Supplementary Materials

Diketopiperazine and Diphenylether Derivatives from Marine Algae-Derived *Aspergillus versicolor* OUCMDZ-2738 by Epigenetic Activation

Wen Liu ^{1,2,+}, Liping Wang ^{2,+}, Bin Wang ¹, Yanchao Xu ², Guoliang Zhu ^{3,4}, Mengmeng Lan ³, Weiming Zhu ^{2,3,5,*} and Kunlai Sun ^{1,*}

- ¹ Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; yxlliuwen@outlook.com (W.L.); wangbin4159@hotmail.com (B.W.)
- ² State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; lipingw2006@163.com (L.W.); m18586818694@163.com (Y.X.)
- ³ Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; zhuguoliang@ecust.edu.cn (G.Z.); lanmengmeng90@163.com (M.L.)

⁴ State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China

- ⁵ Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- + These authors contributed equally to this paper.
- * Correspondence: weimingzhu@ouc.edu.cn (W.Z.); sunqinlai@126.com (K.S.); Tel./Fax: +86-532-8203-1268 (W.Z.); +86-580-255-4781 (K.S.)

List of Supplementary Materials

Figure S1. HRESIMS spectrum of compound 1	S3
Figure S2. ¹ H NMR spectrum of compound 1 in DMSO- <i>d</i> ₆	S3
Figure S3. ¹³ C NMR spectrum of compound 1 in DMSO- <i>d</i> ₆	S4
Figure S4. DEPT spectrum of compound 1 in DMSO- <i>d</i> ₆	S4
Figure S5. HSQC spectrum of compound 1 in DMSO- <i>d</i> ₆	S5
Figure S6. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 1 in DMSO- d_{6}	S5
Figure S7. HMBC spectrum of compound 1 in DMSO- <i>d</i> ₆	S6
Figure S8. HRESIMS spectrum of compound 2	S6
Figure S9. ¹ H NMR spectrum of compound 2 in methanol- d_4	S7
Figure S10. ¹³ C NMR spectrum of compound 2 in methanol- d_4	S7
Figure S11. DEPT spectrum of compound 2 in methanol- <i>d</i> ₄	S8
Figure S12. HSQC spectrum of compound 2 in methanol- <i>d</i> ₄	
Figure S13. ¹ H– ¹ H COSY spectrum of compound 2 in methanol- d_4	S9
Figure S14. HMBC spectrum of compound 2 in methanol- d_4	S9
Figure S15. The chiral HPLC analysis of compounds 2–5	S10
Figure S16. The chiral HPLC analysis of compounds 7–9	S12
Figure S17. DFT-optimized structures for low-energy conformers of compounds 2–5	S12
Figure S18. Phylogenetic tree mapping for the Aspergillus versicolor OUCMDZ-2738	S14
Figure S19. ¹ H NMR spectrum of compound 12 in DMSO- <i>d</i> ₆	S14
Figure S20. ¹³ C NMR spectrum of compound 12 in DMSO- <i>d</i> ₆	S15
Figure S21. HSQC spectrum of compound 12 in DMSO- <i>d</i> ₆	S15
Figure S22. HMBC spectrum of compound 12 in DMSO- <i>d</i> ₆	S16
Figure S23. ROESY spectrum of compound 12 in DMSO- <i>d</i> ₆	S16
Figure S24. HRESIMS spectrum of compound 12a	S17
Figure S25. ¹ H NMR spectrum of compound 12a in DMSO- <i>d</i> ₆	S17
Figure S26. ¹³ C NMR spectrum of compound 12a in DMSO-d ₆	S18
Figure S27. HSQC spectrum of compound 12a in DMSO-d ₆	S18
Figure S28. ROESY spectrum of compound 12a in DMSO-d ₆	S19
Figure S29. HMBC spectrum of compound 12a in DMSO-d ₆	S19
Figure S30. The UPLC-MS Analysis of Fermented Extracts	S20
Figure S31. Retention times of compounds 1–12 in the same elution gradient with origin extract fingerprint.	nal S20
The physical properties of the known compounds (3–11):	S22

Figure S1. HRESIMS spectrum of compound 1.

Figure S2. ¹H NMR spectrum of compound 1 in DMSO-*d*₆.

Figure S4. DEPT spectrum of compound 1 in DMSO-*d*₆.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S5. HSQC spectrum of compound 1 in DMSO- d_6 .

Figure S6. $^{1}H-^{1}H$ COSY spectrum of compound 1 in DMSO- d_{6} .

Figure S7. HMBC spectrum of compound 1 in DMSO-*d*₆.

Figure S8. HRESIMS spectrum of compound 2.

Figure S9. ¹H NMR spectrum of compound 2 in methanol-*d*₄.

Figure S11. DEPT spectrum of compound 2 in methanol-*d*₄.

Figure S12. HSQC spectrum of compound 2 in methanol-d4.

Figure S13. ¹H–¹H COSY spectrum of compound **2** in methanol- $d_{4.}$

Figure S14. HMBC spectrum of compound 2 in methanol- d_4 .

Figure S15. The chiral HPLC analysis of compounds 2–5.

Figure S15A. The chiral HPLC analysis of 2.

Figure S15B. The chiral HPLC analysis of 3.

Before separation		4					
YMC-Pack ODS-4 (40:60 MeOH/H2O,	A column 1 mL/min)		Â				
			<u>A</u>				
	5 6 7	8910 8910 保留时间 (min)	11 12	13 14	15	16 17	18
After separation (+)-4	(-)-4						
Peak area: 14949306	Peak area: 16623724		Cellu (80:20 M	llose-2, cł IeOH /H2	niral co O, 0.9 1	lumn nL/mi	n)
	0						
		8 9 10 保留时间(min)	11 12	13 14	15	16 17	18

Figure S15C. The chiral HPLC analysis of 4.

Figure S15D. The chiral HPLC analysis of 5.

Figure S16. The chiral HPLC analysis of compounds 7–9.

Figure S16A. The chiral HPLC analysis of 7.

Figure S16B. The chiral HPLC analysis of 8

Figure S16C. The chiral HPLC analysis of 9.

Figure S17. DFT-optimized structures for low-energy conformers of compounds 2–5.

Figure S17A. DFT-optimized structures for low-energy conformers of compound **2** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S17B. DFT-optimized structures for low-energy conformers of compound **3** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S17C. DFT-optimized structures for low-energy conformers of compound **4** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S17D. DFT-optimized structures for low-energy conformers of compound **5** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S18. Phylogenetic tree mapping for the Aspergillus versicolor OUCMDZ-2738.

Figure S19. ¹H NMR spectrum of compound 12 in DMSO-*d*₆.

Figure S20. ¹³C NMR spectrum of compound 12 in DMSO- d_6 .

Figure S21. HSQC spectrum of compound 12 in DMSO-*d*₆.

Figure S22. HMBC spectrum of compound 12 in DMSO-*d*₆.

Figure S23. ROESY spectrum of compound 12 in DMSO-*d*₆.

Figure S24. HRESIMS spectrum of compound 12a.

Figure S25. ¹H NMR spectrum of compound 12a in DMSO-*d*₆.

Figure S26. ¹³C NMR spectrum of compound 12a in DMSO-*d*₆.

Figure S27. HSQC spectrum of compound 12a in DMSO-d₆.

Figure S28. ROESY spectrum of compound 12a in DMSO-*d*₆.

Figure S29. HMBC spectrum of compound 12a in DMSO-d₆.

Figure S30. The UPLC-MS Analysis of Fermented Extracts.

Figure S31. Retention times of compounds 1–12 in the same elution gradient with original extract fingerprint.

S21

Conditions:

Column: YMC-Pack ODS-A column (S-5 μ m, 12 nm, 250 × 4.6 mm, Shenzhen Chemist Technology Co. Ltd., Shenzhen, China). Gradient: 5–100% MeOH in 0–15 min; 100% MeOH in 15–20 min; 0–95% H₂O in 20–25 min. Column temperature: 30 °C. Flow rate: 1 mL/min. Detector: 254 nm Injection volume: 5 μ L

The physical properties of the known compounds (3–11):

Compound 3: ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.09 (s, 1H,18-NH), 9.45 (s, 1H, 2-NH), 7.42 (d, *J* = 7.9 Hz, 1H, H-16), 7.19 (d, *J* = 7.9 Hz, 1H, H-13), 7.09 (t, *J* = 7.9 Hz, 1H, H-15), 7.03 (t, *J* = 7.9 Hz, 1H, H-10), 7.00 (d, *J* = 7.3 Hz, 1H, H-14), 6.08 (dd, *J* = 17.1, 10.8 Hz, 1H, H-21), 5.07 (dd, *J* = 10.8, 1.1 Hz 1H, H_a-22), 5.03 (dd, *J* =17.1, 1.1 Hz 1H, H_b-22), 3.70 – 3.55 (m, 2H, H₂-6), 3.30 (s, 3H, CH₃O-9), 2.34 – 2.26 (m, 1H, H_a-8), 2.08 – 1.99 (m, 1H, H_b-8), 1.94 (dd, *J* = 15.6, 7.4 Hz, 2H, H₂-7), 1.49 (s, 3H, H₃-23), 1.45 (s, 3H, H₃-24). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.7 (C, C-1), 159.4 (C, C-4), 145.1 (C,C-19), 144.5 (CH, C-21), 135.1 (C, C-17), 126.2 (C, C-12), 125.2 (C, C-3), 120.8 (CH, C-15), 119.4 (CH, C-14), 119.0 (CH, C-13), 112.7 (CH, C-10), 111.7 (CH₂, C-22), 111.6 (CH, C-16), 103.8 (C, C-11), 91.4 (C,C-9), 51.3 (CH₃, CH₃O-9), 45.1 (CH₂, C-6), 39.0 (C, C-20), 32.4 (CH₂, C-8), 27.8 (CH₃, C-24), 27.4 (CH₃, C-23), 19.3 (CH₂, C-7).

Compound 4: ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.04 (s, 1H, 18-NH), 9.07 (s, 1H, 2-NH), 7.39 (d, *J* = 7.9 Hz, 1H, H-16), 7.34 (d, *J* = 7.9 Hz, 1H, H-13), 7.06 (t, *J* = 7.9 Hz, 1H, H-14), 6.98 (t, *J* = 7.9 Hz, 1H, H-15), 6.96 (s, 1H, H-10), 6.84 (s, 1H, 9-OH), 6.07 (dd, *J* = 17.1, 10.8 Hz, 1H, H-21), 5.06 (dd, *J* = 10.8, 1.1 Hz, 1H, Ha-22), 5.02 (dd, *J* = 17.1, 1.1 Hz, 1H, Hb-22), 3.68 – 3.59 (m, 1H, Ha-6), 3.50 (dt, *J* = 11.8, 8.3 Hz, 1H, Hb-6), 2.10 (dd, *J* = 9.6, 3.5 Hz, 2H, H2-8), 2.03 (m, 1H, Ha-7), 1.90 (m, 1H, Ha-7), 1.49 (s, 3H, H3-24), 1.45 (s, 3H, H3-23).¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.3 (C, C-1), 159.4 (C, C-4), 145.2 (C, C-19), 144.3 (CH, C-21), 135.1 (C, C-17), 126.4 (CH, C-12), 125.7 (C, C-3), 120.7 (CH, C-15), 119.7 (CH, C-14), 119.3 (CH, C-13), 111.9 (CH, C-10), 111.7 (CH2, C-22), 111.4 (CH, C-16), 104.1 (C, C-11), 86.6 (C, C-9), 44.7 (CH2, C-6), 39.1 (C, C-20), 35.7 (CH2, C-8), 27.8 (CH3, C-24), 27.5 (CH3, C-23), 19.5 (CH2, C-7).

Compound 5: ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.04 (s, 1H, 18-NH), 8.94 (s, 1H, 2-NH), 7.43 (d, *J* = 7.9 Hz, 1H, H-16), 7.26 (d, *J* = 7.9 Hz, 1H, H-13), 7.09 (m, 1H, H-14), 7.01 (m, 1H, H-15), 6.93 (s, 1H, H-10), 6.09 (dd, *J* = 17.2, 10.7 Hz, 1H, H-21), 5.07 (dd, *J* = 10.7, 1.2 Hz, 1H, Ha-22), 5.04 (dd, *J* = 17.2, 1.2 Hz, 1H, Hb-22), 4.45 (m, 1H, H-9), 3.59 (m, 1H, Ha-6), 3.47 (dd, *J* = 11.7, 8.9 Hz, 1H, Hb-6), 2.21 (m, 1H, Ha-8), 1.93 (m, 1H, Hb-8), 1.88 (dd, *J* = 9.5, 4.9 Hz, 1H, Ha-7), 1.84 (m, 1H, Hb-7), 1.51 (s, 3H, H3-23), 1.47 (s, 3H, H3-24). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.0 (C, C-1), 158.4 (C, C-4), 145.2 (C, C-19), 144.1 (CH, C-21), 135.1 (C, C-17), 126.3 (C, C-12), 126.0 (C, C-3), 120.7 (CH, C-15), 119.3 (CH, C-14), 119.3 (CH, C-13), 111.6 (CH, C-10), 111.5 (CH2, C-22), 110.6 (CH, C-16), 103.9 (C, C-11), 58.6 (CH, C-9), 44.9 (CH2, C-6), 39.0 (C, C-20), 28.2 (CH2, C-8), 27.7 (CH3, C-24), 27.4 (CH3, C-23), 21.6 (CH2, C-7).

Compound 6: yellow crystal; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.10 (s, 1H, 18-NH), 8.85 (s, 1H, 2-NH), 7.43 (d, *J* = 7.9 Hz, 1H, H-16), 7.20 (d, *J* = 7.9 Hz, 1H, H-13), 7.10 (t, *J* = 7.9 Hz, 1H, H-14), 7.01 (t, *J* = 7.9 Hz, 1H, H-15), 6.91 (s, 1H, H-10), 6.10 (d, *J* = 3.5 Hz, 1H, H-8), 6.07 (dd, *J* = 17.3, 10.6 Hz, 1H, H-21), 5.06 (dd, *J* = 10.6, 1.1 Hz, 1H, H_a-22), 5.03 (dd, *J* = 17.3, 1.1 Hz, 1H, H_b-22), 4.02 (t, *J* = 9.1 Hz, 2H, H₂-6), 2.77 (td, *J* = 9.5, 3.0 Hz, 2H, H₂-7), 1.47 (s, 6H, H₃-23, H₃-24). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.7 (C, C-1), 153.9 (C, C-3), 145.1 (C, C-19), 144.1 (CH, C-21), 135.1 (C, C-17), 133.7 (C, C-9), 126.0 (C, C-12), 125.8 (C, C-3), 120.8 (CH, C-15), 119.5 (CH, C-14), 119.0 (CH, C-13), 118.8 (CH, C-8), 111.7 (CH, C-10), 111.7 (CH₂, C-22), 110.2 (CH, C-16), S22

103.3 (C, C-11), 45.5 (CH₂, C-6), 39.0 (C, C-20), 27.7 (CH₂, C-7), 27.5 (CH₃, C-23), 27.5 (CH₃, C-24). ESI-MS *m*/*z* 370.2 [M + Na]⁺.

Compound 7: yellow solid, $[\alpha]_{0}^{25}$ –35.5 (*c* 4.84, MeOH); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.39 (s, 1H, 3-OH), 9.15 (s, 1H, 3'-OH), 6.37 (d, *J* = 2.4 Hz, 1H, H-4'), 6.29 (s, 1H, H-4), 6.19 (s, 1H, H-6), 6.11 (brs, 1H, H-2), 6.09 (d, *J* = 2.4 Hz, 1H, H-2'), 4.10 (s, 1H, 3''-OH), 4.08 (d, *J* = 5.8 Hz, 1H, 2''-OH), 3.36 (m, 1H, H-2''), 2.64 (d, *J* = 12.4 Hz, 1H, H_a-1''), 2.40 (dd, *J* = 13.5, 10.4 Hz, 1H, H_b-1''), 2.27 (s, 3H, H₃-7'), 2.17 (s, 3H, H₃-7), 1.06 (s, 3H, H₃-5''), 1.05 (s, 3H, H₃-4''). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.5 (C, C-3), 158.4 (C, C-1), 155.6 (C, C-3'),155.2 (C, C-1'), 139.9 (C, C-5), 121.2 (C, C-6'), 112.7 (CH, C-4'), 110.5 (CH, C-4), 109.2 (CH, C-6),103.9 (CH, C-2'),102.1 (CH, C-2), 78.3 (CH, C-2''), 72.0 (CH, C-3''), 28.0 (CH₂, C-1''), 25.6 (CH₃, C-4''), 25.3 (CH₃, C-5''), 21.3 (CH₃, C-7), 20.4 (CH₃, C-7'). ECD (0.0004 M, MeOH) λ_{max} ($\Delta \epsilon$)220 (-4.9), 282 (-0.9) nm. ESI-MS *m*/z 331.1 [M – H]⁻.

Compound 8: yellow oil, $[\alpha]_D^{25}$ –24.1 (*c* 0.83, MeOH); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.35 (s, 1H, 3-OH), 9.35 (s, 1H, 3'-OH), 6.37 (d, *J* = 2.4 Hz, 1H, H-4'), 6.28 (s, 1H, H-4), 6.17 (s, 1H, H-6), 6.09 (brs, 1H, H-2), 6.07 (d, *J* = 2.4 Hz, 1H, H-2'), 4.29 (d, *J* = 5.5 Hz, 1H, 2''-OH), 3.54 (dd, *J* = 8.1, 5.0 Hz, 1H, H-2''), 3.07 (s, 3H, CH₃-3''), 2.62 (d, *J* = 12.2 Hz, 1H, H_a-1''), 2.38 (dd, *J* = 13.5, 10.4 Hz, 1H, H_b-1''), 2.26 (d, *J* = 2.4 Hz, 3H, H₃-7), 2.16 (s, 3H, H₃-7'), 1.06 (s, 3H, H₃-5''), 1.04 (s, 3H, H₃-4''). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.5 (C, C-3), 158.5 (C, C-1), 155.7 (C, C-3'),155.2 (C, C-1'), 139.9 (C, C-5), 121.2 (C, C-6'), 112.7 (CH, C-4'), 110.5 (CH, C-4), 109.2 (CH, C-6),104.0 (CH, C-2'),102.1 (CH, C-2), 77.2 (CH, C-3''), 75.6 (CH, C-2''), 48.9 (CH₃, 3'-CH₃), 27.7 (CH₃, C-1''), 21.5 (CH₃, C-7), 21.3 (CH₃, C-7'), 20.5 (CH₃, C-5''), 20.4 (CH₃, C-4''). ESI-MS *m*/*z* 345.2 [M – H]⁻.

Compound 9: yellow oil, $[\alpha]_{D}^{25}$ –5.3 (*c* 1.51, MeOH); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.35 (s, 1H, 3-OH), 9.35 (s, 1H, 3'-OH), 6.36 (d, *J* = 2.4 Hz, 1H, H-4'), 6.29 (s, 1H, H-4), 6.17 (s, 1H, H-6), 6.09 (brs, 1H, H-2), 6.08 (d, *J* = 2.4 Hz, 1H, H-2'), 4.72 (d, *J* = 3.8 Hz, 1H, 2''-OH), 4.65 (d, *J* = 14.6 Hz, 2H, H₂-4''), 4.05 (s, 1H, H-2''), 2.63 (dd, *J* = 13.4, 5.6 Hz, 1H, H_a-1''), 2.52 (m, 1H, H_b-1''), 2.24 (d, *J* = 8.0 Hz, 3H, H₃-7'), 2.17 (s, 3H, H₃-7), 1.65 (s, 3H, H₃-5''). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.5 (C, C-3), 158.4 (C, C-1), 155.8 (C, C-3'), 155.2 (C, C-1'), 148.6 (C, C-3''), 139.9 (C, C-5), 139.7 (C, C-5'), 119.8 (C, C-6'), 112.7 (CH, C-4'), 110.5 (CH, C-4), 109.6 (CH₂, C-4''), 109.0 (CH, C-6), 103.9 (CH, C-2'), 101.9 (CH, C-2), 74.8 (CH, C-2''), 32.6 (CH₂, C-1''), 21.2 (CH₃, C-7), 20.2 (CH₃, C-7'). ECD (0.0004 M, MeOH) λ_{max} ($\Delta \varepsilon$) 220 (-1.0), 282 (-0.3) nm.ESI-MS *m*/z 313.1 [M – H]⁻.

Compound **10**: yellow oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.41 (s, 1H, 3-OH), 9.41 (s, 1H, 3'-OH), 6.41 (d, *J* = 2.3 Hz, 1H, H-4'), 6.29 (s, 1H, H-4), 6.11 (s, 1H, H-6), 6.10 (d, *J* = 2.3 Hz, 1H, H-2'), 6.05 (brs, 1H, H-2), 3.67 (s, 2H, H₂-1''), 2.66 (m, 1H, H-3''), 2.15 (s, 3H, H₃-7), 2.08 (s, 3H, H₃-7'), 0.97 (s, 3H, H₃-5''), 0.95 (s, 3H, H₃-4''). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 211.3 (C, C-2''), 158.5 (C, C-3), 158.0 (C, C-1), 156.5 (C, C-3'), 155.1 (C, C-1'), 140.0 (C, C-5), 139.6 (C, C-5'), 116.1 (CH, C-4'), 112.6 (CH, C-4), 110.8 (C, C-6'), 109.1 (CH, C-6), 103.7 (CH, C-2'), 102.1 (CH, C-2), 39.4 (CH, C-3''), 37.7 (CH₂, C-1''), 21.2 (CH₃, C-7), 19.6 (CH₃, C-7'), 18.2 (CH₃, C-4''), 18.2 (CH₃, C-5''). ESI-MS *m*/*z* 313.2 [M – H]⁻.

Compound **11**: yellow oil; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.45 (s, 2H, HO-3/3'), 6.33 (s, 2H, H-4/4'), 6.24 (s, 2H, H-6/6'), 6.15 (t, *J* = 2.0 Hz, 2H, H-2/2'), 2.18 (s, 6H, H₃-7/7'). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.5 (C, C-3/3'), 157.6 (C, C-1/1'), 140.1 (CH, C-5/5'), 111.2 (CH, C-4/4'), 110.1 (CH, C-6/6'), 103.0 (CH, C-2/2'), 21.2 (C, C-7/7'). ESI-MS *m*/*z* 229.2 [M – H]⁻.