Synthesis and biological evaluation of a new structural simplified analogue of cADPR, a calcium-mobilizing secondary messenger firstly isolated from sea urchin eggs

Stefano D'Errico^{1,2}, Nicola Borbone^{1,2}, Bruno Catalanotti¹, Agnese Secondo³, Tiziana Petrozziello³, Ilaria Piccialli³, Anna Pannaccione³, Valeria Costantino¹, Luciano Mayol¹, Gennaro Piccialli^{1,3} and Giorgia Oliviero^{2,4,*}

¹Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy

²SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy

³Divisione di Farmacologia, Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Scuola di Medicina, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy

⁴Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy

*Corresponding author: golivier@unina.it

¹ H- and ³¹ P-NMR spectra of compound 16	S 3
¹ H- and ³¹ P-NMR spectra of compounds 17	S4
¹ H- and ³¹ P-NMR spectra of compounds 19	S5
¹ H- and ³¹ P-NMR spectra of compounds 21	S 6
¹ H- and ³¹ P-NMR spectra of compounds 22	S7
¹ H- and ³¹ P-NMR spectra of compounds 23	S 8
¹ H- and ³¹ P-NMR spectra of compounds 24	S9
¹ H- and ³¹ P-NMR spectra of compounds 25	S10
¹ H- and ³¹ P-NMR spectra of compounds 26	S11

¹ H- and ³¹ P-NMR spectra of compounds 13	S12
¹³ C NMR spectrum of compound 16	S13
¹³ C NMR spectrum of compound 17	S14
¹³ C NMR spectrum of compound 19	S15
¹³ C NMR spectrum of compound 21	S16
¹³ C NMR spectrum of compound 22	S17
¹³ C NMR spectrum of compound 23	S18
¹³ C NMR spectrum of compound 24	S19
¹³ C NMR spectrum of compound 25	S20
¹³ C NMR spectrum of compound 26	S21
Table S1	S22
Figure S1	S22
Table S2	S23

ppm 8.5 7.5 6.5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 -0.0 7.0 6.0 -0.5 8.0 0.5

Cmpd	AlogP	ΔΕ	d_1	d ₂	d ₂	θ_1	θ_2	θ_3	θ_4
		(kcal/mol)	(Å)	(Å)	(Å)	(°)	(°)	(°)	(°)
cpIPP (13)	-2.4	0.0	8,4	5,6	4,7	73	-38	-54	-140
		4.4	8,2	5,4	6,2	74	67	-56	-113
cbIDP (10)	-2.5	0.0	7,2	4,0	3,9	68	-177	-178	-81
		3.6	7,8	5,4	5,8	65	169	-171	63
		4.4	6,8	4,7	5,9	177	-176	57	-63
		4.7	8,2	5,2	4,7	-46	-54	62	-78
		4.8	7,6	4,2	4,6	69	171	63	80
		4.9	6,6	5,2	4,2	-89	-157	-40	59
cpIDP (11)	-2.0	0	8,9	5,6	5,1	-33	-62	54	51
		4.2	6,5	4,8	4,1	171	-39	79	38
		4.3	9,0	5,5	5,2	-12	-34	85	42
		4.8	8,1	6,2	6,6	-81	-69	50	52

Table S1. Lipophilicity, Relative OPLS 2005 energies and geometrical features of conformers within 5 Kcal/mol from the lowest energy conformation. Atoms used to calculate geometric features are described in Figure 3 of the main text.

Figure S1. Superimposition on the inosine ring of conformers within 10 kcal/mol from global minimum: A) cbIDP (10, grey), B) cpIDP (11, pink), and C) cpIPP (13, green). Non-polar hydrogens were omitted for sake of clarity. Oxygens were reported in red, nitrogens in blue, phosphates in magenta, hydrogens in white.

Table S2. Lipophilicity, Relative OPLS 2005 energies and geometrical features of conformers within 10 Kcal/mol from the lowest energy conformation. Atoms used to calculate geometric features are described in Figure 3 of the main text.

Cmpd	AlogP	ΔE (kcal/mol)	d ₁ (Å)	d ₂ (Å)	$\begin{pmatrix} d_2 \\ (Å) \end{pmatrix}$	θ_1 (°)	θ_2 (°)	θ_3 (°)	$ \theta_4 (°) $
cpIPP (13)	-2.4	0.0	8,4	5,6	4,7	73	-38	-54	-140
		4.4	8,2	5,4	6,2	74	67	-56	-113
		5.8	8,4	5,8	5,7	82	-41	72	179
		6.9	8,4	5,9	5,6	65	-40	-67	-158
		9.5	8,1	6,0	6,6	68	46	60	-172
		10.0	8,0	5,0	4,4	62	-173	62	171
cbIDP (10)	-2,5	0	7,2	4,0	3,9	68	-177	-178	-81
		3,6	7,8	5,4	5,8	65	169	-171	63
		4,4	6,8	4,7	5,9	177	-176	57	-63
		4,7	8,2	5,2	4,7	-46	-54	62	-78
		4,8	7,6	4,2	4,6	69	171	63	80
		4,9	6,6	5,2	4,2	-89	-157	-40	59
		5,8	7,9	6,1	6,2	73	-53	69	74
		6,5	7,3	4,9	6,8	81	75	168	73
		7,2	6,8	3,6	3,9	-61	-169	166	-84
		7,3	7,9	5,0	4,2	-40	175	58	-86
		7,5	6,3	5,0	5,8	-59	-68	-76	58
		7,8	8,2	5,4	4,5	71	-59	62	77
		8,4	7,0	4,7	6,4	61	164	58	-77
		8,6	7,3	4,6	6,5	89	-55	173	73
		8,7	7,2	4,1	5,5	-74	179	-64	77
		8,9	7,9	6,1	7,0	79	56	52	-78
		9,1	7,4	4,0	4,5	66	164	-67	77
		9,2	7,6	4,4	4,8	167	50	-60	-72
		9,4	7,6	6,1	6,8	64	58	-171	79
		9,5	8,2	5,2	4,6	-46	-53	165	-78
		9,6	7,7	5,5	6,4	71	153	171	60
		9,9	7,2	5,8	6,6	62	167	60	-68
		10,0	7,4	4,7	4,6	-61	63	-159	67

cpIDP (11)	-2.0	0,0	8,9	5,6	5,1	-33	-62	54	51
		4,2	6,5	4,8	4,1	171	-39	79	38
		4,3	9,0	5,5	5,2	-12	-34	85	42
		4,8	8,1	6,2	6,6	-81	-69	50	52
		5,5	8,6	5,9	5,8	-25	-59	57	49
		5,7	8,4	6,4	7,7	89	-168	-53	60
		5,9	8,2	5,0	4,7	-162	-66	49	36
		6,5	8,7	5,8	6,5	68	42	-74	-44
		6,9	7,7	5,7	4,2	-160	-54	64	34
		7,9	8,8	5,5	5,5	175	70	-176	37
		8,5	7,2	4,5	6,4	59	152	35	-55
		9,0	7,8	5,8	4,6	-111	159	44	-52
		9,2	6,4	4,9	4,6	154	174	58	-35
		9,3	7,3	3,9	4,3	-164	172	58	-35
		9,5	8,9	5,3	5,2	81	-168	-54	61
		9,7	8,4	6,1	6,8	86	65	-54	-51
		9,9	7,4	5,0	6,6	-23	-55	61	48