyr-2,5,5'	¹ Tyr-2,3'	¹ Tyr-2,2-NH,3',5,5'
		2.74 dd, 13.9,8.0		¹ Tyr-2,3	¹ Tyr-2,2-NH,3,5,5'
	126.9 C		¹ Tyr-2,3,3',6,6'		
	130.3 CH	6.99 d, 8.4	¹ Tyr-3,3',5',5	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6'
	115.2 CH	6.62 d, 8.4	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH
	156.2 C		¹ Tyr-5,5',6,6',7-OH		
l		9.25 s			¹ Tyr-6,6'
eu 1	168.4 C		NMeLeu-2,3,3'		

2	51.9 CH	5.23 dd, 8.0,6.5	NMeLeu-3,3',NMe	NMeLeu-3,3'	<i>N</i> MeLeu-3,3',5,6, <i>N</i> Me, Pro-5,5'
2-NCH ₃	30.2 CH ₃	2.89 s	NMeLeu-2		NMeLeu-2, ¹ Tyr-2
3	37.1 CH ₂	1.47 m	<i>N</i> MeLeu-2,4,5,6	NMeLeu-2,3',4	<i>N</i> MeLeu-2,5,6
		1.41 m		NMeLeu-2,3,4	<i>N</i> MeLeu-2,5,6
4	24.2 CH	1.38 m	NMeLeu-2,3,3',5,6	NMeLeu-3,3',5,6	NMeLeu-2
5	22.4 CH ₃	0.81 d, 6.5	NMeLeu-3,3',4,6	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
6	23.0 CH ₃	0.85 d, 6.5	<i>N</i> MeLeu-3,3',4,5	NMeLeu-4	<i>N</i> MeLeu-2,3,3'
Pro 1	171.7 C		Pro-2,3, ² Tyr-NH		
2	59.3 CH	4.29 m		Pro-3,3'	Pro-3,3',5'
3	29.1 CH ₂	1.97 m	Pro-2,4,4',5,5'	Pro-2,3',4,4'	Pro-2
		1.74 m		Pro-2,3,4,4',5'	Pro-2
4	$24.3 \ \mathrm{CH}_2$	1.78 m	Pro-2,3,3'5,5'	Pro-3,3',5,5'	
		1.73 m		Pro-3,3',5,5'	
5	46.7 CH ₂	3.40 m	Pro-2	Pro-4,4',5'	Pro-5', NMeLeu-2
		3.18 m		Pro-3,4,4',5	Pro-2,5, NMeLeu-2
² Tyr 1	172.2 C		² Tyr-2,3,3',OCH ₃		
2	54.2 CH	4.30 m	² Tyr-2-NH,3,3'	² Tyr-2-NH,3,3'	² Tyr-3,3',5,5',NH
2-NH		8.15 d, 7.6		² Tyr-2	² Tyr-2,3,3'
3	36.1 CH ₂	2.86 m	² Tyr-2,2-NH,5,5'	² Tyr-2,3'	² Tyr-2,3',5,5',NH
		2.82 m		² Tyr-2,3	² Tyr-2,3,5,5',NH
4	127.2 C		² Tyr-2,3,3',6,6'		
5,5'	130.2 CH	7.00 d, 8.4	² Tyr-3,3',5',5	² Tyr-6,6'	² Tyr-2,3,3',6,6'
6,6'	115.1 CH	6.64 d, 8.4	² Tyr-5,5',6',6,7-OH	² Tyr-5,5'	² Ту г -5,5',7-ОН
7	156.2 C		² Tyr-5,5',6,6',7-OH		
7 - OH		9.23 s			² Tyr-6,6'
ОСН <u>3</u>	51.8 CH ₃	3.53 s			

S78. ¹H NMR Spectrum of Microginin KR815 (8) in DMSO-*d*₆

S79. ¹³C NMR Spectrum of Microginin KR815 (8) in DMSO-d₆

S81. HMBC Spectrum of Microginin KR815 (8) in DMSO- d_6

S82. COSY Spectrum of Microginin KR815 (8) in DMSO- d_6

S83. TOCSY Spectrum of Microginin KR815 (8) in DMSO- d_6

S84. ROESY Spectrum of Microginin KR815 (8) in DMSO- d_6

S85. HR ESI MS data of Microginin KR815 (8)

Elemental Composition Report

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions 447 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 38-50 H: 55-70 N: 0-10 O: 0-15 CI: 0-2 AL43.3 carmeli407 132 (5.803) Cm (132) Anat Lodin

.

Page 1

Position	δ_{C}	δ _H Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	170.8 C		Ahda-2,2-OH, Thr-2,NH		
2	69.6 CH	4.10 t, 4.6	Ahda-2-OH	Ahda-2-OH,3	Ahda-2-OH,3,3-NH ₃ ,4,4',5',5', Thr-2-NH
2-OH		6.61 m		Ahda-2	Ahda-2,3,4
3	53.1 CH	3.22 m	Ahda-2-OH	Ahda-3-NH ₃ ,4,4'	Ahda-2,2-OH,3-NH ₃ ,4,4'5,5', Thr-2-NH
3-NH ₃		7.71 m		Ahda-3	Ahda-2,3, ,4,4'5,5'
4	$28.8\ \mathrm{CH}_2$	1.59 m	Ahda-2,5,5',6	Ahda-3,4',5,5'	Ahda-2,2-OH,3,3-NH ₃ ,4',5',5'
		1.44 m		Ahda-3,4,5,5'	Ahda-2,3,3-NH ₃ ,4,5,5'
5	$24.8~\mathrm{CH}_2$	1.34 m	Ahda-6,7	Ahda-4,4',5',6	Ahda-2,3,3-NH ₃ ,4,4',5'
		1.29 m		Ahda-4,4',5,6	Ahda-2,3,3-NH ₃ ,4,4',5
6	28.5 CH ₂	1.23 m	Ahda-5,5',7,8	Ahda-5,5'	
7	28.9 CH ₂	1.23 m			
8	31.3 CH ₂	1.23 m	Ahda-7,9,10		
9	$22.2 \ \mathrm{CH}_2$	1.24 m	Ahda-8,10	Ahda-10	Ahda-10
10	14.1 CH ₃	0.85 t, 6.8	Ahda-8,9	Ahda-9	Ahda-9
Thr 1	168.6 C		Thr-2		
2	56.0 CH	4.48 dd, 7.2,6.6	Thr-2-OH,4	Thr-2-NH,3	Thr-2-NH,3,4, Pro-5
2-NH		7.86 d, 7.2		Thr-2	Thr-2,3,4, Ahda-2,3
3	67.0 CH	3.94 brdq, 6.6,6.6	Thr-2,3-OH,4	Thr-2,3-OH,4	Thr-2,2-NH,3-OH,4
3-OH		5.13 d, 3.6		Thr-3	Thr-3,4
4	19.3 CH ₃	1.14 d. 6.6	Thr-2	Thr-3	Thr-2,2-NH,3,3-OH, ² Tyr-6,6'
Pro 1	171.0 C		Pro-2,3, ¹ Tyr-NH		
2	59.5 CH	4.32 dd, 7.8,3.2		Pro-3,3'	Pro-3,3'
3	$29.0~\mathrm{CH}_2$	1.90 m	Pro-4,4',5	Pro-2,3',4,4'	Pro-2,3',5
		1.69 m		Pro-2,3,4,4'	Pro-2,3, ¹ Tyr-2-NH,5,5'
4	$24.2 \ \mathrm{CH}_2$	1.74 m	Pro-3,5	Pro-3,3',4',5	Pro-5
		1.62 m		Pro-3,3',4,5	Pro-5, ¹ Tyr-5,5'

S86. Table S10. NMR Data (500/125 MHz) of Microginin FR3 (9) in DMSO- d_6

5	47.4 CH ₂	3.63 m		Pro-4,4'	Pro-3,4,4', ¹ Tyr-5,5', Thr-2
¹ Tyr 1	171.0 C		¹ Tyr-2,3,3', ² Tyr-NH		
2	54.1 CH	4.38 ddd, 9.5,8.2,4.8	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3'5,5' ² Tyr-2-NH
2-NH		7.64 d, 8.2		¹ Tyr-2	¹ Tyr-2,3,3', ² Tyr-2, Pro-3',5
3	36.6 CH ₂	2.87 dd, 13.8,4.8	¹ Tyr-2,2-NH,5,5'	¹ Tyr-2,3'	¹ Tyr-2,2-NH,5,5'
		2.63 dd, 13.8,9.5		¹ Tyr-2,3	¹ Tyr-2,2-NH,5,5'
4	127.8 C		¹ Tyr-3,3',5,5'		
5,5'	130.2 CH	7.00 d, 8.5	¹ Tyr-3,3',5',5	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6', Pro-3',4',5, Thr-3,4
6,6'	114.9 CH	6.61 d, 8.5	¹ Tyr-5,5',6',6,7-OH	¹ Tyr-5,5'	¹ Tyr-5,5',7-OH
7	155.9 C		¹ Tyr-5,5',6,6',7-OH		
7 - OH		9.13 s			¹ Tyr-6,6'
² Tyr 1	172.9 C		² Tyr-2,3,3'		
2	53.9 CH	4.31 m	² Tyr-2-NH,3,3'	² Tyr-2-NH,3,3'	² Tyr-2-NH,3,3'
2-NH		8.03 d, 7.6		² Tyr-2	² Tyr-2,3,3', ¹ Tyr-2
3	36.2 CH ₂	2.89 dd, 14.1,5.9	² Tyr-2,5,5'	² Tyr-2,3'	² Tyr-2,2-NH,
		2.79 dd, 14.1,7.8		² Tyr-2,3	² Tyr-2,2-NH,
4	127.4 C		² Tyr-2,3,3',5,5'		
5,5'	130.2 CH	7.00 d, 8.1	² Tyr-3,3',5',5	² Tyr-6,6'	² Tyr-2,3,3',6,6'
6,6'	115.1 CH	6.63 d, 8.1	² Tyr-5,5',6',6,7-OH	² Tyr-5,5'	² Tyr-5,5',7-OH, Thr-4
7	156.1 C		² Tyr-5,5',6,6'7-OH		
7 - OH		9.18 s			² Tyr-6,6'

S88. ¹H NMR Spectrum of Microginin FR3 (9) in DMSO- d_6

AL223.1 AL223.1 in DMSO-D6 8.12.14																	MSO				-1800000 -
	8.0		0.92		.22	8.4. 5.14	14			ŝ	5 1	40 130 130	442	ţ		20 DI		888 888	2215	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1700000
	171	170	<156		130		115			69	-67.	55.9	53.	;	40.	ဗ္ဗ်ဗ္ဗ်		မိုင်္ခုလို		22-24 19:41	-1600000
							-			· · · · ·	-		•r •								-1500000
																					- -140000(
																					-1300000
																					-1200000
																					-1100000
																					-1000000
																		1			-9000000
																					8000000
																					-7000000
																					-6000000
											İ		1					_			5000000
																		_			4000000
																					-3000000
																					-2000000
													1								- - 100000(
n filia di ang						MANNA									WWW						-0
· · · · · · · · · · · · · · · · · · ·	. A dia.	1977 - 1989 1977 - 1989	аh.	a due The	. տերե	իչ		1	 · · · · · · · · · · · · · · · · · · ·	ւսուդիդ	RUNEO		le de A	ղոր	• • •	11 I	. 141	Ti vind,	Elli A. UL		-100000
í l																					F

S89. ¹³C NMR Spectrum of Microginin FR3 (9) in DMSO- d_6

S91. HMBC Spectrum of Microginin FR3 (9) in DMSO- d_6

S92. COSY Spectrum of Microginin FR3 (9) in DMSO- d_6

S93. TOCSY Spectrum of Microginin FR3 (9) in DMSO- d_6

S94. ROESY Spectrum of Microginin FR3 (9) in DMSO- d_6

S95. HR ESI MS data of Microginin FR3 (9)

Elemental Composition Report

Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 140 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 35-45 H: 50-65 N: 0-10 O: 0-15 AL223.1 carmelie88 46 (2.033) Cm (46:47) Anat Lodin

Page 1

Position	δ_{C}	$\delta_{\rm H}$ Multiplicity, J (Hz)	HMBC correlations	COSY correlations	NOESY correlations
Ahda 1	171.2 C		Ahda-2-OH, Thr-2,NH		
2	68.2 CH	4.18 t, 4.4	Ahda-4'	Ahda-2-OH,3	Ahda-2-OH,3,3-NH ₂ ,4,4',5',5', Thr-2-NH
2-ОН		6.82 d, 4.4		Ahda-2	Ahda-2,3,4,5, Thr-2-NH
3	60.1 CH	3.30 m	Ahda-3-NCH ₃ ,4,4'	Ahda-2,3-NH,4,4'	Ahda-2,2-OH,3-NH ₂ ,4, Thr-2-NH
3-NH ₂		8.36 brs		Ahda-3,NH',NCH ₃	Ahda-2,3,NH',4,4'5,5', Thr-2
		8.17 brs		Ahda-3,NH,NCH ₃	Ahda-3-NH,
-NCH ₃	31.3 CH ₃	2.50 brt, 5.3			Thr-2-NH
	27.9 CH ₂	1.58 m	Ahda-5,5'	Ahda-3,4',5,5'	Ahda-2,2-OH,3,3-NH ₂ ,
		1.55 m		Ahda-3,4,5,5'	Ahda-2,3,3-NH ₂ ,
	25.1 CH ₂	1.33 m	Ahda-4,4'	Ahda-4,4',5',6	Ahda-2,3,3-NH ₂ ,
		1.30 m		Ahda-4,4',5,6	Ahda-2
	$28.6~\mathrm{CH}_2$	1.23 m	Ahda-7,8	Ahda-5,5'	
	$28.9~\mathrm{CH}_2$	1.23 m	Ahda-5,5',9		
	31.4 CH ₂	1.23 m	Ahda-9,10		
	$22.2\ \mathrm{CH}_2$	1.24 m	Ahda-8,10	Ahda-10	Ahda-10
i.	14.1 CH ₃	0.85 t, 6.8	Ahda-8,9	Ahda-9	Ahda-9
ır 1	168.5 C		Thr-2		
	56.2 CH	4.47 dd, 7.4,6.0	Thr-4	Thr-2-NH,3	Thr-2-NH,3,4, Pro-5, Ahda-3-NH, ¹ Tyr-5,5'
NH		7.91 d, 7.4		Thr-2	Thr-2,3,4, Ahda-2,2-OH,3,3-NCH ₃
	67.0 CH	3.93 brdq, 6.0,6.0	Thr-2,4	Thr-2,4	Thr-2,2-NH,4, ¹ Tyr-2-NH,5,5'
OH		5.10 brs			
	19.5 CH ₃	1.14 d, 6.0	Thr-2	Thr-3	Thr-2,2-NH,3, ¹ Tyr-2-NH,5,5'
ro 1	171.0 C		Pro-2, ¹ Tyr-NH		
	59.5 CH	4.32 m		Pro-3,3'	Pro-3,3'
	29.1 CH ₂	1.90 m	Pro-4,4',5	Pro-2,3',4,4',5	Pro-2,3'4,4'
		1.70 m		Pro-2,3,4,4'	Pro-2,3, ¹ Tyr-2-NH
ļ	24.2 CH ₂	1.74 m	Pro-3,5	Pro-3,3',4',5	Pro-3,5

S96. Table S11. NMR Data (500/125 MHz) of Microginin FR4 (10) in DMSO- d_6

		1.65 m		Pro-3,3',4,5	Pro-3,5
5	47.5 CH ₂	3.64 m		Pro-3,4,4'	Pro-4,4', Thr-2
¹ Tyr 1	171.0 C		¹ Tyr-2,3, ² Tyr-NH		
2	54.2 CH	4.38 ddd, 9.0,8.2,4.2	¹ Tyr-3'	¹ Tyr-2-NH,3,3'	¹ Tyr-2-NH,3,3',5,5' ² Tyr-2-NH
2-NH		7.64 d, 8.2		¹ Tyr-2	¹ Tyr-2,3',6,6', ² Tyr-2, Pro-3',5, Thr-3,4
3	36.7 CH ₂	2.87 dd, 13.8,4.2	¹ Tyr-5,5'	¹ Tyr-2,3'	¹ Tyr-2,3',5,5'
		2.63 dd, 13.8,9.0		¹ Tyr-2,3	¹ Tyr-2,2-NH,3,5,5'
4	127.9 C		¹ Tyr-2,3,3',5,5'		
5,5'	130.2 CH	7.00 d, 8.6	¹ Tyr-3,3',5',5	¹ Tyr-6,6'	¹ Tyr-2,3,3',6,6', Pro-3',4',5, Thr-2,3,4
6,6'	115.0 CH	6.60 d, 8.6	¹ Tyr-5,5',6',6	¹ Tyr-5,5'	¹ Tyr-2-NH,5,5',7-OH
7	155.9 C		¹ Tyr-5,5',6,6'		
7 - OH		9.12 s			¹ Tyr-6,6'
² Tyr 1	172.9 C		² Tyr-2,3,3'		
2	54.0 CH	4.31 m	² Tyr-3,3'	² Tyr-2-NH,3,3'	² Tyr-2-NH,3,3',5,5'
2-NH		8.04 d, 7.6		² Tyr-2	² Tyr-2,3,3',6,6', ¹ Tyr-2
3	36.2 CH ₂	2.90 dd, 14.0,5.7	² Tyr-2,5,5'	² Tyr-2,3'	² Tyr-2,2-NH,3',5,5'
		2.79 dd, 14.0,7.9		² Tyr-2,3	² Tyr-2,2-NH,3,5,5'
4	127.4 C		² Tyr-2,3,3',5,5'		
5,5'	130.3 CH	7.00 d, 8.1	² Tyr-3,3',5',5	² Tyr-6,6'	² Tyr-2,3,3',6,6'
6,6'	115.1 CH	6.63 d, 8.1	² Tyr-5,5',6',6	² Tyr-5,5'	² Tyr-2-NH,5,5',7-OH
7	156.1 C		² Tyr-5,5',6,6'		
7 - OH		9.17 s			² Tyr-6,6'

S98. ¹H NMR Spectrum of Microginin FR4 (10) in DMSO- d_6

S99. ¹³C NMR Spectrum of Microginin FR4 (10) in DMSO-*d*₆

S100. HSQC Spectrum Microginin FR4 (10) in DMSO- d_6

S101. HMBC Spectrum of Microginin FR4 (10) in DMSO- d_6

S102. COSY Spectrum of Microginin FR4 (10) in DMSO- d_6

S103. TOCSY Spectrum of Microginin FR4 (10) in DMSO- d_6

S104. ROESY Spectrum of Microginin FR4 (10) in DMSO- d_6

S105. HR ESI MS data of Microginin FR4 (10)

.

Elemental Composition Report Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron ions 138 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 35-45 H: 50-65 N: 0-10 O: 0-15 AL221.2 Anat Lodin carmeli967 48 (2.121) Cm (48:51) 1: TOF MS ES+ 1.82e+004 742.4031 100 %-743.4067 745.4172 747.2281 748.1998 749.3271 751.5205 748.0 750.0 752.0 744.4107 736.3264 737.3278 738.5439 740.3191 742.1423 752.5233 754.1608 731.3547 732.8671 734.3795 0 730.0 m/z 732.0 740.0 742.0 734.0 736.0 738.0 744.0 752.0 754.0 Minimum: -1.5 5.0 Maximum: 2.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula C38 H56 N5 O10 </br>

 C39 H52 N9 O6
742.4031 742.4027 0.4 0.5 13.5 167.2 0.0 170.4 742.4041 -1.0 -1.3 18.5 3.3

Page 1