Supplementary Materials

Identification of the Actinomycin D Biosynthetic Pathway from Marine-derived *Streptomyces costaricanus* SCSIO ZS0073

- Mengchan Liu^{1,2,3}, Yanxi Jia^{1,2,3}, Yunchang Xie¹, Chunyan Zhang^{1,2}, Juying Ma^{1,2}, Changli Sun¹, Jianhua Ju^{1,2*}
- ¹ CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; 18696164503@163.com (M.L.) jiayanxi0928@163.com (Y.J.); xieyunchang@scsio.an.cn (Y.X.); zhchuny@foxmail.com (C.Z.); majunying@scsio.ac.cn (J.M.); lingluboxi@163.com (C.S.)
- ² College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
- ³ Contributed equally
- * Correspondence: jju@scsio.ac.cn; Tel./Fax: +86-20-8902-3028

Item Name	Contents/Description	Page
Table S1	Structural Information summary for the actinomycins	S3-S4
Table S2	Summary of strains and plasmids used in this study.	S5-S7
Table S3	Summary of primers used in this study.	S8-S12
Figure S1	Disruption of orf(-3) in WT S. costaricanus SCSIO ZS0073.	S13
Figure S2	Disruption of orf(-2) in WT S. costaricanus SCSIO ZS0073.	S13
Figure S3	Disruption of <i>orf(-1)</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S14
Figure S4	Disruption of <i>orf(+1)</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S14
Figure S5	Disruption of <i>orf</i> (+2) in WT <i>S. costaricanus</i> SCSIO ZS0073.	S15
Figure S6	Disruption of <i>orf(+3)</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S15
Figure S7	HPLC analyses of fermentation extracts (Fig. S2-S7 mutants).	S16
Figure S8	Disruption of <i>acnA</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S16
Figure S9	Disruption of <i>acnB</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S17
Figure S10	Disruption of ancU1 in WT S. costaricanus SCSIO ZS0073.	S17
Figure S11	Disruption of <i>acnU2</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S18
Figure S12	Disruption of <i>acnC</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S18
Figure S13	Disruption of <i>acnU3</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S19
Figure S14	Disruption of <i>acnU4</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S19
Figure S15	Disruption of <i>acnD–E</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S20
Figure S16	Disruption of <i>acnN1</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S20
Figure S17	Disruption of <i>acnN3</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S21
Figure S18	Disruption of <i>acnG–P</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S21
Figure S19	Disruption of <i>acnR</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S22
Figure S20	Disruption of <i>acnQ</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S22
Figure S21	Disruption of <i>acnT1</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S23
Figure S22	Disruption of <i>acnT2</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S23
Figure S23	Disruption of <i>acnT3</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S24
Figure S24	Disruption of <i>acnW</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S24
Figure S25	Disruption of <i>acnF</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S25
Figure S26	Disruption of <i>acnU4</i> in WT <i>S. costaricanus</i> SCSIO ZS0073.	S25
Figure S27	Disruption of <i>acnP</i> in WT S. costaricanus SCSIO ZS0073.	S26
Figure S28	Disruption of PHS in WT S. costaricanus SCSIO ZS0073.	S26
Figure S29	HPLC-ESI-MS chromatogram of the fermentation extract of ∆ <i>acnF</i>	S27

Name	α-ring (R1)	β-ring (R ₂)	chromophore	Туре
Actinomycin D ª	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Actinocin (i)	Actinomycin D
Actinomycin Do ^a	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Gly-MeVal	Actinocin (i)	N-demethyl
N,N'-Didemethyl-	Thr-D-Val-Pro-Gly-MeVal	Thr-D-Val-Pro-Gly-MeVal	Actinocin (i)	actinomycins
actinomycin D ª				
Actinomycin C2 ^a	Thr-D-Val-Pro-Sar-MeVal	Thr-D-alle-Pro-Sar-MeVal	Actinocin (i)	C-type
Actinomycin C _{2a} ^a	Thr-D-alle-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Actinocin (i)	Actinomycin
Actinomycin C3 ^a	Thr-D-alle-Pro-Sar-MeVal	Thr-D-alle-Pro-Sar-MeVal	Actinocin (i)	
Actinomycin F8ª	Thr-D-Val-Sar-Sar-MeVal	Thr-D-Val-Sar-Sar-MeVal	Actinocin (i)	F-type
Actinomycin F9ª	Thr-D-Val-Sar-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Actinocin (i)	Actinomycin
	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Sar-Sar-MeVal		
Actinomycin Xoα ^a	Thr-D-Val-Sar-Sar-MeVal	Thr-D-Val-Hyp-Sar-MeVal	Actinocin (i)	
Actinomycin Xoβ ª	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Hyp-Sar-MeVal	Actinocin (i)	X-type
Actinomycin Xoð ^a	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-aHyp-Sar-MeVal	Actinocin (i)	Actinomycin
Actinomycin X1a ^a	Thr-D-Val-Sar-Sar-MeVal	Thr-D-Val-OPro-Sar-MeVal	Actinocin (i)	
Actinomycin X2 ª	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-OPro-Sar-MeVal	Actinocin (i)	
Actinomycin Z1 ^a	Thr-D-Val-HMPro-Sar-MeVal	HThr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	
Actinomycin Z2 ^a	Thr-D-Val-HMPro-Sar-MeVal	Thr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	
Actinomycin Z3 ^a	Thr-D-Val-HMPro-Sar-MeVal	ClThr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	Z-type
Actinomycin Z4 ^a	Thr-D-Val-MPro-Sar-MeVal	Thr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	Actinomycin
Actinomycin Z5 ª	Thr-D-Val-MPro-Sar-MeVal	ClThr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	
Actinomycin Z6 ^b	Thr-D-Val-HMPro-Sar-MeVal	HThr-D-Val-MOPro-Sar-MeAla	Actinocin (i)	
Actinomycin ZP ^a	Thr-D-Val-MPro-Sar-MeVal	Thr-D-Val-MPro-Sar-MeVal	Actinocin (i)	
Actinomycin G1 ª	Thr-D-Val-Pro-Sar-MeVal	HThr-D-Val-HMPro-Sar-MeAla	Actinocin (i)	
Actinomycin G2 ª	Thr-D-Val-HMPro-Sar-MeVal	ClThr-D-Val-Pro-Sar-MeAla	Actinocin (i)	
Actinomycin G3 ª	Thr-D-Val-HMPro-Sar-MeVal	HThr-D-Val-Pro-Sar-MeAla	Actinocin (i)	G-type
Actinomycin G4 ª	Thr-D-Val-HMPro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeAla	Actinocin (i)	Actinomycin
Actinomycin G5 ª	Thr-D-Val-Pro-Sar-MeAla	cHThr-D-Val-Pro-Sar-MeAla	Actinocin (i)	
Actinomycin G6 ª	Thr-D-Val-HMPro-Sar-MeVal	rHThr-D-Val-Pro-Sar-MeAla	Actinocin (i)	
Actinomycin Y1 ª	Thr-D-Val-HMPro-Sar-MeVal	ClThr-D-Val-OPro-Sar-MeAla	Actinocin (i)	
Actinomycin Y2 ^a	Thr-D-Val-HMPro-Sar-MeVal	ClThr-D-Val-Hyp-Sar-MeAla	Actinocin (i)	
Actinomycin Y3ª	Thr-D-Val-HMPro-Sar-MeVal	rHThr-D-Val-OPro-Sar-MeAla	Actinocin (i)	
Actinomycin Y4ª	Thr-D-Val-HMPro-Sar-MeVal	rHThr-D-Val-Hyp-Sar-MeAla	Actinocin (i)	
Actinomycin Y5ª	Thr-D-Val-HMPro-Sar-MeVal	cThr-D-Val-OPro-Sar-MeAla	Actinocin (i)	Y-type
Actinomycin Y6ª	Thr-D-Val-HMPro-SarMeVal	crThr-D-Val-OPro-SarMeAla	Actinocin (i)	Actinomycin
Actinomycin Y7ª	Thr-D-Val-HMPro-SarMeVal	HThr-D-Val-OPro-SarMeAla	Actinocin (i)	
Actinomycin Y8ª	Thr-D-Val-HMPro-SarMeVal	Thr-D-Val-OPro-SarMeAla	Actinocin (i)	
Actinomycin Y9 ^a	Thr-D-Val-MPro-SarMeVal	Thr-D-Val-OPro-SarMeAla	Actinocin (i)	
methylated	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified	
actinomycin D °			chromophore (ii)	

Table S1: Summary of structural information for the actinomycins

Actinomycin D1 ^d	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified	
			chromophore (iv)	Actinomycin D
Actinomycin D2 ^d	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified analogues	
			chromophore (iv)	
Actinomycin D3 ^d	Thr-D- ValPro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified	
			chromophore (iii)	
Actinomycin D4 ^d	Thr-D-AlaPro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	chromophore (i)	
Neo-actinomycin A ^e	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified	
			chromophore (iv) Neo-actinomyci	
Neo-actinomycin B °	Thr-D-Val-Pro-Sar-MeVal	Thr-D-Val-Pro-Sar-MeVal	Modified	
			chromophore (iv)	

References a-e:

- a is taken from: Cai, W.L.; Wang, X.; Elshahawi, S.I.; Ponomareva, L.V.; Liu, X.; McErlean, M.R.; Cui, Z.; Arlinghaus, A.L.; Thorson, J.S.; Van Lanen, S.G. Antibacterial and cytotoxic actinomycins Y6–Y9 and Zp from *Streptomyces* sp. Strain Gö-GS12. *J. Nat. Prod.* **2016**, *79*, 2731-2739.
- b is taken from: Dong, M.; Cao, P.; Ma, Y.T.; Luo, J.; Yan, Y.; Li, R.T.; Huang, S.X. A new actinomycin Z analogue with an additional oxygen bridge between chromophore and β-depsipentapeptide from *Streptomyces* sp. KIB-H714. *Nat. Prod. Res.* **2018**, *2*, 1-7.
- c is taken from: Chen, Y.; Liu, J.; Yuan, B.; Cao, C.; Qin, S.; Cao, X.; Bian, G.; Wang, Z.; Jiang, J. Methylated actinomycin D, a novel actinomycin D analog induces apoptosis in HepG2 cells through Fas-and mitochondria-mediated pathways. *Mol. Carcinog.* **2013**, *52*, 983-996.
- d is taken from: Jiao, W.H.; Yuan, W.; Li, Z.Y.; Li, J.; Li, L.; Sun, J.B; Gui, Y.H.; Wang, J.; Ye, B.P.; Lin, H.W. Anti-MRSA actinomycins D1-D4 from the marine sponge-associated *Streptomyces* sp. LHW52447. *Tetrahedron*. **2018**, *74*, 5914-5919.
- e is taken from: Wang, Q.; Zhang, Y.; Wang, M.; Tan, Y.; Hu, X.; He, H.; Xiao, C.L.; You, X.; Wang Y.; Gan, M. Neo-actinomycins A and B, natural actinomycins bearing the 5 H-oxazolo [4, 5-b] phenoxazine chromophore, from the marine-derived *Streptomyces* sp. IMB094. *Sci. Rep.* **2017**, *7*, 3591.

Modified chromophores characteristic of actinomycin analogues.

Strains/	Relevant phenotype	Source/[Ref]
plasmids		
<i>S.</i> SCSIO ZS0073	Wild-type (WT) producer of actinomycin	This work
$\Delta orf(-3)$	S. costaricanus SCSIO ZS0073 with a 1039 bp of orf(-3) substituted by aac(3)IV+OriT	This work
$\Delta orf(-2)$	S. costaricanus SCSIO ZS0073 with a 793 bp of orf(-2) substituted by aac(3)IV+OriT	This work
$\Delta orf(-1)$	S. costaricanus SCSIO ZS0073 with a 2000 bp of orf(-1) substituted by aac(3)IV+OriT	This work
∆acnW	S. costaricanus SCSIO ZS0073 with a 539 bp of $\Delta acnW$ ubstituted by $aac(3)IV+OriT$	This work
ΔacnA	S. costaricanus SCSIO ZS0073 with a 366 bp of $\Delta acnA$ substituted by $aac(3)IV+OriT$	This work
∆acnB	S. costaricanus SCSIO ZS0073 with a 1213 bp of $\triangle acnB$ substituted by $aac(3)IV+OriT$	This work
∆acnU1	S. costaricanus SCSIO ZS0073 with a 366 bp of $\Delta acnU1$ substitued by $aac(3)IV+OriT$	This work
ΔacnU2	S. costaricanus SCSIO ZS0073 with a 375 bp of $\Delta acnU2$ substituted by $aac(3)IV+OriT$	This work
ΔacnC	S. costaricanus SCSIO ZS0073 with a 742 bp of $\Delta acnC$ substituted by $aac(3)IV+OriT$	This work
ΔacnU3	S. costaricanus SCSIO ZS0073 with a 625 bp of $\Delta acnU3$ substituted by $aac(3)IV+OriT$	This work
$\Delta acnU4$	S. costaricanus SCSIO ZS0073 with a 564 bp of $\Delta acnU4$ substituted by $aac(3)IV+OriT$	This work
$\Delta acnD-E$	S. costaricanus SCSIO ZS0073 with a 456 bp of $\Delta acnD-E$ substituted by $aac(3)IV+OriT$	This work
∆acnN1	S. costaricanus SCSIO ZS0073 with a 933 bp of $\Delta acnN1$ substituted by $aac(3)IV+OriT$	This work
∆acnN3	S. costaricanus SCSIO ZS0073 with a 1021 bp of $\Delta acnN3$ substituted by $aac(3)IV+OriT$	This work
ΔacnF	S. costaricanus SCSIO ZS0073 with a 636 bp of $\Delta acnF$ substituted by $aac(3)IV+OriT$	This work
∆acnG–P	S. costaricanus SCSIO ZS0073 with a 2300 bp of $\Delta acnG-P$ substituted by $aac(3)IV+OriT$	This work
∆acnR	S. costaricanus SCSIO ZS0073 with a 893 bp of $\triangle acnR$ substituted by $aac(3)IV+OriT$	This work

Table S2. Summary of strains and plasmids used in this study

$\Delta acnQ$	S. costaricanus SCSIO ZS0073 with a 957 bp of $\Delta acnQ$ substituted by $aac(3)IV+OriT$	This work
∆acnT1	S. costaricanus SCSIO ZS0073 with a 871 bp of $\triangle acnT1$ substituted by $aac(3)IV+OriT$	This work
ΔacnT2	S. costaricanus SCSIO ZS0073 with a 685 bp of $\Delta acnT2$ substituted by $aac(3)IV+OriT$	This work
$\Delta orf(T3)$	S. costaricanus SCSIO ZS0073 with a 891 bp of $\Delta orf(T3)$ substituted by $aac(3)IV+OriT$	This work
$\Delta orf(+1)$	S. costaricanus SCSIO ZS0073 with a 517 bp of $\Delta orf(+1)$ substituted by $aac(3)IV+OriT$	This work
$\Delta orf(+2)$	S. costaricanus SCSIO ZS0073 with a 330 bp of $\Delta orf(+2)$ substituted by aac(3)IV+OriT	This work
$\Delta orf(+3)$	S. costaricanus SCSIO ZS0073 with a 840 bp of $\Delta orf(+3)$ substituted by aac(3)IV+OriT	This work
Δphs	S. costaricanus SCSIO ZS0073 with a 1694 bp of Δphs substituted by aac(3)IV+OriT	This work
E.coli		
Bw25113	K-12 derivative: araBAD, rhaBAD	
ET12567	dam, dcm, hsdM, hsdS, hsdR, catR , tetR	
Plasmids		
pIJ773	P1-FRT-oriT-aac(3)IV-FRT-P2	
pIJ790	λ -RED (gam bet exo) CmlR araCrep101ts	
pUZ8002	tra, neo, RP4	This work
cosmid-9C2	A cosmid which contains partial actinomycin biosynthesis cluster	This work
cosmid-9A2	A cosmid which contains partial actinomycin biosynthesis cluster	This work
$p\Delta orf(-3)$	A 1018 bp fragment in <i>orf(-3)</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
$p\Delta orf(-2)$	A 793 bp fragment in <i>orf(-2)</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
$p\Delta orf(-1)$	A 2000 bp fragment in <i>orf(-1)</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
p∆acnW	A 539 bp fragment in <i>acnW</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
$p\Delta acnA$	A 366 bp fragment in <i>acnA</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
<i>p∆acnB</i>	A 1229 bp fragment in <i>acnB</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
P∆acnU1	A 366 bp fragment in <i>acnU1</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
P∆acnU2	A 375 bp fragment in <i>acnU2</i> in cosmid 9A7 was substituted by the aac(IV)+OriT cassette using the PCR-targeting strategy	This work
<i>P</i> ∆ <i>acnC</i>	A 742 bp fragment in <i>acnC</i> in cosmid 9A7 was substituted by the	This work

	aac(IV)+OriT cassette using the PCR-targeting strategy	
P∆acnU3	A 625 bp fragment in acnU3 in cosmid 9A7 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
P∆acnU4	A 564 bp fragment in <i>acnU4</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnD-E$	A 458 bp fragment in acnD-E in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnNl$	A 933 bp fragment in <i>acnN1</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnN3$	A 1044 bp fragment in <i>acnN3</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta a cnF$	A 636 bp fragment in <i>acnF</i> in cosmid 9C2 was substituted by the aac(IV)+OriT	This work
	cassette using the PCR-targeting strategy	
$p\Delta acnG-P$	A 2300 bp fragment in <i>acnG-P</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnR$	A 893 bp fragment in <i>acnR</i> in cosmid 9C2 was substituted by the aac(IV)+OriT	This work
	cassette using the PCR-targeting strategy	
$p\Delta acnQ$	A 957 bp fragment in <i>acnQ</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
p∆acnT1	A 871 bp fragment in <i>acnT1</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnT2$	A 685 bp fragment in <i>acnT2</i> in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta acnT3$	A 891 bp fragment in <i>acnT3</i>) in cosmid 9A7 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta orf(+1)$	A 517 bp fragment in $orf(+1)$ in cosmid 9A7 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta orf(+2)$	A 330 bp fragment in $orf(+2)$ in cosmid 9A7 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
$p\Delta orf(+3)$	A 840 bp fragment in $orf(+3)$ in cosmid 9C2 was substituted by the	This work
	aac(IV)+OriT cassette using the PCR-targeting strategy	
PHS	A 1694 bp fragment in PHS in cosmid 9C2 was substituted by the	
	aac(IV)+OriT cassette using the PCR-targeting strategy	

Primer Name	Sequence (5'→3')	purpose
screen-73D-SF	TCTTGCCGGTGCCGGGCGGCC	For the screening of
screen-73D-SF	TCCGGTGGGCAGGCGATCCGG	the genomic library
screen-73ZA-F	GAGCAGCAGCGACTGCGCGCC	For the screening of
screen-73ZA-R	TCAGCGCCGCACCCTCGGCAT	the genomic library
screen-73DZB-F	CTGGCGCGTCCTCCTGCCGG	For the screening of
screen-73DZBR	TCATTTCTGAATCCTCCACG	the genomic library
screen-73DX-F	ACCGCGGCCCGGGAGCGCGC	For the screening of
screen-73DX-R	ACGTTGGTCTTGGCCGAGCCG	the genomic library
screen-73FS-F	TGACATCGCCGTCATCGGTCT	For the screening of
screen-73FS-R	ACGTTGGTCTTGGCCGAGCCG	the genomic library
screen-73FZ-F	AACTCCAGGGGCTCGGCGCCAT	For the screening of
screen-73FZ-R	TGGTGAGGACCCCGGTGGCGTT	the genomic library
screen-73FX-F	ACACCGTGCTGCGGCCGAAGG	For the screening of
screen-73FX-R	TCAGAGAGACCCGAGCTCTTG	the genomic library
orf(-3)-Del-PF	TGAGCCGGGCGCCCTGGGTGCTCTCGCGCAGGCACACCG	For disrupting <i>orf(-3)</i>
	attccggggatccgtcgacc	
orf(-3)-Del-PR	GTGCAGACCCGACGCGATCACATGCAGGCGTACCAGTTC	
	tgtaggctggagctgcttc	
orf(-3)-Ts-PF	TGCTCTCGCGCAGGCACACC	For verifying mutant
		$\Delta orf(-3)$
orf(-3)-Ts-PR	CAGACCCGACGCGATCACAT	
orf(-2)-Del-PF	GGAGAAGTGGGAAGGGTGCGTATGCCGCGCATGCCGCTC	For disrupting <i>orf(-2)</i>
	attccggggatccgtcgacc	
orf(-2)-Del-PR	CACTCCGCGCAACTGGCCGCCGCCGGGCAGGAGATCACC	
	tgtaggctggagctgcttc	
orf(-2)-Ts-PF	TGACCGCCGTGCCAGTGGGT	For verifying mutant
		$\Delta orf(-2)$
orf(-2)-Ts-PR	TCGGAGGTCTGCCGGGTCAC	
orf(-1)-Del-PF	GGAGAACAGGTCGTAGTCGTCGATGAGGACGAACAGCAG	For disrupting <i>orf(-1)</i>
	attccggggatccgtcgacc	
orf(-1)-Del-PR	CTGGGCACCAAGTTCGAGCTGCGGCTGGGCGATTCGATG	
	tgtaggctggagctgcttc	
orf (-1)-Ts-PF	CTTGGCCTCGCCGAGGAACTTG	For verifying mutant
orf(-1)-Ts-PR	GCGATGTGTTCCTGGTGGTC	$\Delta orf(-1)$
acnW-Del-PF	GGAGAAGTGGGAAGGGTGCGTATGCCGCGCATGCCGCTC	For disrupting <i>acnW</i>
	attccggggatccgtcgacc	
acnW-Del-PR	CACTCCGCGCAACTGGCCGCCGCCGGGCAGGAGATCACC	
	tgtaggctggagctgcttc	
acnW-Ts-PF	GGAGAAGTGGGAAGGGTGCG	For verifying mutant

Table S3 Summary of primers used in this study

acnW-Ts-PR	CACTCCGCGCAACTGGCCGC	$\Delta a cn W$
acnA-Del-PF	GTGGACGACTGGGACATGTGGGACAGGCGCGAGAGGACC	
	attccggggatccgtcgacc	
acnA-Del-PR	TCAGAGCCAGGAGCTCGCCCGCTCCCCCGCCCCCCG	For disrupting acnA
	tgtaggctggagctgcttc	
acnA-Ts-PF	ACTGGGACATGTGGGACAGG	For verifying mutant
		Δ acnA
acnA-Ts-PR	AGAGCCAGGAGCTCGCCCGCT	
acnB-Del-PF	GGGCGCGCTGCTGCGCGCATGTCCGGCACCCTGGACGC	
	attccggggatccgtcgacc	
acnB-Del-PR	TCAGGGCCTGCGGGTCAGCCGGTGATGCAGATGTTCCAG	For disrupting <i>acnB</i>
	tgtaggctggagctgcttc	
acnB-Ts-PF	GCACCGGCCCCCTGCTGAT	For verifying mutant
		$\Delta acnB$
acnB-Ts-PR	TGCGGGTCAGCCGGTGATGC	
acnU1-Del-PF	TCAGTGAGCGCCGAGCCCCCGCCTCCGAAGGACCCGCT	
	attccggggatccgtcgacc	
acnU1-Del-PR	ATGAACACCGCATCGATGCAGCTGGCCGCGACGAGCGGC	For disrupting <i>acnU1</i>
	tgtaggctggagctgcttc	
acnU1-Ts-PF	CCGCCTCCGAAGGACCCGCT	For verifying mutant
		$\Delta a cn U l$
acnU1-Ts-PR	AACACCGCATCGATGCAGCTG	
acnU2-Del-PF	GTGACCCAGCAGGCTTCCCCGCAGCAGCTCTACCGGTTC	
	attccggggatccgtcgacc	
acnU2-Del-PR	TCAGGCCAGCGTCTCCAGGAAGTCGACGCAGGCGCCGGC	For disrupting <i>acnU2</i>
	tgtaggctggagctgcttc	
acnU2-Ts-PF	TGCGTCGACTTCCTGGAGAC	For verifying mutant
		$\Delta acnU2$
acnU2-Ts-PR	TCTCCAGGAAGTCGACGCA	
acnC-Del-PF	GAGCAGCAGCGACTGCGCGCCGAACTGCGCGCCTACTTC	
	attccggggatccgtcgacc	
acnC-Del-PR	CGCGGACGGCCGTCGTGCCGTGCGCCGCGAGGGTGACGC	For disrupting <i>acnC</i>
	tgtaggctggagctgcttc	
acnC-Ts-PF	GAGCAGCAGCGACTGCGCGC	For verifying mutant
		$\Delta acnC$
acnC-Ts-PR	CGCGGACGGCCGTCGTGCCG	
acnU3-Del-PF	CTAGCCGTAAGCCCGTTCGCTCTCCCGGTAGCGCTCCAG	
	attccggggatccgtcgacc	
acnU3-Del-PR	ATGACGTCCAGGGCGTCCGTCGTCGACTTCGGCGCCGCG	For disrupting <i>acnU3</i>
	tgtaggetggagetgette	
acnU3-Ts-PF	TAAGCCCGTTCGCTCTCCCG	For verifying mutant
		$\Delta acnU3$

acnU3-Ts-PR	TCCAGGGCGTCCGTCGTCGA	
acnU4-Del-PF	TCATGACGTACCCGTCAGATCGACGACACGATCGACGGC	
	attccggggatccgtcgacc	
acnU4-Del-PR	ATGGACGACGCCGCTTTCTCACAACTGCTGCTGAGCGAG	For disrupting <i>acnU4</i>
	tgtaggctggagctgcttc	
acnU4-Ts-PF	TGACGTACCCGTCAGATCGAC	For verifying mutant
		$\Delta acnU4$
acnU4-Ts-PR	ACGCCGCTTTCTCACAACT	
acnD–E-Del-PF	TACGAGGCTCAGCGGGCGCATGTCGGTCCAGTGCTCCTC	For disrupting
	atteeggggateegtegaee	acnD-E
acnD–E-Del-PR	ACATCAGGGCGATTCTCTGCGAGGGCGCGGGGACTCGGAC	
	tgtaggetggagetgette	
acnD–E-Ts-PF	TCAGCGGGCGCATGTCGGTC	For verifying mutant
		$\Delta acnD-E$
acnD–E-Ts-PR	ATTCTCTGCGAGGGCGCGGG	
acnN1-Del-PF	GGTCACCCGGGGGTGCTCCAGCAGAACGGTCTCCACCTC	
	attccggggatccgtcgacc	
acnN1-Del-PR	GTGGTTCTGGTCGACTTCCGGCTGAAGCCGGCCGAATAC	For disrupting <i>acnN1</i>
	tgtaggctggagctgcttc	
acnN1-Ts-PF	TGCTCCAGCAGAACGGTCTC	For verifying mutant
		$\Delta acnNl$
acnN1-Ts-PR	ACTTCCGGCTGAAGCCGGC	
acnN3-Del-PF	GCCACTCCGCAGGAACAGGTCGTGTGCGAGCTGTTCGCG	
	atteeggggateegtegaee	
acnN3-Del-PR	TCACTCGTCGGCGGCGGCGGTGAGTTCGTGGAGCTTGGC	For disrupting <i>acnN3</i>
	tgtaggctggagctgcttc	
acnN3-Ts-PF	ACTCCGCAGGAACAGGTCGT	For verifying mutant
		$\Delta acnN3$
acnN3-Ts-PR	TGAGTTCGTGGAGCTTGGC	
acnF-Del-PF	ATGCTGACCGACGTGCTCTCCGTCGAGCTGGCCACGGCC	For disrupting <i>acnF</i>
	atteeggggateegtegaee	
acnF-Del-PR	TCACTCGGCCTCCGGCCGGTGCGCGCGCGCATGCCTTCTC	
	tgtaggctggagctgcttc	
acnF-Ts-PF	ACCGACGTGCTCTCCGTCGAG	For verifying mutant
		$\Delta acnF$
acnF-Ts-PR	GCGCGGCGCATGCCTTCTC	
acnG–P-Del-PF	ATGCGGCGCACCGCGGCCCGGGAGCGCGCGCGCGCGCGC	
	attccggggatccgtcgacc	
acnG–P-Del-PR	CGAGACCAGCACGAGTTGGATCGCGTCGCCACGGGCGAT	For disrupting
	tgtaggetggagetgette	acnG-P
acnG–P-Ts-PF	ACCGCGGCCCGGGAGCGCGC	For verifying mutant
		$\Delta acnG-P$

acnG–P-Ts-PR	AGTTGGATCGCGTCGCCACG	
acnR-Del-PF	CCGAAAGGCTTCCTCGGCCTCCGCTCCACGGGCGGCGCAC	For disrupting <i>acnR</i>
	TAGTattccggggatccgtcgacc	
acnR-Del-PR	GGCATCACAGTCGCCGAGGAGCAGGGAATGGCGGCCCTGA	For disrupting <i>acnR</i>
	CTAGTtgtaggctggagctgcttc	
acnR-Ts-PF	GTACCAATGATCGGTGGCTG	For verifying mutant
		$\Delta acnR$
acnR-Ts-PR	CTTACGCTGTAAGGAGATGCTC	
acnQ-Del-PF	GACCAGCAGGTCAAGCTCTGCTTCCCCCGGCTCGGCCAGAC	
	TAGTattccggggatccgtcgacc	
acnQ-Del-PR	CAGCTTGAACCGCCAGTACCCGCTGAACTCGATGGACCGAC	For disrupting <i>acnQ</i>
	TAGTtgtaggctggagctgcttc	
acnQ-Ts-PF	GATGCCCAGCACTCTTGGAAG	For verifying mutant
		$\Delta acnQ$
acnQ-Ts-PR	CTTTCGTGCGTACCGCTTCTG	
acnT1-Del-PF	GCAGTTCACCCTTCGCGGGCGCACCGTCGACGCGGTGAA	
	attccggggatccgtcgacc	
acnT1-Del-PR	GAGGGTGGGCCGGTTCACCTTGACCGCGGTCATGGTGAT	For disrupting <i>acnT1</i>
	tgtaggctggagctgcttc	
acnT1-Ts-PF	TTCACCCTTCGCGGGCGCAC	For verifying mutant
		∆acnT1
acnT1-Ts-PR	TTCACCTTGACCGCGGTCAT	
acnT2-Del-PF	TGACACCTGGCTGATCTTCAGCAGGGACATGAAGCTGTG	
	atteeggggateegtegaee	
acnT2-Del-PR	ACCCGTCAGCAGCCCCGTCGAGCCCATGTCGCCCCGGAA	For disrupting <i>acnT2</i>
	tgtaggctggagctgcttc	
acnT2-Ts-PF	TGGCTGATCTTCAGCAGGGA	For verifying mutant
		$\Delta acnT2$
acnT2-Ts-PR	AGCCCCGTCGAGCCCATGTC	
acnT3-Del-PF	TCTTCCAGCGGTTCGTGCGCTCGGCCCCCTGCGCGGACT	
	atteeggggateegtegace	
acnT3-Del-PR	TGAACAGCGAGGCACTGACACCGTTGGCCTTGGCGAACA	For disrupting
	tgtaggctggagctgcttc	orf(T3)
acnT3-Ts-PF	ACACCGTTGGCCTTGGCGAA	For verifying mutant
		$\Delta acnT3$
acnT3-Ts-PR	CGGTGATCTCGTACCGCACA	
orf(+1)-Del-PF	TTGCCGCCACCGCTCCCCGGTGATCTCGTACCGCACACC	
	attccggggatccgtcgacc	
orf(+1)-Del-PR	TTTCACGGCCGATGACGCCGACCTGCTGATCGAACTGGA	For disrupting
	tgtaggctggagctgcttc	orf(+1)
orf(+1)-Ts-PF	CGGTGATCTCGTACCGCACA	
orf(+1)-Ts-PR	ACGCCGACCTGCTGATCGAA	

orf(+2)-Del-PF	GTGGGGGAAGGCCAGTTGGTCACGATGGCCCTGGACGGC	
	attccggggatccgtcgacc	
orf(+2)-Del-PR	TCAGGCGGGGCGACGCCAGACCATGCGGACGGCGAAGTT	For disrupting
	tgtaggctggagctgcttc	orf(+2)
orf(+2)-Ts-PF	AAGGCCAGTTGGTCACGAT	
orf(+2)-Ts-PR	GACGCCAGACCATGCGGACG	
orf(+3)-Del-PF	TGTTTCCGCCGGCCGACTCCCTGCCGAGCCCCGACGTCA	
	attccggggatccgtcgacc	
orf(+3)-Del-PR	TGAGCATTTCCTGGGTCCGCTGCTGCTGGAGTATCTCCG	For disrupting
	tgtaggctggagctgcttc	orf(+3)
orf(+3)-Ts-PF	TTTCCGCCGGCCGACTCCCT	For verifying mutant
		$\Delta orf(-3)$
orf(+3)-Ts-PR	CATTTCCTGGGTCCGCTGCT	
PHS-Del-PF	GTGGATGTGCATGGGGTGCACGATGGGCGCGAGGTTGAGAC	
	TAGTattccggggatccgtcgacc	
PHS-Del-PR	GACCGCAATCTCGACACCGACGAGGACGGACGGCTCAACA	For disrupting PHS
	CTAGTtgtaggctggagctgcttc	
PHS-Ts-PF	GGCAGTGGTACATGAACCTG	For verifying mutant
		ΔPHS
PHS-Ts-PR	CGAACTGCGGCCGTATGTC	

Figure S1. Disruption of orf(-3) in WT S. costaricanus SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(-3). (B) PCR analyses of the WT strain and the orf(-3) double-cross mutant carried out using the primers listed in Table S3. Marker: DNA molecular ladder; W: using the genomic DNA of S. costaricanus SCSIO ZS0073 as template; M: using the genomic DNA of orf(-3) mutant as template.

Figure S2. Disruption of orf(-2) in WT S. costaricanus SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(-2). (B) PCR analyses of the WT strain and the orf(-2) double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of S. costaricanus SCSIO ZS0073 as template; M: using the genomic DNA of orf(-2) mutant as template.

Figure S3. Disruption of orf(-1) in WT S. costaricanus SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(-1). (B) PCR analyses of the WT strain and the orf(-1) double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of S. costaricanus SCSIO ZS0073 as template; M: using the genomic DNA of orf(-1) mutant as template.

Figure S4. Disruption of orf(+1) in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(+1). (B) PCR analyses of the WT strain and the orf(+1) double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *orf(+1)* mutant as template.

Figure S5. Disruption of orf(+2) in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(+2). (B) PCR analyses of the WT strain and the orf(+2) double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *orf(+2)* mutant as template.

Figure S6. Disruption of orf(+3) in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of orf(+3). (B) PCR analyses of the WT strain and the orf(+3) double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *orf(+3)* mutant as template.

Figure S7. HPLC analyses of fermentation extracts. 1) WT, 2) $\Delta orf(-3)$ mutant, 3) $\Delta orf(-2)$ mutant, 4) $\Delta orf(-1)$ mutant, 5) $\Delta orf(+1)$ mutant, 6) $\Delta orf(+2)$ mutant, 7) $\Delta orf(+3)$ mutant. 1: actinomycin D, 2: actinomycin Xo β

Figure S8. Disruption of *acnA* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnA*. (B) PCR analyses of the WT strain and the *acnA* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnA* mutant as template.

Figure S9. Disruption of *acnB* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnB*. (B) PCR analyses of the WT strain and the *acnB* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnB* mutant as template.

Figure S10. Disruption of *acnU1* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnU1*. (B) PCR analyses of the WT strain and the *acnU1* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnU1* mutant as template.

Figure S11. Disruption of *acnU2* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnU2*. (B) PCR analyses of the WT strain and the *acnU2* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnU2* mutant as template.

Figure S12. Disruption of acnC in WT S. costaricanus SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of acnC. (B) PCR analyses of the WT strain and the acnC double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnC* mutant as template.

Figure S13. Disruption of *acnU3* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnU3*. (B) PCR analyses of the WT strain and the *acnU3* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnU3* mutant as template.

Figure S14. Disruption of *acnU4* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnU4*. (B) PCR analyses of the WT strain and the *acnU4* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnU4* mutant as template.

Figure S15. Disruption of *acnD–E* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnD–E*. (B) PCR analyses of the WT strain and the *acnD–E* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnD–E* mutant as template.

Figure S16. Disruption of *acnN1* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnN1*. (B) PCR analyses of the WT strain and the *acnN1* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnN1* mutant as template.

Figure S17. Disruption of *acnN3* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnN3*. (B) PCR analyses of the WT strain and the *acnN3* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnN3* mutant as template.

Figure S18. Disruption of *acnG–P* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnG–P*. (B) PCR analyses of the WT strain and the *acnG–P* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnG–P* mutant as template.

Figure S19. Disruption of *acnR* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnR*. (B) PCR analyses of the WT strain and the *acnR* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnR* mutant as template.

Figure S20. Disruption of *acnQ* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnQ*. (B) PCR analyses of the WT strain and the *acnQ* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnQ* mutant as template.

Figure S21. Disruption of *acnT1* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnT1*. (B) PCR analyses of the WT strain and the *acnT1* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnT1* mutant as template.

Figure S22. Disruption of *acnT2* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnT2*. (B) PCR analyses of the WT strain and the *acnT2* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnT2* mutant as template.

Figure S23. Disruption of *acnT3* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnT3*. (B) PCR analyses of the WT strain and the *acnT3* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnT3* mutant as template.

Figure S24. Disruption of *acnW* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnW*. (B) PCR analyses of the WT strain and the *acnW* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnW* mutant as template.

Figure S25. Disruption of *acnF* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnF*. (B) PCR analyses of the WT strain and the *acnF* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnF* mutant as template.

Figure S26. Disruption of *acnU4* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnU4*. (B) PCR analyses of the WT strain and the *acnU4* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnU4* mutant as template.

Figure S27. Disruption of *acnP* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *acnP*. (B) PCR analyses of the WT strain and the *acnP* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *acnP* mutant as template.

Figure S28. Disruption of *phs* in WT *S. costaricanus* SCSIO ZS0073 via PCR-targeting. (A) Schematic representation for disruption of *phs*. (B) PCR analyses of the WT strain and the *phs* double-cross mutant carried out using the primers listed in **Table S3**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. costaricanus* SCSIO ZS0073 as template; M: using the genomic DNA of *phs* mutant as template.

Figure S29. HPLC-ESI-MS chromatogram of the fermentation extract of $\Delta acnF$. a) HPLC profile of the extract of $\Delta acnF$ ($\lambda = 254$ nm); b) total ion chromatogram (TIC) of the extract of $\Delta acnF$; c) extract ion chromatogram (EIC) of the pentapeptide lactone monomer with $[M + H]^+$ at m/z 631.3.