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Abstract: The phylum Cnidaria is an ancient branch in the tree of metazoans. Several species
exert a remarkable longevity, suggesting the existence of a developed and consistent defense
mechanism of the innate immunity capable to overcome the potential repeated exposure to microbial
pathogenic agents. Increasing evidence indicates that the innate immune system in Cnidarians is
not only involved in the disruption of harmful microorganisms, but also is crucial in structuring
tissue-associated microbial communities that are essential components of the Cnidarian holobiont
and useful to the animal’s health for several functions, including metabolism, immune defense,
development, and behavior. Sometimes, the shifts in the normal microbiota may be used as
“early” bio-indicators of both environmental changes and/or animal disease. Here the Cnidarians
relationships with microbial communities and the potential biotechnological applications are
summarized and discussed.
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1. Introduction to Cnidarian

Cnidarian are a group made up of more than 9,000 living species, exclusively aquatic, getting
their name from the presence of cnidocysts connected to supporting cells and neurons. These in turn
form a unique chemosensor and mechanoreceptor neuronal cell complex that releases highly-ordered
secretion products upon stimulation. The phylum Cnidaria includes the corals, hydras, jellyfish,
Portuguese men-of-war, sea anemones, sea pens, sea whips, and sea fans. Cnidaria are taxonomically
subdivided into: Anthozoa (Hexacorallia and Octocorallia) with the absence of a medusa stage, and the
Medusozoa, that usually exhibit a medusa stage in their life cycle and includes the classes Cubozoa,
Hydrozoa, Scyphozoa, and Staurozoa [1] (Figure 1).

The Cnidaria are one of the earliest branches in the animal tree, with tissue layers, muscles,
and sense organs. They are diploblastic, have a radial symmetry, do not possess a real brain
having only two cell layers; the epithelial cells are involved in all the innate immune responses.
The endodermal epithelium functions as a chemical barrier using antimicrobial peptides, while the
ectodermal epithelium represents a physicochemical barrier. Furthermore, Cnidaria are present in
the fossil record since the Precambrian, when the other animals similar to the present ones were
absent [1,2].
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Figure 1. The phylogenetic relationships of Medusozoa (Staurozoa, Hydrozoa, Cubozoa, and 
Scyphozoa) and Anthozoa as reported by Boero et al. [1]. Molecular data sustain the separation in 
two class of the Anthozoa, which are common distinguished by tentacles morphology. Octocorallia is 
a group of hard coral species living at a depth of more than 100 m. This is a very slow growing 
species, formed by polyps with eight tentacles which capture floating materials of up to several 
hundred microns and included soft corals. Hexacorallia is a group of several hundred reef-building 
coral species including stony coral and sea anemones. The polyps of this coral have tentacles in 
groups of six, instead of eight. 

Several important issues related to immunity can be inferred from the diversity in cnidarian life 
histories and habitats. In particular, in some cases their life cycles are very long and they may be 
subjected to repeated exposure to pathogenic agents [2]. Consequently, in the absence of specific 
immune cells, cnidarians must have effective mechanisms to defend against microbial pathogens. 
Furthermore, colonial forms, in order to save tissue integrity, rely on their capacity of self/nonself 
discrimination to rapidly recognize approaching allogeneic cells as foreign and to remove them [3]. 
Finally, successful growth for cnidarians is related to their capacity to differentiate between 
beneficial symbionts and pathogenic intruders [4,5], since they are colonized by complex bacterial 
communities and in several cases constitute home to algal symbionts. On account of these 
considerations it is of interest to understand how animal’s longevity have modified the defense to 
innate components of immunity, leading us to consider Cnidaria as good candidates at the crossroad 
of metazoan evolution. Several molecular “omics” studies on the hydrozoans [6,7] sea anemones 
[8,9] and corals [8,10,11] demonstrated that some genes, associated with the immune responses, 
resulted conserved from cnidarians to vertebrates. 

2. Cnidarians Associated Microbial Communities 

Marine microorganisms are present at high density representing a major component in terms of 
the biomass on Earth. By the advent of the powerful tools of the molecular biology, remote sensing, 
and deep sea exploration, amazing discoveries on the abundance and diversity of marine microbial 
life and its function in global ecology have been made. In particular, researches on the relationships 
of microbial components with other organisms have furnished new information on the phenomena 
of food networks, symbiosis and pathogenicity [12,13]. 

Recently, there has been increasing interest in microbes as a relevant portion of the animal 
phenotype, responsible for the fitness as well as the ecological features of their hosts [14,15]. Several 
studies accomplished by genetic and genomic approaches have provided evidence for several 
animal–bacteria interactions in invertebrates and vertebrates revealing that bacteria play a crucial 
role in facilitating animals’ origin and evolution [16,17]. Moreover, these findings clarified that 

Figure 1. The phylogenetic relationships of Medusozoa (Staurozoa, Hydrozoa, Cubozoa, and Scyphozoa)
and Anthozoa as reported by Boero et al. [1]. Molecular data sustain the separation in two class of the
Anthozoa, which are common distinguished by tentacles morphology. Octocorallia is a group of hard
coral species living at a depth of more than 100 m. This is a very slow growing species, formed by
polyps with eight tentacles which capture floating materials of up to several hundred microns and
included soft corals. Hexacorallia is a group of several hundred reef-building coral species including
stony coral and sea anemones. The polyps of this coral have tentacles in groups of six, instead of eight.

Several important issues related to immunity can be inferred from the diversity in cnidarian
life histories and habitats. In particular, in some cases their life cycles are very long and they may
be subjected to repeated exposure to pathogenic agents [2]. Consequently, in the absence of specific
immune cells, cnidarians must have effective mechanisms to defend against microbial pathogens.
Furthermore, colonial forms, in order to save tissue integrity, rely on their capacity of self/nonself
discrimination to rapidly recognize approaching allogeneic cells as foreign and to remove them [3].
Finally, successful growth for cnidarians is related to their capacity to differentiate between beneficial
symbionts and pathogenic intruders [4,5], since they are colonized by complex bacterial communities
and in several cases constitute home to algal symbionts. On account of these considerations it is of
interest to understand how animal’s longevity have modified the defense to innate components of
immunity, leading us to consider Cnidaria as good candidates at the crossroad of metazoan evolution.
Several molecular “omics” studies on the hydrozoans [6,7] sea anemones [8,9] and corals [8,10,11]
demonstrated that some genes, associated with the immune responses, resulted conserved from
cnidarians to vertebrates.

2. Cnidarians Associated Microbial Communities

Marine microorganisms are present at high density representing a major component in terms of
the biomass on Earth. By the advent of the powerful tools of the molecular biology, remote sensing,
and deep sea exploration, amazing discoveries on the abundance and diversity of marine microbial
life and its function in global ecology have been made. In particular, researches on the relationships of
microbial components with other organisms have furnished new information on the phenomena of
food networks, symbiosis and pathogenicity [12,13].

Recently, there has been increasing interest in microbes as a relevant portion of the animal
phenotype, responsible for the fitness as well as the ecological features of their hosts [14,15].
Several studies accomplished by genetic and genomic approaches have provided evidence for several
animal–bacteria interactions in invertebrates and vertebrates revealing that bacteria play a crucial role



Mar. Drugs 2018, 16, 296 3 of 15

in facilitating animals’ origin and evolution [16,17]. Moreover, these findings clarified that animals and
bacteria mutually influence their genomes [18] and that the homeostasis between animals and their
symbionts is maintained by complex mechanisms [19,20]. Considering that microbial communities
colonize all epithelia in animals, each animal with its associated microbes can be can be treated as
a metaorganism (Figure 2) composed of the macroscopic host and the mutual symbiotic association
with bacteria, archaea, fungi, and other microbial and eukaryotic species [21]. In such a community,
membership is often influenced by interactions among species and properties [22].
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Figure 2. Multicellular organisms as “metaorganism” including the macroscopic host and the
synergistic associated bacteria, archaea, fungi, and numerous other microbial and eukaryotic species.
Modified from Bosch T.C. and McFall-Ngai M.J. 2011.

In the case of Cnidarians, associated protists, bacteria, archea, and viruses are essential
components of the Cnidarian holobiont, capable of influencing, for example, the health of corals
and coral reef ecosystems [21,23,24]. The associated bacteria perform several potential roles, such as
nitrogen fixation, antibiotics synthesis [25,26], organic compounds decomposition [27], and space
utilization; avoiding pathogen colonization [28]. Complexity and diversity are peculiar characteristics
of coral-associated bacteria which reveal host species-specificity [29,30] and differ when compared to
the bacterial communities recorded in the surrounding seawater [29,31,32]. Coral-associated microbial
communities are influenced in their composition by several ecological parameters. When changes
in environmental parameters are recorded, e.g., increases of seawater temperature, microbial
species change in their density, making the coral holobiont capable of adapting to the new
condition. Most studies have been carried out conclude that bacteria are directly involved in coral
diseases [23,24,30,33,34]. Microbial communities associated with corals constitute a key factor useful
to understand the coral reef health. Changes in bacterial composition over time may influence coral
health and consequently their sensitivity to disease. Some researchers [35] have shown that when
a small portion of the colony exerts signs of disease, the bacterial community associated with the
colony is affected and modified. As a consequence, these data indicate that the evaluation of the shifts
in the normal microbiota may be employed as “early” bio-indicators of both environmental changes
and coral disease. Stress due to anthropogenic activities as well as environmental impacts may result
in changes in the coral-associated microbial communities reflected as negative effects on the entire
coral [28]. Climate change has been indicated as one of the foremost threats to Indo-Pacific reefs strictly
related to coral bleaching. In some instances, at high temperatures, certain bacterial species increase
their virulence and have been considered involved, for example, in bleaching [36]. It is therefore
possible that the disappearance of key bacterial associates (by biotic or abiotic disturbances) amongst
these communities provide an entry niche for opportunistic species that can further interfere with the
microbial community structure and health status of the coral holobiont [35].
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In particular, studies on the coral Oculina patagonica in the Mediterranean Sea have shown
that the causative agent of the bleaching disease (resulting in the expulsion of the endosymbiotic
zooxanthellae) is Vibrio shiloi [37]. In association with the onset of bleaching this bacterium exerts some
virulence factors when high temperature values are recorded [38,39]. Moreover, Vibrio coralliilyticus
was responsible for the bleaching of the coral Pocillopora damicornis on the coral reefs in the Indian
Ocean and Red Sea [40]. In some coral diseases, such as black band, white pox, and white plague,
bacteria are involved [33,36,41] and more than twenty coral diseases have been described (Table 1:
from Rosenberg et al. [42]).

These diseases and their etiological mechanisms have been widely investigated over several
years [43]. However, Reshef et al. [44] indicated that O. patagonica has become resistant against
the infection supported by V. shiloi; thus, this bacterial species can no longer be isolated on the
corals, and this Vibrio species, previously infecting corals is unable to produce disease on the
existing corals. In order to explicate these results Reshef et al. [44] proposed the “Coral Probiotic
Hypothesis”. The term ‘probiotic’ means ‘for life’ and is referred to live microorganisms capable of
determining a benefit in terms of health on their host [45,46]. Thus, these invertebrates seem not
only to tolerate, but also to need the colonization by beneficial microorganisms for several functions
including metabolism, immune defense, development, and behavior [47–49].

Table 1. Coral microbial pathogens.

Disease Pathogen Coral Host

Black band Roseofilum reptotaenium, Desulfovibrio, Beggiatoa sp. Several
White band I Gram (-) bacterium Several

White band II * Vibrio carchariae Acropora sp.
Aspergillosis * Aspergillus sidowii Gorgonians (sea fans)

White pox * Serratia marcescens Acropora palmata
Bleaching * Vibrio shiloi Oculina patagonica

Bleaching and lysis * Vibrio corallilyticus Pocillopora damicornis
Yellow blotch Vibrio alginolyticus Monastraea sp.

Red band Oscillatoria sp. and other cyanobacteria Several
Dark spots I Vibrio sp. ?. Several
Dark bands ? Several

White plague (Eilat) Thalassomonas loyana Several
White plague Aurantimonas coralicida Several

White plague I Gram (-) bacterium Several
Porites ulcerative white spots Vibrio sp. Several

* Koch′s postulates fulfilled.

3. Tissue-Associated Microbial Communities

As suggested by the increasing evidence the innate immune system in Cnidarians is not only
involved in the disruption of harmful microorganisms, but also plays a crucial role in maintaining
those tissue-associated microbial communities, useful to the host’s health [50,51]. This is also the case
with Hydra. Bacteria are indeed an important component of the Hydra holobiont in which 36 bacterial
phylotypes were identified belonging to three different bacterial divisions and are dominated by the
phyla Proteobacteria and Bacteroidetes [52]. The health of the whole animal can be compromised by
disturbances or shifts in any of these partners [53]. In laboratory studies Hydra have been cultivated
under standard conditions (constant temperature and identical food), and surprisingly, it was observed
that in different Hydra species, maintained in the laboratory for more than 20 years, a complex
microbial community colonized the epithelium which greatly differed in individuals from different
species, but was cultured under identical conditions. On account of these evidences it was concluded
that the microbiota in Hydra is specific for each species [12].

When closely related Hydra species were examined, the associated microbial community that
resulted was similar. This, for instance, was the case of H. vulgaris and H. magnipapillata. Moreover,
the early branching linage of Hydra species H. oligactis, examined so far [54], results associated with the
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most distinct microbial community in comparison with the other Hydra species. These observations
lead to conclude that on and within the Hydra epithelium distinct selective pressures are imposed [50]:
the colonization of a certain epithelium by bacteria is related to several ecological factors, such as host
immune responses, the availability of nutrients, and the space competition between bacterial strains.
Thus, it can be suggested that the colonizing microbial composition is shaped by both host factors
such as components of Hydra’s innate immune system and frequency-dependent bacteria–bacteria
interactions [51].

In contrast to microbiomes of tropical corals, characterized by high diversity, Mediterranean
octocorals harbor structured bacterial assemblages in which only a few species prevail for >90% [55,56].
This makes them ideal model organisms to investigate cnidarian microbe interactions. In the
Mediterranean Sea, gorgonians contribute significantly to the structural complexity, biomass,
and biodiversity of these ecosystems constituting the most significant habitat-forming species of benthic
communities [19]. The success of gorgonians is in part due to the specific symbioses with bacteria
which are relatively stable across spatial scales. Bacteria belonging to the genus Endozoicomonas
are the most prevalent [57,58] in certain species from the Gorgoniidae family. Endozoicomonas have
been recorded in several marine invertebrates and have been recognized as crucial to the health of
corals [59], with a loss of these microorganisms producing a conspicuous negative impact on the
holobiont functioning. Spirochaetes represent one of the (co-)dominant microbial associates [60],
presumably involved in nitrogen and carbon fixation in tropical octocorals and deep-sea gorgonians,
particularly the precious red coral Corallium rubrum [61]. The spatial stability of these bacteria–host
associations, which may exist in in the same habitat and location, lead to hypothesize strong selection
mechanisms used by the holobiont of Mediterranean gorgonians.

Therefore, exploring the structure and functioning of the microbiome is a major challenge of
current research in Cnidarians, also taking into account that their tissue and mucus support a diverse
microbial community [24,34,62].

4. Mucus-Associated Microbial Communities

Mucus adhesion and colonization by bacteria represents one of the best characterized symbiosis in
the marine environment. Specifically, mucus released by certain marine invertebrates furnishes
a habitat for several bacteria [63,64]. During mucus production, marine organisms consume
a significant portion of energy. For instance, in corals mucus release consumes up to 50% of the
assimilated energy [65]. Some marine invertebrates are coated by a layer of mucus to prevent
bacteria and debris from accumulating on the body surface [66]. This matrix is involved in
a number of defense mechanisms [67–72], to cope with the rich mixture of microorganisms in the
surrounding water. However, for many species, including corals, as reported by Coffroth [73],
the mucus also represents a home site [63,64] and may function as a potential food source [74].
Mucus contains primarily polysaccharides and proteins with C:N ratios of 1:5, on account of this
composition it was suggested that this matrix, released by some marine invertebrates, is readily
degradable by microbes, thus supporting microbial growth. As regards Cnidarian, mucus contains
many microorganisms [24,75,76], and in particular, in the coral mucus, the mean concentration of
colony-forming bacteria is about 0.2% of the total counts determined microscopically by using SYBR
Gold Staining and ranges between 105 and 106 mL−1 [77,78]. Furthermore, in several other corals,
including the Caribbean coral Monastrea franks and Oculina patagonica [28,79], the mucus layer was
shown to contain a high bacterial density (3 × 108 mL−1). Species belonging to the three primary
domains Archaea, Eubacteria, and Eukarya have been recorded in coral mucus [80]. In H. vulgaris
mucus V. splendidus was the most-abundant species attaining 68% and 50% in the winter and summer,
respectively [78]. Moreover, vibrios prevailed in the culturable bacterial isolates from the mucus
of Acropora palmata. Most of the studies have conducted on the microbiota associated with corals
and other marine invertebrates’ mucus [76,81], by contrast, zoanthids have received little attention
in that respect, although only few studies by Chimetto et al. [75,82,83] investigated the diversity of
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bacteria on zoanthids and found 16S rDNA sequences belonging to the Vibrio genus. As already
proposed by Calow [74], differences in biochemical composition may render the mucus more or less
susceptible to microbial attack. The mucus rich in proteins released by some invertebrates is rapidly
used by microbes possessing exoenzymes potentially capable to degrade mucoid polymers [73,84].
On account of this activity, microbial communities harbored in such mucus may use mucus-derived,
dissolved, and particulate matter transforming them into living biomass [84]. As a consequence,
the mucus can represent the foundation from which microbial organisms are then preyed upon by other
organisms [85–88]. In contrast to this, some mucus bacteria are involved in the defense of their hosts by
the production of antibacterial compounds. In turn, mucus bacteria capable of producing antibacterial
molecules have an advantage over other microorganisms, assisting in competition over space and
nutrition. Several bacteria with antimicrobial activity against presumed coral pathogens have been
isolated from corals [26,89,90], and the antimicrobial activity of coral mucus appears decreased in corals
displaying signs of coral bleaching or disease [26]. These observations suggest intriguing relationships
between different coral-associated bacteria and between bacterial associates and the coral host. It is
currently unknown whether bacterial communities are selected by extrinsically mediated factors or
whether the holobiont itself selects for beneficial associates [90]. Analogous studies of sponges hint at
the latter hypothesis as possible, where it is suggested that the species Mycale adhaerens may selectively
sequester bacterial epibionts with antimicrobial activities [91]. One major group of coral-associated
bacteria exerting antibacterial activity is Pseudoalteromonas sp. Several Pseudoalteromonas produce
antibacterial compounds, toxins, bacteriolytic substances, and enzymes, all of which may aid the
bacterial cells in their competition for space, nutrients, and in the security from predation [92]. It is
also plausible that bacteria such as Pseudoalteromonas sp. can affect the microbial community by
releasing active compounds into the coral mucus. This is in accordance with the “Coral Probiotic
Hypothesis” [44], whereby active Pseudoalteromonas sp. can be considered as “probiotic” to corals,
taking part in coral holobiont defense against bacteria.

Extraordinary recent progress in sequencing technologies and the ability to culture simple but
genetically accessible model organisms for some time under germ-free conditions are revealing details
of host–microbe interactions that highlight the value of an evolutionary perspective thus undermining
prior concepts. However, in spite of these insights, the factors involved in microbial colonization
of mucosal surfaces are still unknown. Moreover, the accumulated data are not still coherently
integrated in order to obtain a truly mechanistic understanding of host–microbe interactions on host
mucosal surfaces.

5. Innate Immune System as a Regulator in Maintaining Homeostasis between Animals and
Their Resident Microbiota?

In a recent review, Bosch [50] has reviewed the pre-existing idea that immune systems evolve
exclusively to control invading pathogens furnishing evidence that host-specific microbiota is
established by the crucial role played by major factors of the immunological system. The involvement of
components of the innate immunity systems, such as antimicrobial peptides, in shaping the microbiota
is now undeniable. His thesis, based mainly on Hydra examples, is that the need to control of
the resident beneficial microbes induced the evolution of the immune systems. He suggested that
it is reasonable to assume that the inferences drawn apply to both invertebrates and vertebrates.
Stem cell proliferation, microbiota composition, and innate immunity seem to have a mutual direct
link. Particularly, he highlighted that recent discoveries in Hydra show that homeostasis between
animals and the resident microbiota is assured by the action of innate immune system factors and
transcriptional regulators of stem cells. He stated that, in early-branching metazoans, the evolution of
the innate immune system and its host-specific components is due to the need to control the resident
beneficial microbes, rather than the action of invasive pathogens. In this framework, disease onset
is considered as the result of a complex network of interactions among different associated partners
capable of affecting the fitness of the entire metaorganism [93].
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This is also the case of microbial hypothesis of coral bleaching. According to this hypothesis,
several physical and biological factors, including variation in sea surface temperatures [94,95],
UV irradiation [96], low salinity and pollution [97], and bacterial infection [43] are responsible
for bleaching, which is a symptom of stress. These different kinds of stress act on both the coral
microorganisms and the coral host, determining a change in the microbial community that in some
cases is reflected directly or indirectly on bleaching. This also [98] emerges from research conducted
over the last decade, which has supported that the coral host, its endosymbiotic zooxanthellae,
and a large number and variety of accompanying microorganisms form a complex and dynamic
symbiosis represented by the coral holobiont. In a healthy coral, the growth, reproduction, and disease
resistance of the holobiont is due to the metabolic activities of each organism interacting with the
other ones. Thus, the coral host, by capturing and feeding on prey, through their digestion, provides
nutrients for its associated microorganisms. The associated microorganisms may be also used directly
by the coral [99] with the production of carbon dioxide and water as byproducts of cellular respiration.
The zooxanthellae, in turn, employing the carbon dioxide and water, accomplishes photosynthesis.
In particular, Symbiodinium reside in host tissues at millions of cells per square centimeter and provide
the energy required by reef building corals to grow, calcify, and reproduce. The zooxanthellae cells
produce, as products of photosynthesis, sugars, lipids (fats), and oxygen; major components needed
for animal and bacterial respiration. Thus, the driving force behind the growth and productivity
of coral reefs is represented by the tight recycling of products between the polyp cells, bacteria,
and the zooxanthellae. Under stress, the components of the symbiosis separate and the associated
endosymbionts may be digested [100]. In this framework, the roles of bacteria in contributing
to the holobiont health is a matter of current interest and debate. It has been shown that coral
bacteria can fix nitrogen, degrade complex polysaccharides, and produce antibiotics useful in helping
to prevent infection by pathogens. Rosenberg et al. [98] suggested that coral bleaching happens
when the equilibrium between the different components of the coral holobiont is destroyed and
results in a decrease in the endosymbiotic zooxanthellae. Bleaching is now considered a host innate
internal defense response to compromised symbionts and, in particular, Cnidarian bleaching is due to
a breakdown in the symbiotic relationship between host cnidarians and photosynthetic dinoflagellates
belonging to the genus Symbiodinium. The symbiosis between anthozoan polyps and zooxanthellae are
considered nonharmful infections, where the unicellular organisms are able to control the host defense
response until the environmental conditions are optimal for survival of autotrophic and heterotrophic
organisms. The oxygen reactive species (ROS) and the reactive nitrogen species nitric oxide (NO)
are involved in host–pathogen interactions and bleaching events. The stress triggered by alterations
of physical factors, pathogenic infections, or injuries indeed involves the increase of ROS and NO
by the symbionts. These molecules activate the cascade mechanisms in internal defense systems
and eliminate the zooxanthellae. The loss of the symbionts unable to perform the photosynthesis
process occurs through traditional mechanisms of the innate immune system including exocytosis,
host cell detachment, and apoptosis [101]. Although bleaching is induced by a variety of environmental
stressors like global climate change and high solar radiation, the temperature increase in the superficial
seawater and anthropogenic stress also caused an enhancement in diseases of species of the genus
Anthozoa responsible for the bleaching or tissue death [102]. However, most works have concentrated
on the innate immune repertoire of anthozoans, the immune effector mechanisms mediated corals
adaptation to such events remain almost unknown.

6. Antimicrobial Peptides, Multifunctionality, and Biotechnological Implications

Humoral response is realized by the synthesis and release of an array of chemical compounds,
including melanin, reactive oxygen species (ROS), antimicrobial peptides (AMP), and secondary
metabolites whose most important purpose is to destroy microbes by: (1) opsonizing and
agglutinating invaders; (2) permeabilizing the invader’s cell membrane, causing lysis; or (3) disruption
of their metabolism [103]. Antimicrobial agents do not possess functional specificity since
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exert a broad spectrum of activity against Gram-positive and Gram-negative bacteria, fungi,
viruses, and protists [103,104]. However, all antibacterial agents are not equally effective toward
bacteria [105]. The size of the antimicrobials may impact structural microbial components
differently. For instance, small peptides (<23 amino acids long) mainly destroy the cell membrane
integrity of the invaders, while larger peptides pose lytic properties, or may be proteins with
specific domains that sequester essential nutrients from microbes [106]. Several studies have been
attained to evidence the presence of antimicrobial compounds in cnidarians. The antimicrobial
activity of the eight species of gorgonian corals Plexaura homomalla, Pseudoplexaura flagellosa,
Plexaurella fusifera, Eunicea clavigera, Eunicea tourneforti, Eunicea laciniata, Eunicea calyculata (Plexauridae),
and Pseudopterogorgia americana were assayed against five species of bacteria including marine bacteria
as well as human pathogenic species (Vibrio harveyi, Pseudomonas aeruginosa, Serratia marcescens,
Staphylococcus aureus, Bacillus megaterium, and Escherichia coli). Antimicrobial activity was evaluated
on polar and nonpolar extracts and was most apparent in the nonpolar fractions. In general,
marine bacteria were not as sensitive to the extracts as the nonmarine species [107]. Subsequently,
from the West Indian gorgonian coral Pseudopterogorgia elisabethae, by using NMR spectroscopy,
the structure of two compounds capable to inhibit the growth of Mycobacterium tuberculosis
H37Rv t. was determined [108]. The activity was ascribed to two diterpenoid alkaloids, namely
pseudopteroxazole, producing a 97% growth inhibition, and seco-pseudopteroxazole, responsible
for a 66% inhibition at 12.5 µg/mL. From the same octocoral P. elisabethae of San Andrés and
Providencia Islands (Southwest Caribbean Sea) [109] the cytotoxic and antimicrobial activity of
pseudopterosins and secopseudopterosins, active against Staphylococcus aureus and Enterococcus faecalis
but inactive against Pseudomonas aeruginosa and Candida albicans, was investigated. Shapo et al. [110]
reported that crude extracts from the gorgonian coral Leptogorgia virgulata, likely containing homarine,
showed inhibitory activity against Escherichia coli and Vibrio harveyi as well as other bacteria.
Uncharacterized antimicrobial agents have been also documented in over a dozen members of
the Plexauridae, Gorgonidae, and Ellisellidae families [107,111,112]. Chen et al. [113] reported that
fifteen guaiazulene-based terpenoids (anthogorgienes A–O) and eight analogues, isolated from the
lipophilic extract of Anthogorgia sp., were effective against S. aureus and Streptococcus pneumoniae
and three fungi (Aspergillus fumigatus, Aspergillus flavus, and Fusarium oxysporum). In the sea-whip
Dichotella gemmacea Li et al. [113] isolated six briarane diterpenoids and two analogs showing
a weak antimicrobial action against the growth of E. coli. Scleractinian corals also possess secondary
compounds with antimicrobial properties, even though they have been less well investigated than
those derived from the gorgonians [114]. Gochfeld and Aeby [114] reported that crude extracts
from three Hawaiian corals i.e., Montipora capitata, Porites lobata, and Pocillopora meandrina, exerted
antibacterial activity against coral pathogens such as Serratia marcescens, Vibrio coralliityticus, and V. shilo.
However, the antibacterial activity of extracts varied among species and as a function of the
state of health of the host. The antimicrobial properties of extracts from Red Sea soft corals
(alcyonaceans) Litophyton arboreum, Rythisma fulvum, Heteroxenia fuscescens, Sarcophyton glaucum,
Dendronephthya hemprichi, and Xenia macrospiculata, were compared with those of stony (scleractinian)
corals, Acropora variabilis, Fungia scutaria, Fungia granulosa, Turbinaria sp., Stylophora pistillata,
and Favia favus and the majority of soft corals (83%) resulted to affect remarkably the growth of
the marine bacteria Arthrobacter sp. and scarcely the growth of Vibrio sp., while stony corals showed
very little or no activity [115].

In recent studies, thermostable proteases and antimicrobial peptides have been characterized
from the body and tentacles of the sea anemones Actinia equina and Anemonia sulcata with application
for biocleaning and as antifungals [115]. In particular, bioactive molecules (BMs) isolated from the
sea anemone Actinia equina, were proven to hydrolyse aged/altered protein layers or coatings as well
as to control bacteria/fungi growth [116]. On account of these features these molecules represent
an innovative tool in conservative restoration procedures. Particularly, the BMs molecules with
proteolytic activity were tested in order to remove protein layers or to control microbial colonizations.
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The removal of undesired layers under “room temperature” (19–25 ◦C) conditions, without heating
the enzyme solution or the artwork surface on which it was applied was tested. Agreeable results were
obtained after application of gelled enzymatic solution, in removing coherent protein layer both from
the surface of polychrome wood or wax sculpture. In both cases the complete removal of the protein
layer, without producing whitening phenomena was observed. The best advantage of these molecules
is their temperature of action (<30 ◦C) which is different from that of the commercial proteases active
at higher temperature (37 ◦C). Moreover, the antimicrobial activity of BMs was assayed to inhibit the
growth of some bacteria such as Enterobacter spp. and Micrococcus luteus, and fungi as Aspergillus niger
and Penicillium chrysogenum. Thus, the employment of these molecules for biocleaning represents an
innovative procedure that minimizes the exposure to harmful solvents and chemicals compounds for
both the workers and the environment [116]. Furthermore, these molecules are totally safe for works of
art, restores, and the environment, requiring a short time of application. Consequently, we hypothesize
that these bioactive molecules represent a valid alternative to the traditional procedures in sustainable
restoration projects [116].

Moreover, recently it was established that anthozoans could also benefit of the multifunctionality
of some of their bioactive molecules [117]. Actinia viridis and Actinia equina possess a toxin with
bifunctional characteristics: Neurotoxin ATX II, isolated from A. viridis, is a sodium channel type 1
toxin constituted of 47aa, characterized by the presence of three disulfide bridges capable of binding
to the sodium voltage ionic channel, delaying the inactivation phase during the transmission of
action potential and exerting antimicrobial activity towards Micrococcus lysodeikticus. ATX II can be
considered as a neurotoxin with an additional antimicrobial peptide property. Thus, anemones could
adopt the multifunctionality of toxins as an evolutionary strategy in order to amplify their predation
capacity. Moreover, the antimicrobial molecules would assure the polyps to survive avoiding bacterial
infections [117]. Actinia equina lives in the temperate coastal area and this intertidal species is a suitable
and exemplary model for the study of bioactive molecules and their evolution. Hemolytic molecules
such as equinotoxin [118,119] and proteins for potassium and sodium voltage dependent channels [120]
have been characterized. The mucus of this sea anemone contains a complex mixture of proteins and
polysaccharides with differential biological activity implicated in the immune defense. This matrix
plays a crucial role in a series of biological processes including structural support, locomotion,
food particle trapping, and defense against multiple environmental stresses, predators, parasites,
and pathogens. In this mucosal matrix hemolytic activity versus rabbit erythrocytes, cytotoxic activity
against human erythromyeloblastoid leukemia T cell line (K562) and lysozyme-like activity was
observed [71]. Lysozyme is involved in internal innate defense and acts as an antimicrobial enzyme
system and in particular as a glycoside hydrolase, catalyzing the hydrolysis of 1,4-beta-linkages
between N-acetylmuramic acid and N-acetyl-D-glucosamine in peptoglycans component of bacterial
cell wall. As a consequence, the integrity of bacterial pathogens through the lysis of their cell wall
results compromised. The presence in A. equina mucus of an antibacterial activity in association with
a hemolytic and cytotoxic activity indicates its participation in the defense system against pathogenic
invaders suggesting that the humoral effectors of the internal defense system can be released in mucus
layer. The activity against Micrococcus lysodeikticus as well as the satisfactory results obtained at 37 ◦C
lead to consider A. equina mucus an interesting prospect for future biotechnological applications of
pharmaceutical and marine technology interest. With regards to pharmaceuticals, the increasing
development of bacteria resistant to traditional antibiotics has reached alarming levels, and thus there
is the need to develop new antimicrobial agents. In this framework, lysozyme was recently selected
as a model protein to develop more potent bactericidal agents thus introducing, a new conceptual
employment of lysozyme [69]. Lastly, the antibacterial proteins of A. equina mucus could be used to
deter the settlement of bacteria representing the primary colonizers in the development of marine
biofouling thus constituting an alternative natural antisettlement agents compared to the banned
paints and organic biocides [69]. In this framework, it is intriguing that lysozyme-like proteins have
also already been evidenced in other cnidarians [121,122].
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7. Conclusions

Comparative immunobiology studies have led to the abandonment of the idea that invertebrates
do not possess immune capacity. Cnidarians possess components of the main routes of immunity of
invertebrates. The receptors and pathways already identified indicate that these basal invertebrates are
far from being “simple” in the range of methods they have to deal with potential germs and pathogens.

Cnidarian-associated microbial communities are probably a result of a functional cross-talking
because cnidarian need to control the resident beneficial microbes, not as a response to invasive
pathogens, but because, just as black can exist only if white is visible, so too the use of the same thrifty
ways for distinguishing pathogens could be considered the possible origin of the first immunity arms.

In Cnidarians, the crucial activities in structuring tissue-associated microbial communities,
useful to the animal’s health, are related to the increasing evidence of the existing innate immune
responses involved in the disruption of harmful microorganisms. The present review represents
a contribution to reduce the gaps in the current knowledge, regarding the complex relationships
established between cnidarians and microorganisms, as well as to provide an overview of the potential
biotechnological applications of the defensive compounds present in these invertebrates.
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