Supporting Information

MycophenolicAcidDerivativeswithImmunosuppressiveActivityfromtheCoral-Derived FungusPenicillium bialowiezense

Qing Zhang, Beiye Yang, Fengli Li, Mengting Liu, Shuang Lin, Jianping Wang, Yongbo Xue, Hucheng Zhu, Weiguang Sun*, Zhengxi Hu*, and Yonghui Zhang*

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji

Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

^{*} Corresponding author Tel.: (86) 27-83692892

E-mail: zhangyh@mails.tjmu.edu.cn (Y.Z.); weiguang_s@hust.edu.cn (W.S.); hzx616@126.com (Z.H.)

Contents of Supporting Information

Figure S1. ¹ H NMR spectrum of compound 1 (Recorded in CD ₃ OD)	5
Figure S2. ¹³ C NMR spectrum of compound 1 (Recorded in CD ₃ OD)	6
Figure S3. DEPT spectrum of compound 1 (Recorded in CD ₃ OD)	7
Figure S4. HSQC spectrum of compound 1 (Recorded in CD ₃ OD)	8
Figure S5. HMBC spectrum of compound 1 (Recorded in CD ₃ OD)	9
Figure S6. ¹ H– ¹ H COSY spectrum of compound 1 (Recorded in CD ₃ OD)	10
Figure S7. HRESIMS spectrum of compound 1	11
Figure S8. IR spectrum of compound 1	12
Figure S9. UV spectrum of compound 1	13
Figure S10. ¹ H NMR spectrum of compound 2 (Recorded in CD ₃ OD)	14
Figure S11. ¹³ C NMR spectrum of compound 2 (Recorded in CD ₃ OD)	15
Figure S12. DEPT spectrum of compound 2 (Recorded in CD ₃ OD)	16
Figure S13. HSQC spectrum of compound 2 (Recorded in CD ₃ OD)	17
Figure S14. HMBC spectrum of compound 2 (Recorded in CD ₃ OD)	18
Figure S15. ¹ H– ¹ H COSY spectrum of compound 2 (Recorded in CD ₃ OD)	19
Figure S16. HRESIMS spectrum of compound 2	20
Figure S17. IR spectrum of compound 2	21
Figure S18. UV spectrum of compound 2	22
Figure S19. ¹ H NMR spectrum of compound 3 (Recorded in CD ₃ OD)	23
Figure S20. ¹³ C NMR spectrum of compound 3 (Recorded in CD ₃ OD)	24
Figure S21. DEPT spectrum of compound 3 (Recorded in CD ₃ OD)	25
Figure S22. HSQC spectrum of compound 3 (Recorded in CD ₃ OD)	26
Figure S23. HMBC spectrum of compound 3 (Recorded in CD ₃ OD)	27
Figure S24. ¹ H– ¹ H COSY spectrum of compound 3 (Recorded in CD ₃ OD)	28
Figure S25. HRESIMS spectrum of compound 3	29
Figure S26. IR spectrum of compound 3	
Figure S27. UV spectrum of compound 3	31
Figure S28. ¹ H NMR spectrum of compound 4 (Recorded in CD ₃ OD)	32
Figure S29. ¹³ C NMR spectrum of compound 4 (Recorded in CD ₃ OD)	33
Figure S30. HSQC spectrum of compound 4 (Recorded in CD ₃ OD)	34
Figure S31. HMBC spectrum of compound 4 (Recorded in CD ₃ OD)	35
Figure S32. ¹ H– ¹ H COSY spectrum of compound 4 (Recorded in CD ₃ OD)	36
Figure S33. HRESIMS spectrum of compound 4	
Figure S34. IR spectrum of compound 4	
Figure S35. UV spectrum of compound 4	39
Figure S36. ¹ H NMR spectrum of compound 5 (Recorded in CD ₃ OD)	40

Figure	S37.	¹³ C NMR spectrum of compound 5 (Recorded in CD ₃ OD)	.41
Figure	S38.	DEPT spectrum of compound 5 (Recorded in CD ₃ OD)	.42
Figure	S39.	HSQC spectrum of compound 5 (Recorded in CD ₃ OD)	.43
Figure	S40.	HMBC spectrum of compound 5 (Recorded in CD ₃ OD)	.44
Figure	S41.	¹ H- ¹ H COSY spectrum of compound 5 (Recorded in CD ₃ OD)	.45
Figure	S42.	HRESIMS spectrum of compound 5	.46
Figure	S43.	IR spectrum of compound 5	47
Figure	S44.	UV spectrum of compound 5	.48
Figure	S45.	¹ H NMR spectrum of compound 6 (Recorded in CD ₃ OD)	.49
Figure	S46.	¹³ C NMR spectrum of compound 6 (Recorded in CD ₃ OD)	.50
Figure	S47.	DEPT spectrum of compound 6 (Recorded in CD ₃ OD)	51
Figure	S48.	HSQC spectrum of compound 6 (Recorded in CD ₃ OD)	.52
Figure	S49.	HMBC spectrum of compound 6 (Recorded in CD ₃ OD)	53
Figure	S50.	¹ H– ¹ H COSY spectrum of compound 6 (Recorded in CD ₃ OD)	.54
Figure	S51.	HRESIMS spectrum of compound 6	55
Figure	S52.	IR spectrum of compound 6	56
Figure	S53.	UV spectrum of compound 6	57
Figure	S54.	¹ H NMR spectrum of compound 7 (Recorded in CD ₃ OD)	.58
Figure	S55.	¹³ C NMR spectrum of compound 7 (Recorded in CD ₃ OD)	.59
Figure	S56.	DEPT spectrum of compound 7 (Recorded in CD ₃ OD)	.60
Figure	S57.	HSQC spectrum of compound 7 (Recorded in CD ₃ OD)	.61
Figure	S58.	HMBC spectrum of compound 7 (Recorded in CD ₃ OD)	.62
Figure	S59.	¹ H- ¹ H COSY spectrum of compound 7 (Recorded in CD ₃ OD)	.63
Figure	S60.	HRESIMS spectrum of compound 7	64
Figure	S61.	IR spectrum of compound 7	65
Figure	S62.	UV spectrum of compound 7	66
Figure	S63.	¹ H NMR spectrum of compound 8 (Recorded in CD ₃ OD)	.67
Figure	S64.	¹³ C NMR spectrum of compound 8 (Recorded in CD ₃ OD)	.68
Figure	S65.	DEPT spectrum of compound 8 (Recorded in CD ₃ OD)	.69
Figure	S66.	HSQC spectrum of compound 8 (Recorded in CD ₃ OD)	.70
Figure	S67.	HMBC spectrum of compound 8 (Recorded in CD3OD)	.71
Figure	S68.	¹ H- ¹ H COSY spectrum of compound 8 (Recorded in CD ₃ OD)	.72
Figure	S69.	HRESIMS spectrum of compound 8	73
Figure	S70.	IR spectrum of compound 8	.74
Figure	S71.	UV spectrum of compound 8	75
Figure	S72.	¹ H NMR spectrum of compound 9 (Recorded in CD ₃ OD)	.76
Figure	S73.	¹³ C NMR spectrum of compound 9 (Recorded in CD ₃ OD)	.77
Figure	S74.	DEPT spectrum of compound 9 (Recorded in CD ₃ OD)	.78

Figure S75. HSQC spectrum of compound 9 (Recorded in CD ₃ OD)	79
Figure S76. HMBC spectrum of compound 9 (Recorded in CD ₃ OD)	80
Figure S77. ¹ H– ¹ H COSY spectrum of compound 9 (Recorded in CD ₃ OD)	81
Figure S78. HRESIMS spectrum of compound 9	82
Figure S79. IR spectrum of compound 9	83
Figure S80. UV spectrum of compound 9	84
Figure S81. ¹ H NMR spectrum of compound 10 (Recorded in CD ₃ OD)	85
Figure S82. ¹³ C NMR spectrum of compound 10 (Recorded in CD ₃ OD)	86
Figure S83. DEPT spectrum of compound 10 (Recorded in CD ₃ OD)	87
Figure S84. HSQC spectrum of compound 10 (Recorded in CD ₃ OD)	88
Figure S85. HMBC spectrum of compound 10 (Recorded in CD ₃ OD)	89
Figure S86. ¹ H– ¹ H COSY spectrum of compound 10 (Recorded in CD ₃ OD)	90
Figure S87. HRESIMS spectrum of compound 10	91
Figure S88. IR spectrum of compound 10	92
Figure S89. UV spectrum of compound 10	93
Structure elucidation of compounds 1, 2, and 8–10	94
The physical and chemical constants of compounds 1, 2, and 8–10	96
¹ H and ¹³ C NMR data for compounds 1, 2, and 8–10	97

S5 of S98

Figure S1. ¹H NMR spectrum of compound 1 (Recorded in CD₃OD)

S6 of S98

Figure S2. ¹³C NMR spectrum of compound 1 (Recorded in CD₃OD)

S7 of S98

Figure S3. DEPT spectrum of compound **1** (Recorded in CD₃OD)

S8 of S98

Figure S4. HSQC spectrum of compound 1 (Recorded in CD₃OD)

Figure S5. HMBC spectrum of compound **1** (Recorded in CD₃OD)

Figure S6. ¹H–¹H COSY spectrum of compound 1 (Recorded in CD₃OD)

S11 of S98

E:\20170419\yby\13.0

Figure S8. IR spectrum of compound 1

S13 of S98

Figure S9. UV spectrum of compound 1

Figure S10. ¹H NMR spectrum of compound 2 (Recorded in CD₃OD)

S15 of S98

Figure S11. ¹³C NMR spectrum of compound **2** (Recorded in CD₃OD)

S16 of S98

Figure S12. DEPT spectrum of compound 2 (Recorded in CD₃OD)

Figure S13. HSQC spectrum of compound 2 (Recorded in CD₃OD)

Figure S14. HMBC spectrum of compound 2 (Recorded in CD₃OD)

Figure S15. ¹H–¹H COSY spectrum of compound 2 (Recorded in CD₃OD)

S20 of S98

Figure S16. HRESIMS spectrum of compound 2

E:\20170912\20170912同济\YBY-2.0

Figure S17. IR spectrum of compound 2

17:21:22 2017-9-12

S22 of S98

Figure S18. UV spectrum of compound 2

S23 of S98

Figure S19. ¹H NMR spectrum of compound 3 (Recorded in CD₃OD)

S24 of S98

Figure S20. ¹³C NMR spectrum of compound **3** (Recorded in CD₃OD)

S25 of S98

Figure S21. DEPT spectrum of compound **3** (Recorded in CD₃OD)

Figure S22. HSQC spectrum of compound 3 (Recorded in CD₃OD)

Figure S23. HMBC spectrum of compound **3** (Recorded in CD₃OD)

Figure S24. ¹H–¹H COSY spectrum of compound **3** (Recorded in CD₃OD)

S29 of S98

S30 of S98

E:\20170419\yby\12.0

Figure S26. IR spectrum of compound 3

S31 of S98

Figure S27. UV spectrum of compound 3

S32 of S98

Figure S28. ¹H NMR spectrum of compound 4 (Recorded in CD₃OD)

S33 of S98

Figure S29. ¹³C NMR spectrum of compound **4** (Recorded in CD₃OD)

S34 of S98

Figure S30. HSQC spectrum of compound **4** (Recorded in CD₃OD)

Figure S31. HMBC spectrum of compound **4** (Recorded in CD₃OD)

Figure S32. ¹H–¹H COSY spectrum of compound 4 (Recorded in CD₃OD)
S37 of S98

S38 of S98

E:\20170419\yby\9.0

Figure S34. IR spectrum of compound 4

S39 of S98

Figure S35. UV spectrum of compound 4

S40 of S98

Figure S36. ¹H NMR spectrum of compound **5** (Recorded in CD₃OD)

S41 of S98

Figure S37. ¹³C NMR spectrum of compound **5** (Recorded in CD₃OD)

S42 of S98

Figure S38. DEPT spectrum of compound 5 (Recorded in CD₃OD)

S43 of S98

Figure S39. HSQC spectrum of compound 5 (Recorded in CD₃OD)

Figure S40. HMBC spectrum of compound 5 (Recorded in CD₃OD)

Figure S41. ¹H–¹H COSY spectrum of compound 5 (Recorded in CD₃OD)

S46 of S98

S47 of S98

E:\20170419\yby\22.0

Figure S43. IR spectrum of compound 5

S48 of S98

Figure S44. UV spectrum of compound 5

S49 of S98

Figure S45. ¹H NMR spectrum of compound **6** (Recorded in CD₃OD)

S50 of S98

Figure S46. ¹³C NMR spectrum of compound **6** (Recorded in CD₃OD)

S51 of S98

Figure S47. DEPT spectrum of compound 6 (Recorded in CD₃OD)

Figure S48. HSQC spectrum of compound 6 (Recorded in CD₃OD)

S53 of S98

Figure S49. HMBC spectrum of compound 6 (Recorded in CD₃OD)

S54 of S98

Figure S50. ¹H–¹H COSY spectrum of compound **6** (Recorded in CD₃OD)

Figure S52. IR spectrum of compound 6

S57 of S98

Figure S53. UV spectrum of compound 6

S58 of S98

Figure S54. ¹H NMR spectrum of compound 7 (Recorded in CD₃OD)

S59 of S98

Figure S55. ¹³C NMR spectrum of compound 7 (Recorded in CD₃OD)

S60 of S98

Figure S56. DEPT spectrum of compound 7 (Recorded in CD₃OD)

Figure S57. HSQC spectrum of compound 7 (Recorded in CD₃OD)

Figure S58. HMBC spectrum of compound 7 (Recorded in CD₃OD)

Figure S59. ¹H–¹H COSY spectrum of compound 7 (Recorded in CD₃OD)

S64 of S98

Figure S61. IR spectrum of compound 7

S66 of S98

Figure S62. UV spectrum of compound 7

S67 of S98

Figure S63. ¹H NMR spectrum of compound 8 (Recorded in CD₃OD)

S68 of S98

Figure S64. ¹³C NMR spectrum of compound **8** (Recorded in CD₃OD)

S69 of S98

Figure S65. DEPT spectrum of compound **8** (Recorded in CD₃OD)

S70 of S98

Figure S66. HSQC spectrum of compound 8 (Recorded in CD₃OD)

Figure S67. HMBC spectrum of compound **8** (Recorded in CD₃OD)

Figure S68. ¹H–¹H COSY spectrum of compound 8 (Recorded in CD₃OD)

E:\20170419\yby\28.0

Figure S70. IR spectrum of compound 8

S75 of S98

Figure S71. UV spectrum of compound 8

S76 of S98

Figure S72. ¹H NMR spectrum of compound 9 (Recorded in CD₃OD)

S77 of S98

Figure S73. ¹³C NMR spectrum of compound **9** (Recorded in CD₃OD)

S78 of S98

Figure S74. DEPT spectrum of compound **9** (Recorded in CD₃OD)

S79 of S98

Figure S75. HSQC spectrum of compound 9 (Recorded in CD₃OD)

Figure S76. HMBC spectrum of compound 9 (Recorded in CD₃OD)

Figure S77. ¹H–¹H COSY spectrum of compound **9** (Recorded in CD₃OD)

S82 of S98

S83 of S98

E:\20170419\yby\46.0

Figure S79. IR spectrum of compound 9

S84 of S98

Figure S80. UV spectrum of compound 9

S85 of S98

Figure S81. ¹H NMR spectrum of compound 10 (Recorded in CD₃OD)

S86 of S98

Figure S82. ¹³C NMR spectrum of compound **10** (Recorded in CD₃OD)

S87 of S98

Figure S83. DEPT spectrum of compound 10 (Recorded in CD₃OD)

S88 of S98

Figure S84. HSQC spectrum of compound 10 (Recorded in CD₃OD)

Figure S85. HMBC spectrum of compound **10** (Recorded in CD₃OD)

Figure S86. ¹H–¹H COSY spectrum of compound **10** (Recorded in CD₃OD)

S92 of S98

E:\20170419\yby\49.0

Figure S88. IR spectrum of compound 10

Figure S89. UV spectrum of compound 10

Structure elucidation of compounds 1, 2, and 8–10

Compound **1** was isolated as a white powder, and its molecular formula was assigned as C₁₈H₂₂O₇, based on the HRESIMS data at *m*/*z* 373.1259 ([M + Na]⁺, calcd for 373.1263) and ¹³C NMR data, requiring eight indices of hydrogen deficiency. Detailed analysis of the ¹H and ¹³C NMR data (Table S1) of **1** and **11** suggested that both compounds possessed the similar structural features, with the only difference that a methyl group at C-8 in **11** was replaced by a –CH₂OCH₃ group in **1**, as supported by the HMBC correlations from H₂-8 to C-3a (δ c 147.2), C-4 (δ c 119.1), C-5 (δ c 164.5), and the methoxyl carbon (δ c 58.7). Moreover, the planar structure was defined by the 2D NMR analysis, including HMBC and ¹H–¹H COSY correlations. Thus, the structure of **1** was identified and named 8-*O*-methyl mycophenolic acid.

Compound **2** was also isolated as a white powder. Its molecular formula C₁₇H₂₀O₇ was determined by the HRESIMS *m/z* 359.1092 [M + Na]⁺ (calcd for C₁₇H₂₀O₇Na, 359.1107). The ¹H and ¹³C NMR data (Table S1) showed high similarity to those of **11**, differing in that the C-3 methylene in **11** was hydroxylated in **2**, as verified by its molecular formula and the chemical shift values of CH-3 (δ H 6.58; δ C 100.2). This conclusion was further confirmed by the HMBC correlations from H-3 to C-1 (δ C 171.6), C-3a (δ C 145.7), C-4 (δ C 120.3), and C-7a (δ C 108.7). Compound **2** was optically inactive and no apparent Cotton effects were observed in its experimental CD spectrum despite the presence of an α , β -unsaturated carbonyl chromophore, suggesting that it was a racemic mixture. Moreover, an attempt to separate the two enantiomers was failed. Thus, the structure of **2** was defined and named 3-hydroxy mycophenolic acid.

Compound 8 was determined to have the molecular formula C₂₂H₂₉NO₇, according to its HRESIMS *m*/*z* 442.1851 [M + Na]⁺ (calcd for C₂₂H₂₉NO₇Na, 442.1842). The ¹H and ¹³C NMR data (Table S2) were similar to those of **11**, except for the presence the value residue which formed an amide bond with C-6', as supported by the COSY correlations from H-2" ($\delta_{\rm H}$ 4.24) to H-4" ($\delta_{\rm H}$ 2.10) and from H-4" to H-5" ($\delta_{\rm H}$ 0.90) and H-6" ($\delta_{\rm H}$ 0.90) and HMBC correlations from H₂-2" to C-6' and C-3" and from H-4" to C-3". The specific rotation of **8** {[α]_D²³ : +5.3 (*c* 0.08, MeOH)} was dextrorotatory, the same to that of the synthetic product *N*-mycophenoyl-L-valine {[α]_D²⁵ : +2.0 (*c* 1, acetone)} [1], suggesting the presence of a *L*-valine in **8**. Thus, the structure of **8** was identified as *N*-mycophenoyl-L-valine.

Compounds **9** and **10** were also identified as the natural mycophenolic acid-amino acid conjugates. And their molecular formulas were determined to be C₂₆H₂₉NO₇ and C₂₀H₂₅NO₇, respectively, based on the HRESIMS analysis as well as ¹³C NMR data. Detailed analysis of the 1D and 2D NMR data (Table S2) of **9** and **10** with those of **8** revealed the obvious differences that **9** had a phenylalanine amide unit and **10** had an alanine amide unit, as supported by the key 2D NMR analysis. Compound **9** was measured with a specific rotation, $[\alpha]_D^{23}$: +2.5 (*c* 0.1, MeOH), which was identical to that of the synthetic product *N*-mycophenoyl-L-phenyloalanine { $[\alpha]_D^{25}$: +2.0 (*c* 1, MeOH)} [1], suggesting the presence of a *L*-phenylalanine amide unit

S95 of S98

in **9**. Similarly, comparing the specific rotation of **10** { $[\alpha]_{D}^{23}$: -6.4 (*c* 0.08, MeOH)} with that of the synthetic product *N*-mycophenoyl-L-alanine { $[\alpha]_{D}^{25}$: -2.0 (*c* 1, acetone)} [1], the similar negative values indicated the presence of a L-alanine amide unit in **10**. Thus, the structures of **9** and **10** were defined and named *N*-mycophenoyl-L-phenyloalanine and *N*-mycophenoyl-L-alanine, respectively.

Figure S90. Key ¹H–¹H COSY (pink lines) and HMBC (blue arrows) correlations of 1–2 and 8–10.

Ref: [1] Iwaszkiewicz-Grzes, D.; Cholewinski, G.; Kot-Wasik, A.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of mycophenolic acid-amino acid derivatives. *Eur. J. Med. Chem.* **2013**, *69*, 863–871.

The physical and chemical constants of compounds 1, 2, and 8–10

8-O-Methyl mycophenolic acid (1): white powder; UV (MeOH) λ_{max} (log ε): 219 (4.57), 253 (3.81), and 305 (3.51) nm; IR (ν_{max}): 3424, 2924, 2853, 1738, 1618, 1453, 1421, 1381, 1273, 1109, 1028, 969, 674 cm⁻¹; HRESIMS *m*/*z* 373.1259 [M + Na]⁺ (calcd for C₁₈H₂₂O₇Na, 373.1263); ¹H and ¹³C NMR data, see Table S1.

3-Hydroxy mycophenolic acid (**2**): white powder; [*α*]²³_D: 0 (*c* 0.15, MeOH); UV (MeOH) λ_{max} (log ε): 218 (4.41), 251 (3.73), and 311 (3.56) nm; IR (ν_{max}): 3436, 2947, 1737, 1626, 1460, 1408, 1276, 1138, 1092, 1024, 595 cm⁻¹; HRESIMS *m*/*z* 359.1092 [M + Na]⁺ (calcd for C₁₇H₂₀O₇Na, 359.1107); ¹H and ¹³C NMR data, see Table S1.

N-Mycophenoyl-L-valine (8): white powder; $[\alpha]_D^{23}$: +5.3 (*c* 0.08, MeOH); UV (MeOH) λ_{max} (log ε): 217 (4.24), 251 (3.49), and 307 (3.16) nm; IR (ν_{max}): 3430, 2924, 2853, 1738, 1633, 1463, 1416, 1384, 1136, 1078, 1030, 973, 673 cm⁻¹; HRESIMS *m*/*z* 442.1851 [M + Na]⁺ (calcd for C₂₂H₂₉NO₇Na, 442.1842); ¹H and ¹³C NMR data, see Table S2.

N-Mycophenoyl-L-phenyloalanine (9): white powder; $[\alpha]_D^{23}$: +2.5 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε): 215 (4.39), 253 (3.64), and 308 (3.17) nm; IR (ν_{max}): 3423, 2924, 2853, 1737, 1633, 1452, 1412, 1330, 1136, 1079, 1031, 971, 702, 583 cm⁻¹; HRESIMS *m*/*z* 490.1875 [M + Na]⁺ (calcd for C₂₆H₂₉NO₇Na, 490.1842); ¹H and ¹³C NMR data, see Table S2.

N-Mycophenoyl-L-alanine (10): white powder, $[\alpha]_D^{23}$: -6.4 (*c* 0.08, MeOH); UV (MeOH) λ_{max} (log ε): 218 (4.29), 253 (3.58), and 307 (3.16) nm; IR (ν_{max}): 3427, 2924, 2853, 1738, 1631, 1458, 1414, 1383, 1136, 1080, 1031, 972 cm⁻¹; HRESIMS *m*/*z* 414.1501 [M + Na]⁺ (calcd for C₂₀H₂₅NO₇Na, 414.1529); ¹H and ¹³C NMR data, see Table S2.

¹H and ¹³C NMR data for compounds 1, 2, and 8–10

Table S1. ¹H and ¹³C NMR data for **1** and **2** in CD₃OD (δ in ppm, *J* in Hz).

No.	1		2		
	δ н a,b	δc ^c	δ_{H} a,b	δc ^c	
1	-	173.6 CO	-	171.6 CO	
3	5.33 (2H, s)	71.4 CH2	6.58 (1H, s)	100.2 CH	
3a	-	147.2 C	-	145.7 C	
4	-	119.1 C	-	120.3 C	
5	-	164.5 C	-	165.2 C	
6	-	123.8 C	-	125.5 C	
7	-	156.6 C	-	154.4 C	
7a	-	108.3 C	-	108.7 C	
8	4.52 (2H, s)	68.1 CH ₂	2.25 (3H, s)	11.1 CH ₃	
3-OMe	-	-	-	-	
5-OMe	3.78 (3H, s)	63.0 CH3	3.76 (3H, s)	61.5 CH3	
8-OMe	3.39 (3H, s)	58.7 CH ₃	-	-	
1'	3.39 (2H, m)	23.5 CH2	3.39 (2H, br d, <i>J</i> = 6.9 Hz)	23.7 CH2	
2'	5.26 (1H, t, <i>J</i> = 7.0 Hz)	124.0 CH	5.25 (1H, t, <i>J</i> = 6.9 Hz)	124.1 CH	
3'	-	135.4 C	-	135.2 C	
4'	2.27 (2H, m)	36.0 CH2	2.26 (2H, m)	35.8 CH2	
5'	2.34 (2H, m)	34.4 CH2	2.35 (2H, m)	33.9 CH2	
6'	-	178.1 C	-	177.3 C	
7'	1.81 (3H, s)	16.3 CH ₃	1.81 (3H, s)	16.3 CH₃	
6'-OMe	-	-		-	

^{*a*} Recorded at 400 MHz; ^{*b*} "m" means overlapped or multiplet with other signals; ^{*c*} Recorded at 100 MHz.

S98 of S98

No.	8		9		10	
	δ_{H} a,b	δc ^c	δ_{H} ^{<i>a,b</i>}	δc ^c	δн а,b	δc ^c
1	-	173.8 C		173.9 C	-	173.8 C
3	5.24 (2H, s)	70.8 CH2	5.10 (2H, s)	70.8 CH2	5.24 (2H, s)	70.8 CH2
3a	-	146.6 C	-	146.6 C	-	146.6 C
4	-	117.8 C	-	117.8 C	-	117.8 C
5	-	164.9 C	-	164.8 C	-	164.8 C
6	-	123.7 C	-	123.7 C	-	123.7 C
7	-	154.7 C	-	154.8 C	-	154.6 C
7a	-	107.7 C	-	107.7 C	-	107.7 C
8	2.14 (3H, s)	11.4 CH ₃	2.07 (3H, s)	11.4 CH ₃	2.15 (3H, s)	11.4 CH ₃
5-OMe	3.76 (3H, s)	61.6 CH3	3.71 (3H, s)	61.6 CH3	3.76 (3H, s)	61.5 CH3
1'	3.38 (2H, br d, J = 7.1 Hz)	23.6 CH ₂	3.32 (2H, br d, <i>J</i> = 6.9 Hz)	23.6 CH ₂	3.39 (2H, br d, <i>J</i> = 7.0 Hz)	23.6 CH ₂
2'	5.27 (1H, t, <i>J</i> = 7.1 Hz)	124.4 CH	5.18 (1H, t, J = 6.9 Hz)	124.4 CH	5.26 (1H, t, <i>J</i> = 7.0 Hz)	124.5 CH
3'	-	135.2 C	-	135.1 C	-	135.1 C
4'	2.28 (2H, m)	36.6 CH ₂	2.13 (2H, m)	36.5 CH2	2.27 (2H, m)	36.5 CH2
5'	2.36 (2H, m)	35.5 CH2	2.21 (2H, m)	35.6 CH ₂	2.30 (2H, m)	35.6 CH ₂
6'	-	175.8 C	-	175.4 C	-	175.3 C
7'	1.83 (3H, s)	16.3 CH3	1.73 (3H, s)	16.2 CH ₃	1.82 (3H, s)	16.3 CH3
2"	4.24 (1H, d, J = 5.5 Hz)	59.4 CH	4.51 (1H, dd, J = 5.4, 8.2 Hz)	55.5 CH	4.26 (1H, q, J = 7.2 Hz)	49.9 CH
3"	-	175.8 C	-	175.4 C	-	176.8 C
4''	2.10 (1H, m)	31.8 CH	2.77 (1H, dd, J = 8.2, 13.7 Hz); 3.03 (1H,	38.8 CH ₂	1.30 (3H, d, J = 7.2 Hz)	18.0 CH ₃
			dd, <i>J</i> = 5.4, 13.7 Hz)			
5"	0.90 (3H, d, J = 6.8 Hz)	19.7 CH ₃	-	138.7 C	-	-
6"	0.90 (3H, d, J = 6.8 Hz)	18.4 CH ₃	7.12 (1H, m)	130.3 C	-	-
7''	-	-	7.19 (1H, m)	129.3 C	-	-
8"	-	-	7.14 (1H, m)	127.6 C	-	-
9"	-	-	7.19 (1H, m)	129.3 C	-	-
10''	-	-	7.12 (1H, m)	130.3 C	-	-

Table S2. ¹ H and ¹³ C NMR data for 8–10 in CD ₃ OD (δ in ppm, <i>J</i> in	Hz).
---	------

^{*a*} Recorded at 400 MHz; ^{*b*} "m" means overlapped or multiplet with other signals; ^{*c*} Recorded at 100 MHz.