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Abstract: Oxidative stress plays an important role in the pathogenesis of chronic obstructive
pulmonary disease (COPD). The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a
key cellular defense mechanism against oxidative stress. Recent studies have shown that astaxanthin
protects against oxidative stress via Nrf2. In this study, we investigated the emphysema suppression
effect of astaxanthin via Nrf2 in mice. Mice were divided into four groups: control, smoking,
astaxanthin, and astaxanthin + smoking. The mice in the smoking and astaxanthin + smoking
groups were exposed to cigarette smoke for 12 weeks, and the mice in the astaxanthin and
astaxanthin + smoking groups were fed a diet containing astaxanthin. Significantly increased
expression levels of Nrf2 and its target gene, heme oxygenase-1 (HO-1), were found in the lung
homogenates of astaxanthin-fed mice. The number of inflammatory cells in the bronchoalveolar
lavage fluid (BALF) was significantly decreased, and emphysema was significantly suppressed.
In conclusion, astaxanthin protects against oxidative stress via Nrf2 and ameliorates cigarette
smoke-induced emphysema. Therapy with astaxanthin directed toward activating the Nrf2 pathway
has the potential to be a novel preventive and therapeutic strategy for COPD.

Keywords: chronic obstructive pulmonary disease; oxidative stress; astaxanthin; nuclear factor
erythroid 2-related factor 2; heme oxygenase-1

1. Introduction

Chronic obstructive pulmonary disease (COPD) is caused by the prolonged inhalation of noxious
gases, primarily cigarette smoke [1]. Cigarette smoke contains many harmful substances such as
oxidants [2]. It has been hypothesized that the etiology of COPD stems from an oxidant–antioxidant
imbalance and a protease–antiprotease imbalance. Oxidative stress is an important factor in COPD
pathogenesis [3]. Therefore, antioxidant treatment has recently attracted attention in COPD research [4].
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates antioxidant
capacity [5]. Nrf2 translocates to the nucleus of the cell and binds to the antioxidant response element
(ARE) in response to oxidative stress. Subsequently, Nrf2 initiates the transcription of antioxidant
genes and the expression of corresponding proteins. The activation of the Nrf2–ARE signaling
pathway is known to be a primary mechanism in the defense against oxidative stress [6]. It has been
reported that Nrf2-deficient mice are highly susceptible to cigarette smoke-induced lung injury [7,8].
In addition, the overexpression of Nrf2 was reported to protect against cigarette smoke-induced cell
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apoptosis [9,10]. These reports suggest that Nrf2 activation protects against the oxidative stress seen in
cigarette smoke-induced emphysema.

Astaxanthin is a xanthophyll carotenoid that is widely distributed throughout the world,
particularly in marine environments. This compound has potent antioxidant activity, which has
been shown to be greater than that of other carotenoids and vitamin E [11,12]. In addition, several
studies have reported that astaxanthin activates the Nrf2–ARE signaling pathway as the mechanism
for exerting its antioxidant effects [13–17]. However, the suppression of cigarette smoke-induced
emphysema by astaxanthin via its antioxidant activity has not yet been reported.

Based on these reports, we hypothesize that astaxanthin enhances Nrf2 expression in the lungs,
attenuates oxidative stress, and ameliorates cigarette smoke-induced emphysema. To address this
hypothesis, we examined the Nrf2–ARE signaling pathway and the emphysema suppression effect by
administering astaxanthin in a murine model of COPD.

2. Results

2.1. Body Weight Changes in Mice

One mouse from the control group and one mouse from the astaxanthin group were excluded
from the analysis due to missing or sample collection failure. Two weeks after starting cigarette smoke
exposure, one mouse in the astaxanthin + smoking group died of unknown causes after cigarette
smoke exposure.

After the 12-week experimental period, the mice in the smoking group showed lower rates of
weight gain than those in the control or astaxanthin groups. Although the mice in the astaxanthin +

smoking group had higher rates of weight gain than those in the smoking group, the weight gain was
less than that of the mice in the control and astaxanthin groups (Figure 1).

Figure 1. Body weight changes in each group. In both standard diet and astaxanthin-fed groups,
smoking exposure significantly decreased weight gain. Although it did not reach statistical significance,
the astaxanthin + smoking group gained more weight than the smoking group. Values represent the
means ± SD. * p < 0.05.

2.2. Nrf2 and HO-1 Expression Levels Were Increased in Astaxanthin-Fed Mice

The Nrf2 mRNA expression levels (as evaluated by real-time PCR) in lung homogenates were
significantly increased in the mice in the astaxanthin and astaxanthin + smoking groups compared to
those in the control and smoking groups (p < 0.05; Figure 2a). No significant difference was observed in
Nrf2 mRNA expression levels between the mice in the astaxanthin and astaxanthin + smoking groups.
In addition, no significant difference was observed in Nrf2 mRNA expression levels between the mice
in the control and smoking groups.
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Figure 2. Nrf2 and HO-1 expression in the astaxanthin group was significantly increased compared to
that in the control group. Similarly, Nrf2 and HO-1 expression in the astaxanthin + smoking group
was significantly increased compared to that in the smoking group. Nrf2 mRNA expression in lung
homogenates (a). Western blot analysis of Nrf2 in lung homogenates (b). The blots were normalized to
β-actin and measured by densitometry (c). Western blot analysis of HO-1 in lung homogenates (d).
The blots were normalized to β-actin and measured by densitometry (e). * p < 0.05.

Nrf2 protein expression levels were assessed by Western blot analysis. Nrf2 protein expression
was increased in the mice in the astaxanthin group compared to the control group and in the astaxanthin
+ smoking groups compared to the smoking group (p < 0.05; Figure 2b,c). No significant difference in
Nrf2 protein expression was observed between the mice in the control and smoking groups. Similarly,
no significant difference in Nrf2 protein expression was observed between the mice in the astaxanthin
and the astaxanthin + smoking groups.

To evaluate the Nrf2–ARE signaling pathway, heme oxygenase-1 (HO-1), which is regulated by
Nrf2, was also assessed by Western blot analysis. HO-1 protein expression was also increased in
the mice in the astaxanthin and astaxanthin + smoking groups compared to that in the control and
smoking groups (p < 0.05; Figure 2d,e). No significant difference in HO-1 protein expression was
observed between the mice in the control and smoking groups. Similarly, no significant difference in
HO-1 protein expression was observed between the astaxanthin and astaxanthin + smoking groups.
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2.3. Astaxanthin Ameliorated Inflammatory Cell Increase in BALF of Cigarette Smoke-Induced COPD

A representative image of the bronchoalveolar lavage fluid (BALF) from each group is shown in
Figure 3a. To examine the influence of cigarette smoke exposure on BALF and the changes induced
by astaxanthin, we enumerated the cell populations and evaluated the number of cells in the BALF.
No significant differences in total cell count, the number of macrophages, the number of neutrophils,
or the number of lymphocytes in the BALF of mice were observed in the control and astaxanthin
groups (Figure 3b–e). The number of neutrophils was significantly higher in the BALF of mice in the
smoking and astaxanthin + smoking groups compared to the control and astaxanthin groups due to
the effects of smoking exposure (Figure 3d). Total cell count and the number of macrophages and
lymphocytes were significantly higher in the BALF of mice in the smoking group compared to the
control and astaxanthin groups (Figure 3b,c,e). Total cell count and the number of macrophages and
neutrophils were significantly lower in the BALF of mice in the astaxanthin + smoking group compared
to the smoking group (p < 0.05; Figure 3b–d). No significant difference was observed in the number of
lymphocytes in the BALF of mice in the smoking and astaxanthin + smoking groups (Figure 3e).

Figure 3. Total cell count and the number of macrophages and neutrophils in the bronchoalveolar
lavage fluid (BALF) were significantly lower in the BALF of mice in the astaxanthin + smoking group
than in the smoking group, but the number of lymphocytes was not attenuated. Representative images
of the BALF from each group are shown at 200×magnification (a). Number of total cells (b), number
of macrophages (c), number of neutrophils (d), and number of lymphocytes in the BALF (e). Values
represent the means ± SD. * p < 0.05.
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2.4. Astaxanthin Ameliorated Cigarette Smoke-Induced Emphysema

A representative histologic image of the lung from each group is shown in Figure 4a. The exposure
to cigarette smoke for 12 weeks resulted in the development of pulmonary emphysema in the mice in
the smoking group. The lung tissues from the astaxanthin + smoking group showed lower alveolar
destruction than the lung tissues of the mice in the smoking group. Mean linear intercept (MLI) was
significantly larger in the mice in the smoking group than in the control group, and MLI for the mice
in the astaxanthin + smoking group was significantly lower than that reported for the mice in the
smoking group (p < 0.05; Figure 4b). No significant difference was observed in MLI between the mice
in the control, astaxanthin, and astaxanthin + smoking groups. Moreover, the destructive index was
significantly larger in the mice in the smoking group than in the control or astaxanthin groups, and the
destructive index was significantly lower in the mice in the astaxanthin + smoking group than in the
smoking group (p < 0.05; Figure 4c). No significant difference was observed in the destructive index
between the mice in the control, astaxanthin, and astaxanthin + smoking groups.

Figure 4. Mean linear intercept (MLI) and destructive index were significantly larger in the smoking
group than in the control group. MLI and destructive index were significantly smaller in the astaxanthin
+ smoking group than in the smoking group. No significant difference was observed in MLI and
destructive index between the control, astaxanthin, and astaxanthin + smoking groups. Representative
histologic image of lung sections from each group stained with hematoxylin-eosin. Destructed alveolar
lesions are indicated by arrows (a). MLI data (b). Destructive index data (c). * p < 0.05.

3. Discussion

In this study, we showed that astaxanthin increased Nrf2 and HO-1 expression in lung tissue
and suppressed cigarette smoke-induced emphysema in mice. Our results indicate that the ingestion
of astaxanthin suppresses cigarette smoke-induced inflammatory cell infiltration in the BALF and
emphysema by activating the Nrf2–ARE signaling pathway in the lungs in a murine model of COPD.

COPD is the third leading cause of death in the world [18]. However, current therapies for COPD
provide only limited benefit and fail to halt progression. Therefore, the development of new prevention
and treatment strategies for COPD is necessary. Cigarette smoke is the primary cause of COPD, and it
contains many oxidants [2]. An insufficient antioxidant capacity is related to COPD pathogenesis [19].
An excess of oxidants has been reported to induce emphysema through epithelial cell apoptosis [20].
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In recent decades, oxidative stress has been recognized as a key factor responsible for the pathogenesis
of COPD [21].

Previously, we reported that N-acetylcysteine significantly suppressed cigarette smoke
extract-induced apoptosis of airway epithelial cells [22]. This result suggests that antioxidants
such as N-acetylcysteine may suppress cigarette smoke-induced apoptosis and emphysema in models
of COPD. Epidemiologic evidence also supports the potential beneficial effects of an antioxidant-rich
diet on pulmonary function and COPD risk [23]. Antioxidant therapy or supplemental treatment
with an external antioxidant to neutralize excess oxidants may have great therapeutic potential in
COPD [24].

Nrf2 is a transcription factor involved in the regulation of various antioxidants. In response to
oxidative stress, Nrf2 translocates to the nucleus and binds the ARE of target genes involved in an
antioxidant response. Subsequently, Nrf2 initiates the transcription and expression of antioxidant
proteins. Then, antioxidant proteins induced by Nrf2, such as HO-1, protect against oxidative stress [25].
Nrf2 is expressed in various organs including the lung. Nrf2-deficient mice show reduced activity of
antioxidant enzymes, are susceptible to cigarette smoke, and develop severe lung emphysema [7,8].
Moreover, increased Nrf2 activation was shown to attenuate the oxidative stress of cigarette smoke
and protect cells from apoptosis induced by oxidative stress [9,10]. We previously showed that Nrf2
expression was significantly reduced in the airway epithelial cells of COPD patients [22]. In addition,
other studies indicate the relationship of Nrf2 polymorphisms and airflow limitations in smokers [26,27].
Recently, we reported that a polymorphism of the Nrf2 gene contributed to the progression of lung
emphysema in smokers [28]. From these findings, Nrf2 is considered to be prominently involved in
the pathogenesis of COPD.

To our knowledge, there is no report that astaxanthin is related to the prevention of COPD.
Astaxanthin, a carotenoid xanthophyll, is a natural reddish-orange pigment widely present in nature.
Astaxanthin is especially abundant in marine organisms such as shrimp, crab, salmon, krill, and algae.
Since ancient times, these crustaceans and fishes have been eaten by humans. Astaxanthin ingestion is
safe, and pure astaxanthin was approved as a dietary supplement by the Food and Drug Administration
in the United States in 1999 [29]. Recently, the technology for mass-producing astaxanthin by culturing
Haematococcus pluvialis was developed, and it has become simple to obtain a large amount of astaxanthin.
In fact, astaxanthin is widely used in cosmetics because it has been reported to protect the skin from
ultraviolet rays and help maintain healthy skin [30]. Astaxanthin has attracted attention due to its
strong antioxidant properties, and there have been many reports focusing on its antioxidant activity.
Astaxanthin has been shown to protect various cells from oxidative stress in vitro [31–34] and to
protect the brain, eyes, salivary glands, skeletal muscle, liver, kidney, and lungs from oxidative stress
in vivo [12–17,35–39]. These results indicate that astaxanthin is distributed throughout the body
and has systemic effects. Moreover, previous studies have reported that astaxanthin enhances Nrf2
expression in various organs including the lungs [13–17]. Additionally, some studies have investigated
the pathway of Nrf2 activation by astaxanthin. Astaxanthin facilitates the dissociation and nuclear
translocation of Nrf2 through activation of the PI3K/Akt and ERK signaling pathways [40,41].

In our study, Nrf2 expression in the lungs was slightly higher in the smoking group than in the
control group; however, no significant difference was observed. Cigarette smoke-induced oxidants
were potentially stronger than the protective effect of the antioxidants in the smoking group, which may
have caused emphysema. In contrast, Nrf2 expression was significantly increased in the astaxanthin +

smoking group compared to the smoking group. Therefore, the antioxidants may have exerted stronger
effects than the cigarette smoke-induced oxidants and suppressed the development of emphysema in
the astaxanthin + smoking group.

Previous studies have reported that emphysema was suppressed by administering antioxidant
substances to mice. Hydrogen has been found to be a strong antioxidant, and administration of
hydrogen-rich water was reported to attenuate cigarette smoke-induced lung damage and reduce the
MLI in senescence marker protein-30 knockout mice [42]. 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic
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acid (CDDO) has also been reported to have an Nrf2 activation effect. CDDO-imidazolide administered
during a period of cigarette smoke inhalation was shown to suppress pulmonary emphysema via Nrf2
in mice [43]. These reports support our results.

We showed that astaxanthin inhibited cigarette smoke-induced inflammatory cell infiltration in
BALF. Although Nrf2 suppresses inflammation as a secondary consequence of its antioxidant effect,
astaxanthin has been also reported to directly suppress inflammation [44,45]. The suppression of
inflammatory cell infiltration in BALF may also be related to this property of astaxanthin.

Oxidative stress caused by cigarette smoke has been reported to persist long after smoking
cessation [46]. Prolonged oxidative stress is a primary factor in the enhancement of both airway and
systemic inflammation in COPD patients and is known to play an important role in the development
of COPD and its comorbidities [47]. Therefore, it may be possible to suppress persistent oxidative
stress and inflammation by the ingestion of astaxanthin even after smoking cessation; it may also be
possible to treat COPD and its comorbidities with a single therapeutic agent. Ingestion of astaxanthin
has been proven to be safe, it is widely used in beauty products, and mass production methods have
been established. Therefore, astaxanthin may have the potential to serve as a therapeutic agent or a
supplement for COPD in the near future.

This study has some limitations. First, the concentrations of astaxanthin in the blood of mice were
not determined and bioavailability is unknown. Second, the concentration of astaxanthin (0.02% w/w)
in the diet was taken from a previous study [48]. In addition, 50 mg/kg of astaxanthin was reported to
be effective in mice [37]. Therefore, we decided to use the diet to contain 0.02% (w/w) astaxanthin.
However, the optimal effective concentration of astaxanthin is unknown. Further research is needed to
clarify these points.

4. Materials and Methods

4.1. Experimental Animals

C57BL/6 mice (male, four weeks old, 18–20 g) were obtained from Japan SLC (Shizuoka, Japan)
and kept under pathogen-free conditions. The mice were maintained at a controlled temperature of
23 ◦C ± 2 ◦C under a 12:12 h light–dark cycle with free access to water. The mice were divided into
four groups as follows: (1) control (n = 8), (2) smoking (n = 8), (3) astaxanthin (n = 8), (4) astaxanthin
+ smoking (n = 8). All mice were acclimatized to the environment for one week. The mice in the
astaxanthin and astaxanthin + smoking groups were fed a diet containing astaxanthin (FUJIFILM
ASTAXANTHIN 10O; FUJIFILM Corporation, Tokyo, Japan). We prepared the diet to contain 0.02%
(w/w) astaxanthin; the concentration of astaxanthin was measured by using high-performance liquid
chromatography after enzymatic degradation of fatty acid ester form of astaxanthin to free form of
astaxanthin. The actual concentration of the diet was determined to be 0.0158% (w/w). The mice in the
control and smoking groups were fed a standard diet. All experimental protocols were approved by
the Ethics Committee of the Institutional Animal Care and Use of Osaka City University Graduate
School of Medicine (17023, 6/11/2017). Animal experiments were conducted in accordance with the
Regulations on Animal Experiments in Osaka City University following the Guidelines for Proper
Conduct of Animal Experiments in Japan.

4.2. Experimental Model of Cigarette Smoke-Induced COPD

The mice in the smoking and astaxanthin + smoking groups were exposed to cigarette smoking
(18 cigarettes/day) for 60 min once daily, 5 days per week. Commercially available Peace® nonfilter
cigarettes (2.3 mg nicotine and 28 mg tar/cigarette; Japan Tobacco, Tokyo, Japan) and a cigarette smoke
generator model SG-300 for small animals (Shibata Scientific Technology, Tokyo, Japan) were used for
the cigarette smoke exposure. The mice in the control and astaxanthin groups were exposed to fresh
air. Cigarette smoke and fresh air exposure was performed for 12 weeks.
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4.3. Treatments and Preparation for Evaluation

At the end of the 12-week experimental period, all mice were sacrificed under deep anesthesia.
The mice were tracheotomized and cannulated, and bronchoalveolar lavage (BAL) was performed
three times with 0.5 mL phosphate-buffered saline for sampling of the BALF. After BAL, the right
lung of each mouse was carefully excised. The right lower lobe was instantly soaked in RNAlater
(Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA) for mRNA expression analysis. The other
right lobe was immediately frozen in liquid nitrogen for protein expression analysis. The left lung was
excised and immediately soaked in 10% formalin for further histological analysis.

4.4. Nrf2 mRNA Expression Analysis

The right lower lobe was homogenized in RLT lysis buffer (Qiagen NV, Venlo, Netherlands).
RNeasy mini kit (Qiagen NV, Venlo, Netherlands) was used for the extraction of total RNA.
Complementary DNA (cDNA) was obtained by reverse transcription of the mRNA with the Ready-to-Go
T-primed first-strand kit (GE Healthcare, Little Chalfont, UK). The cDNA was used in a real-time
quantitative PCR reaction in an Applied Biosystems 7500 real-time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA) using TaqMan gene expression assays for Nrf2 (Mm00477784_m1).
The housekeeping gene 36B4 (Mm00725448_s1) was used for the normalization of Nrf2 mRNA as
previously described [49].

4.5. Western Blot Analysis

The right lung other than the lower lobe was used for Western blot analysis. Approximately 30 mg
of the lung sample was soaked in 300 µL of radioimmunoprecipitation assay (RIPA) buffer (Beyotime
Biotechnology, Shanghai, China) supplemented with the protease inhibitor phenylmethanesulfonyl
fluoride (Beyotime Biotechnology, Shanghai, China) and Protease Inhibitor Cocktail (Cell Signaling
Technology Japan, Tokyo, Japan). After the lung samples were homogenized in RIPA buffer, the samples
were placed on ice for 5 min and centrifuged at 11,800× g and 4 ◦C for 4 min. The supernatant was
collected, and the protein concentration was determined with the colorimetric bicinchoninic acid protein
assay kit (Pierce, Waltham, MA, USA) according to the manufacturer’s instructions. The supernatant
was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis with Mini-PROTEAN
TGX Precast Protein Gels (4561023, Bio-Rad, Hercules, California, USA). Next, the separated bands
on the gel were transferred onto polyvinylidene fluoride membranes. The membranes were then
incubated with primary anti-Nrf2 antibody (1:500; ab137550, Abcam, Cambridge, UK), anti-HO-1
antibody (1:250; ab13248, Abcam), or anti-β-actin antibody (1:1000; ab8227, Abcam) at 4 ◦C overnight.
The next day, the membranes were incubated with the corresponding secondary antibodies for 2 h at
25 ◦C. After washing the membranes three times, SuperSignal West Dura Extended Duration Substrate
(Thermo Fisher Scientific, Waltham, MA, USA) was used for detection. Western blot signals were
acquired with a Fuji LAS-4000 fluorescence imager (Fujifilm Corporation, Tokyo, Japan). The target
protein levels were normalized to β-actin.

4.6. Bronchoalveolar Lavage Fluid Analysis

Each BALF sample was centrifuged at 1200× g and 4 ◦C for 10 min, and the supernatant was
collected. The cell pellet was resuspended in 1 mL of phosphate-buffered saline and applied to
cytospin columns in a Shandon Cytospin 3 centrifuge (Shandon Scientific Co., London, England),
and the cytospin protocol was followed. The slides sprayed with the cells were stained with Diff-Quick
(Sysmex, Kobe, Japan), and the enumeration of cells and the differential cell counts (macrophages,
neutrophils, and lymphocytes) were performed in a blind manner.
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4.7. Quantitative Evaluation of Lung Emphysema

The left lung was fixed with 10% formalin for 24–48 h at positive pressure (25 cm H2O) and
subjected to histological analysis. Three-micrometer-thick slices were stained with hematoxylin
and eosin for the analysis of the level of airspace size in the lung. Emphysema was evaluated by
determining the MLI as previously described [50]. Moreover, destruction was evaluated by determining
the destructive index as previously described [51].

4.8. Statistical Analysis

Data are expressed as the mean± standard deviation. For multiple-group comparisons, differences
were evaluated using one-way ANOVA followed by Tukey’s multiple comparison test. Statistical
significance was considered at p < 0.05. All statistical analyses were performed using GraphPad Prism
7.04 (GraphPad Software, San Diego, CA, USA).

5. Conclusions

COPD is associated with an excessive oxidant burden; therefore, the rationale for exploring
antioxidant therapies in COPD is clear. Astaxanthin increases Nrf2 and HO-1 expression in the lung
and suppresses cigarette smoke-induced emphysema in mice. Therapy directed toward activating the
Nrf2–ARE pathway, such as the use of astaxanthin, may be a novel preventive and therapeutic strategy
for attenuating oxidative stress in the pathogenesis of COPD.
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