Supplementary Material

Table S1. Genes and proteins involved in mycemycin biosynthesis and their putative

functions in S. sp. FXJ1.235.

Table S2. Strains used in this study.

 Table S3. Plasmids used in this study.

Table S4. Primers used in this study.

Figure S1. HR-ESI-MS spectra of mycemycin A (a) and mycemycin B (b).

Figure S2. UV spectrum of 5-Cl-anthranilic acid.

Figure S3. Proposed pathway for the biosynthesis of mycemycins A and B in *S.* sp. FXJ1.235.

References

Gene	Size (AA)	Protein Homolog and origin (identity/similarity)	Proposed function
orf-1	47	None predicted in NCBI	Unknown
myeQ	394	KynU, NP_250770.1(47/62); Pseudomonas aeruginosa PAO1	Kynureninase
myeC	281	NP_627840.1(86/92); Streptomyces coelicolor A3(2)	Tryptophan 2, 3-dioxygenase
orf-2	139	WP_089100086.1(79/86); Streptomyces hyaluromycini	DUF3151 domain-containing protein
orf-3	489	WP_059203142.1(88/92); Streptomyces griseoruber	MFS transporter
orf-4	27	None predicted in NCBI	Unknown
myeR4	205	SBU95446.1(82/89); <i>Streptomyces</i> sp. OspMP-M45	LuxR family transcriptional regulator
myeJ	280	SCE38941.1(73/80); Streptomyces sp. PpalLS-921	SAM-dependent methyltransferase
myeR1	334	SBU95411.1(88/92); <i>Streptomyces</i> sp. OspMP-M45	Lrp/AsnC family transcriptional regulator
туеК	509	CB02009_orf6, OKJ63402.1(76/84); Streptomyces sp. CB02009	Mltidrug MFS transporter
myeR3	676	SBU95407.1(79/84); <i>Streptomyces</i> sp. OspMP-M45	SARP family transcriptional regulator
myeR5	226	SBU95417.1(76/83); <i>Streptomyces</i> sp. OspMP-M45	TetR family transcriptional regulator
myeP	511	RebH, 4LU6_A (60/72); Lechevalieria aerocolonigenes	Tryptophan halogenase
myeO	181	KtzS, ABV56599.1(58/70); Kutzneria sp. 744	Flavin reductase
myeN	221	SDU28343.1(51/64); Amycolatopsis keratiniphila	Sodium/hydrogen exchanger family
myeA	456	SsfH, ADE34507.1(73/83); Streptomyces sp. SF2575	Salicylate synthase
myeG	350	BomK, ALE27503.1 (57/72); Streptomyces sp. NRRL 12068	Beta-ketoacyl-ACP synthase (amide bond formation)
myeF	521	PchD, NP_252918.1(49/62); Pseudomonas aeruginosa PAO1	2,3-dihydroxybenzoate-AMP ligase
myeE	94	EsmD3, AFB35628.1(55/74); Streptomyces antibioticus	Phosphopantetheine-binding protein
myeD	518	KDQ70109.1(84/89); <i>Streptomyces</i> sp. NTK 937	Amidohydrolase
orf-5	410	WP_078569189.1(81/86); Streptomyces	Phospho-2-dehydro-3-

Table S1. Genes and proteins involved in mycemycin biosynthesis and their putativefunctions in S. sp. FXJ1.235.

		sp. NTK 937	deoxyheptonate aldolase
orf-6	256	KFG06189.1(69/81); Streptomyces scabiei	2,3-dihydro-2,3- dihydroxybenzoate dehydrogenase

Strain	Characteristic	Reference
Escherichea coli		
ETZ12567	E. coli host for conjugation	[1]
Top 10	E. coli host for cloning	Invitrogen
Rosetta(DE3)	E. coli host for heterologous expression	Invitrogen
Rosetta(DE3)/mymC	<i>E.coli</i> host for MymC heterologous expression	This study
Streptomyces olivaceus FXJ8.012∆1741	Mycemycin C-E producing strain	[2]
Streptomyces sp. FXJ1.235		
FXJ1.235	Mycemycin A-B producing strain	[3]
FXJ1.235∆myeP	∆myeP::neo	This study
FXJ1.235∆myeO	∆myeO	This study
FXJ1.235∆myeG	∆myeG::neo	This study
FXJ1.235∆myeD	∆myeD	This study

Table S2. Strains used in this study.

Plasmid	Characteristic	Reference
pET28a	Vector for protein expression, Kan ^R	Invitrogen
pET28a:: <i>mymC</i>	Vector for MymC heterologous expression, Kan ^R	
pUC119::neo	Source of <i>neo</i> (kan ^R)	[4]
pKC1139	<i>E. coli-Streptomyces</i> shuttle vector, Apr ^R	[5]
pKC1139::myeP::neo	MyeP deletion construct, Apr ^R , Kan ^R	This study
pKC1139:: <i>myeO</i>	<i>MyeO</i> deletion construct, Apr ^R	This study
pKC1139::myeG::neo	MyeG deletion construct, Apr ^R , Kan ^R	This study
pKC1139:: <i>myeD</i>	MyeD deletion construct, Apr ^R	This study
pKC1139::myeD	MyeD deletion construct, Apr ^R	This study

Table S3. Plasmids used in this study.

Apr, apramycin; Kan, kanamycin.

Primer	Sequence
Primers for Mym	C heterologous expression in <i>E. coli</i>
mymC-EF	G <u>GAATTC</u> GTGGCACGGCCGGACCGGGACGG
mymC-ER	CCCAAGCTTCTACAGGCGGGTGCGGGCGGCCC
Primers for mutar	nt construction and confirmation in FXJ1.235
myeP-LF	GATCCGCGGCCGCGCGCGATGGACAGGATGGACTGGAAGACG
myeP-LR	GGTATCCAGGGGATAGATCTACATCTTGCGGACGGTGTCTATA
myeP-RF	CTGGGGTTCGGGTAAGATCTGCCCTCCACGTACGACATCCTG
myeP-RR	GACATGATTACGAATTCGATGACTCGTTGCTGCGGATGCTG
<i>∆myeP</i> -F	CACCACCGACGGTTTCCTCT
<i>∆myeP</i> -R	CCATCAACTGCCGCATCCC
myeO-LF	GATCCGCGGCCGCGCGCGATTGTCCCGTACCAACGCACCACGC
myeO-LR	CGTAGAGCAGAGGGGGGGGGGGGGCCATCAACTGCCGCATCCCGTCG
myeO-RF	CGACGGGATGCGGCAGTTGATGGCCCCCGCCCCTCTGCTCTACG
myeO-RR	GACATGATTACGAATTCGATCCTGGAAGTGGACGCTGCTGTG
<i>∆myeO</i> -F	TTCGACTTCACGGTGGACTTCATCC
<i>∆myeO</i> -R	ACAGCCACGAACGCCAGTCGC
myeG-LF	GATCCGCGGCCGCGCGCGATCGTGGTCGCGCGGAAGCAC
myeG-LR	GGTATCCAGGGGATAGATCTCGAGATGGATTCCGTCGACCTTCA
myeG-RF	CTGGGGTTCGGGTAAGATCTCCGAGAAGCGGGCTGAGCGATA
myeG-RR	GACATGATTACGAATTCGATCAGGTCGTGCCAGTGGTTGTTGA
<i>∆myeG</i> -F	ACAGCATCCGCAGCAACGAGTC
<i>∆myeG</i> -R	ACAGGGCGAAGCAGACGATGA
myeD-LF	GATCCGCGGCCGCGCGCGATGAGAAGCGGGGCATCTGGGAG
myeD-LR	GGTATCCAGGGGATAGATCTGTCCGCCGTACAGATGTGTCCG
myeD-RF	CTGGGGTTCGGGTAAGATCTCCGCCCTCTTCGACGACAACCC
myeD-RR	GACATGATTACGAATTCGATACGGGACGGGCTCACGGACCA
<i>∆myeD</i> -F	GATGATGCGGCTGGTCAACAAG
<i>∆myeD</i> -R	GGAGCGGGGTTTGGCGAACT
<i>neo-Bgl</i> II-F	GAAGATCTATCCCCTGGATACCGCTCGCCGCAG
neo-BglII-R	GAAGATCTTACCCGAACCCCAGAGTCCCG
Τ7	TAATACGACTCACTATAGGG
T7ter	GCTAGTTATTGCTCAGCGG

 Table S4. Primers used in this study (restriction sites or termini overlaps used are underlined; protective nucleotides are in italics).

Figure S1. HR-ESI-MS spectra of mycemycins A (a) and mycemycin B (b).

Figure S2. UV spectrum of 5-Cl-anthranilic acid.

Figure S3. Proposed pathway for the biosynthesis of mycemycins A and B in *S.* sp. FXJ1.235.

References

- 1. Macneil, D.J.; Gewain, K.M.; Ruby, C.L.; Dezeny, G.; Gibbons, P.H.; Macneil, T. Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* **1992**, *111*, 61-68.
- 2. Liu, N.; Shang, F.; Xi, L.; Huang, Y. Tetroazolemycins A and B, two new oxazole-thiazole siderophores from deep-sea *Streptomyces olivaceus* FXJ8.012. *Mar Drugs* **2013**, *11*, 1524-33.
- 3. Liu, N.; Song, F.; Shang, F.; Huang, Y. Mycemycins A–E, new dibenzoxazepinones isolated from two different Streptomycetes. *Mar Drugs* **2015**, *13*, 6247-6258.
- Pan, Y.; Liu, G.; Yang, H.; Tian, Y.; Tan, H. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. *Mol. Microbiol.* 2009, 72, 710–723.
- 5. Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A., *Practical Streptomyces Genetics*. John Innes Foundation: Norwich, UK, 2000.