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Abstract: Five new anthraquinone derivatives, auxarthrols D–H (1–5), along with two known
analogues (6–7), were obtained from the culture of the marine-derived fungus Sporendonema casei.
Their structures, including absolute configurations, were established on the basis of NMR, HRESIMS,
and circular dichroism (CD) spectroscopic techniques. Among them, compound 4 represents the
second isolated anthraquinone derivative with a chlorine atom, which, with compound 6, are the
first reported anthraquinone derivatives with anticoagulant activity. Compounds 1 and 3 showed
cytotoxic activities with IC50 values from 4.5 µM to 22.9 µM, while compounds 1, 3–4, and 6–7 showed
promising antibacterial activities with MIC values from 12.5 µM to 200 µM. In addition, compound 7
was discovered to display potential antitubercular activity for the first time.

Keywords: anthraquinone derivatives; Sporendonema casei; marine-derived fungus; cytotoxic activities;
antibacterial activities

1. Introduction

Anthraquinones and their derivatives are a group of pigmented polyketides widely produced
by fungi. Apart from their bright color attributed to the typical conjugate system in their structure,
they have also attracted the attention of scientists due to their diversity of structures and wide
range of pharmacological effects, such as their anti-infective, anti-inflammatory, and α-glucosidase
inhibitory activities and cytotoxicity against cancer cells [1,2]. Following the discovery of altersolanol
A reported in 1967 [3], a series of anthraquinone derivatives have been discovered from various fungal
genera, including Alternaria [4,5], Streptomyces [6,7], Dactylaria [8], Bostryconema [9], Stemphylium [10],
Pleospora [11], Auxarthron [12], Ampelomyces [13], Nigrospora [14], and Phomopsis [15].

During our exploration of novel bioactive secondary metabolites obtained from marine-derived
microorganisms, a fungus Sporendonema casei HDN16-802 isolated from a sediment sample collected
from Zhangzi Island was selected due to its special morphological characteristic (orange color) and
tremendous metabolic profile identified via HPLC-UV. Further chemical study generated five new
anthraquinones, named auxarthrols D–H (1–5), along with two known analogues (6–7). To the best
of our knowledge, this is the first time that anthraquinone derivatives have been isolated from the
fungus S. casei. The cytotoxicity, antibacterial, anticoagulant, and antitubercular activities of 1–7 were
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tested. Herein, we will describe the isolation, structural elucidation, and biological activities of the
isolated compounds.

2. Results and Discussion

Sporendonema casei HDN16-802 was cultured (45 L) under static conditions with oatmeal medium
at room temperature for one month. The fermentation product (mycelium and broth) was extracted
with ethyl acetate to provide the crude extract (10 g). The crude extract was fractionated by different
kinds of chromatography, including silica gel vacuum liquid chromatography (VLC), C-18 column
chromatography (ODS), Sephadex LH-20 column chromatography, medium performance liquid
chromatography (MPLC), and finally HPLC to yield 1 (10.0 mg), 2 (2.1 mg), 3 (5.1 mg), 4 (5.0 mg), 5
(4.5 mg), 6 (10.1 mg), and 7 (5.0 mg) (Figure 1).
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Materials) further confirmed the planar structure of 1. 

Figure 1. Structures of 1–7.

Compound 1 was isolated as a pale yellow solid with the molecular formula C16H18O8, which
was established on the basis of the (+)–HRESIMS ion peak at m/z 339.1076 [M+H]+ and m/z 361.0897
[M+Na]+, indicating eight degrees of unsaturation. The 1D NMR (1H-NMR, 13C NMR, and DEPT)
spectrum (Tables 1 and 2 and Supplementary Materials), together with HSQC correlations (Figure S5),
provided five hydroxyl protons, including a chelated hydroxyl at δH 12.44 (s); two methyls, including
one methoxy (δH 3.87, s; δC 56.7); one methylene (δH, 1.86, m; δC 34.2); five methines, including two
meta-coupled aromatic sp2 methines [δH 6.79, d (2.4), δC 106.1; δH 6.83, d (2.4), δC 105.0] and two
sp3 oxygenated methines [δH 3.61, dd (5.7, 3.1), δC 73.7; δH 4.22, dd (4.5, 3.1), δC 71.3]; and eight
non-protonated carbons, including two conjugated ketones (δC 197.3 and 200.1), four aromatic carbons
(δC 166.1, 166.3, 110.1, and 137.6), and two oxygenated quaternary (δC 72.3 and 78.2) carbons. A careful
comparison of the above signals with those of the known compound auxarthrol B [12] revealed a very
similar hydroanthraquinone skeleton, while the most significant differences were the absence of a
hydroxyl group and the appearance of a methine signal [δH 3.36, m; δC 48.0] attributed to C-1a (Table 2).
The key HMBC correlations from H-1a to C-9 and C-2 (Figure 2 and Supplementary Materials) further
confirmed the planar structure of 1.
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Table 1. 1H NMR data of compounds 1–5 (500 MHz, TMS, δ ppm, J in Hz).

No. 1 a 2 a 2 b 3 a 4 a 5 a

1 1.86, m 1.92, d (14.6);
1.83, d (14.6)

1.92, d (14.6);
1.83, d (14.6)

1.82, d (14.2);
1.75, d (14.2)

2.24, d (14.8);
1.74, d (14.8)

2.35, dd (15.5);
2.31, dd (15.5)

3 3.61, dd (5.7, 3.1) 3.57, d (3.0) 3.57, m 3.46, t (3.0) 3.61, d (3.6) 3.46, d (3.7)
4 4.22, dd (4.5, 3.1) 4.43, d (3.0) 4.43, t (3.5) 4.39, dd (3.0, 9.7) 4.69, d (3.6) 4.57, d (3.7)
6 6.79, d (2.4) 6.35, d (2.5) 6.35, d (2.5) 6.34, d (2.4) 6.82, d (2.5) 6.42, d (2.4)
8 6.83, d (2.4) 6.64, d (2.5) 6.64, m 6.67, d (2.4) 6.96, d (2.5) 6.67, dd (2.4, 1.2)
9 4.73, s 4.73, d (9.5) 4.52, d (8.7) 4.83, d (1.2)

1a 3.36, (6.0, 1.5)
4a 2.87, d (9.7)
11 3.87, s 3.80, s 3.80, s 3.81, s 3.88, s 3.82, s
12 1.14, s 1.20, s 1.20, s 1.19, s 1.27, s 1.21, s

OH-2 4.28, s 5.69, s 5.69, s 5.44, s 6.24, s
OH-3 4.43, d (5.7) 5.50, d (5.3) 4.81, d (3.0) 4.91, s
OH-4 5.01, d (4.5) 4.52, d (3.5) 4.57, d (3.0) 4.96, s
OH-4a 6.46, m 5.56, s 5.57, s
OH-5 12.44, s 11.97, s 11.97, s 12.37, s 11.15, s 12.19, s
OH-1a 5.29, s 5.29, s 4.91, s 6.97, s
OH-9 5.30, d (9.5) 5.46, d (8.7)

a in DMSO; b in CDCl3.

Table 2. 13C NMR data of compounds 1–7 (125 MHz, DMSO, TMS, δ ppm).

No. 1 2 3 4 5

1 34.2, CH2 34.3, CH2 38.7, CH2 30.7, CH2 42.4, CH2
2 72.3, C 73.5, C 73.2, C 73.6, C 70.3, C
3 73.7, CH 76.9, CH 75.2, CH 75.7, CH 72.9, CH
4 71.3, CH 64.6, CH 66.1, CH 63.5, CH 65.2, CH
5 166.1, C 164.8, C 163.8, C 163.6, C 164.9, C
6 106.1, CH 99.7, CH 99.5, CH 107.2, CH 100.1, CH
7 166.3, C 166.4, C 166.3, C 165.7, C 166.8, C
8 105.0, CH 106.2, CH 105.8, CH 106.4, CH 106.6, CH
9 197.3, C 70.0, CH 73.9, CH 190.6, C 68.6, CH

10 200.1, C 202.4, C 206.0, C 194.4, C 196.6, C
1a 48.0, CH 79.3, C 78.5, C 80.5, C 64.8, C
4a 78.2, C 78.1, C 53.3, CH 72.1, C 63.3, C
9a 137.6, C 148.4, C 149.0, C 134.5, C 145.9, C

10a 110.1, C 108.6, C 110.8, C 110.0, C 107.1, C
11 56.7, CH3 56.1, CH3 56.1, CH3 56.7, CH3 56.2, CH3
12 23.1, CH3 27.6, CH3 27.8, CH3 27.6, CH3 26.1, CH3
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The relative configuration of the stereogenic carbons in 1 was detected by NOESY correlations and
conformational analysis (Figure 3 and Figure S7). The NOESY correlations from H-3 to H-1a and 4a-OH,
from H-1a to H-4, and from H-4 to 4a-OH indicated that H-1a and 4a-OH were located on the same face
of the molecule, which meant that the B ring and C ring were cis fused. The NOESY correlations from
H-1a and H-4 to H3-12 oriented H3-12 to the same side as H-1a and H-4. Computational simulation
by Chemdraw (Minimize Energy program), together with the small J coupling constant between
H-3 and H-4 (3JH-3, H-4 = 3.1 Hz), further confirmed the chair-chair conformation for rings B and C,
where H-1a (ax), H-3 (eq), H-4 (ax), 4a-OH (eq), and H3-12 (ax) were oriented on the same face, thus
completing the relative configuration of the stereogenic carbons in 1 (Figure 3). To determine the
absolute configuration of compound 1, the theoretical calculated electronic circular dichroism (ECD)
spectra of possible models were performed using TDDFT. The optimized conformation of the model
was obtained and further used for the ECD calculation at the B3LYP/6-31+G(d) level. The pattern (2S,
3R, 4S, 1aR, 4aS)-1 of the calculated ECD spectrum was in reasonable agreement with the experimental
ECD spectra (Figure 4). Thus, the absolute configuration of 1 was established as 2S, 3R, 4S, 1aR, 4aS,
and we named it auxarthrol D.
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Compound 2 was obtained as a pale yellow powder. Its molecular formula of C16H20O9 with seven
degrees of unsaturation was determined by the ion peak m/z 341.1237 [M+H]+ in the (+)−HRESIMS.
The molecular formula was also corroborated by exploiting 1H and 13C NMR spectroscopic data
(Tables 1 and 2 and Supplementary Materials). A comparison of these data with 1 revealed the same
skeleton with different substitutions. The upfield shift of C-9 (δC 69.0 Vs. δC 197.3) and the downfield
shift of C-1a (δC 79.3 Vs. δC 48.0) indicated that both of the C-9 and C-1a positions were substituted by
a hydroxyl group in 2 (Table 2). Key HMBC correlations from H-9 to C-9, C-8, and C-1; from 1a-OH to
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C-1a and C-1; and from 9-OH to C-9 and C-9a (Figure 2 and Supplementary Materials) confirmed the
locations of C-9 and C-1a hydroxyl groups, thus completing the planar structure of 2. The relative
configurations of the stereogenic carbons were determined by NOESY correlations and J coupling
constant analysis (Table 1, Figure 3 and Supplementary Materials). The NOESY correlations from H-4
to both 1a-OH and 4a-OH and from H-3 to 4a-OH, together with the small J coupling constant between
H-3 and H-4 (3JH-3, H-4 = 3.0 Hz), indicated that 1a-OH, 4a-OH, H-3, and H-4 were located on the same
face. Other NOE correlations from H-3 to H3-12 and 2-OH and from H-4 to 2-OH with the above
evidence suggested a chair conformation of the C ring, where H-3 (eq), H-4 (ax), and 2-OH (ax) were on
the same face, while H3-12 (eq) was oriented on the opposite face of the molecule. This conformation
was further confirmed by using Chemdraw Minimize Energy simulation. Further NOESY correlation
from H-9 to 4a-OH indicated that H-9 was on the same face as 4a-OH (Figure 3), thus providing the
relative configuration of the stereogenic carbons of 2. The absolute configuration of 2 was determined
by comparing the experimental and calculated ECD spectrum using time-dependent density-functional
theory (TDDFT). The good agreement of the calculated ECD spectrum of (2R, 3R, 4S, 9S, 1aR, 4aR)-2
with that of the experimental spectrum (Figure 4) suggested that the absolute configuration of 2 was
2R, 3R, 4S, 9S, 1aR, 4aR, and we named it auxarthrol E.

Compound 3 was obtained as a pale yellow powder. The molecular formula of 3 was deduced as
C16H20O9 (seven degrees of unsaturation) by (+)–HRESIMS m/z 357.1187 [M+H]+, which was also
corroborated by 1H and 13C NMR spectroscopic data, as shown in Tables 1 and 2, which was 16 amu
more than the molecular mass of compound 2, therefore revealing a close relationship between 3 and
2. According to 1D NMR spectra, the presence of a methine signal at 2.87 ppm and the absence of
a hydroxy group in 3 along with the upfield shift of C-4a (δC 53.3 Vs. δC 78.1) suggested that the
4a-OH in 2 was replaced by a hydrogen atom in 3 (Tables 1 and 2), which was confirmed by the key
HMBC correlation from H-4a to C-10 and C-4 (Figure 2 and Supplementary Materials). The relative
configurations of the stereogenic carbons were also determined by NOESY correlations and J coupling
constant analysis. The NOESY correlations from H-9 to H-4a and the large J coupling constant between
H-4 and H-4a (3JH-4, H-4a = 9.7 Hz) indicated that H-4 (ax) and 1a-OH (ax) were on the same face, while
H-4a (ax) was located on the opposite face, indicating that the B ring and C ring were trans fused. By
using the Minimize Energy simulation programe in Chemdraw, both B and C rings were proposed to
adopt a chair conformation, which provided the lowest steric energy. The NOESY correlation from H-4
to H3-12 with the small J coupling constant between H-3 and H-4 (3JH-3, H-4 = 3.0 Hz) assigned H3-12
and H-3 (eq) on the same face as H-4 (ax) (Figure 3), thus providing the relative configuration of the
stereogenic carbons of 3. The good agreement of the calculated ECD spectrum of (2S, 3R, 4R, 9R, 1aS,
4aR)-3 with that of the experimental spectrum (Figure 5) suggested that the absolute configuration of 3
was 2S, 3R, 4R, 9R, 1aS, 4aR, and we named it auxarthrol F.
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Compound 4 was obtained as a pale yellow powder. Its molecular formula of C16H18ClO8

(eight degrees of unsaturation) was determined by (+)–HRESIMS. The molecular formula was also
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corroborated by 1H and 13C NMR spectroscopic data (Tables 1 and 2), suggesting that the structure of
4 resembled that of paradictyoarthrin A (8) [16], except for the absence of the hydroxyl group on C-9
and the presence of a keto-carbonyl signal at δC 190.6, indicating that the C-9 hydroxyl was replaced
by a ketone. Further 2D NMR data confirmed the planar structure of 4 (Figure 2 and Supplementary
Materials). The relative configurations of the stereogenic carbons of 4 were established by NOESY
correlations and J coupling constant analysis (Table 1, Figure 3 and Supplementary Materials). The
NOESY correlations from H-4 and H-3 to 1a-OH indicated that 1a-OH and 4a-Cl were located on
the opposite side of the B ring, while the NOESY correlation from H-4 to H3-12 with a very small J
coupling constant between H-3 and H-4 suggested that H-3 (eq), H-4 (ax), H3-12 (ax), and 1a-OH
(ax) were oriented on the same side of the C ring. Moreover, the calculated ECD spectrum of the
model compound (2S, 3R, 4S, 1aR, 4aS)-4 was well-matched with the experimental ECD spectrum of 4
(Figure 5), thus confirming the absolute structure of 4, and we named it auxarthrol G.

Compound 5 was obtained as a pale yellow solid, with the molecular formula C16H18O8 (eight
degrees of unsaturation) from (+)–HRESIMS m/z 357.1187 [M+H]+ combined with 1H and 13C NMR
spectroscopic data (Tables 1 and 2). A comparison of 1D NMR data with those reported for altersolanol
O [17] revealed a similar hydroanthraquinone skeleton, while the only differences were the absence of
C-1 hydroxy and the replacement of the C-9 carbonyl group with a C-9 hydroxyl group in 5, which
was further confirmed by the key HMBC correlations from H-9 to C-1a and C-9a, and from H2-1 to
C-1a and C-9 (Figure 2 and Supplementary Materials). The relative configuration was also determined
by NOESY correlations and J coupling constant analysis. The NOESY correlations from H-9 to H3-12
and H2-1 indicated that H-9 (ax) and H3-12 (ax) were on the same face, showing that the B ring and
C ring were cis fused with the C-1a and C-4a epoxide ring on the opposite side to H-9 (Figure 3).
Further NOESY correlations from H-4 to 2-CH3 with the small J coupling constant between H-3 and
H-4 (3JH-3, H-4 = 3.7 Hz) suggested that H-3 (eq), H-4 (ax), and H3-12 (ax) were on the same face of the
C ring. The absolute configurations of the stereogenic carbons of 5 were determined as 2S, 3R, 4S, 1aS,
4aS, 9S by a comparison of the experimental and calculated ECD spectra (Figure 6). Compound 5 was
named auxarthrol H.
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By a comparison of the NMR and MS data with the literature, two known compounds were
identified as 4-dehydroxyaltersolanol A (6) [14] and altersolanol B (7) [11] (Figure 1).

As a typical class of anthraquinone derivatives, auxarthrols characterized with multiple hydroxyl
groups attached on the hydroanthraquinone skeleton were first isolated in 1969 [11] and this
was followed by total synthesis and biosynthetic studies [18,19]. By the end of 2018, seventeen
altersolanols [19] and three auxarthrols [12,19] had been discovered and because of their broad range
of biological activities [20–22], this class of compounds has received growing attention from the natural
product community.

Compounds 1−7 were tested for their cytotoxic activity against eleven types of human cancer
cell lines using SRB staining [23] and MTT [24] methods, with doxorubicin hydrochloride (Dox) as a
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positive control. Compounds 1 and 3 showed moderate cytotoxic activity against eleven human cancer
cell lines, with IC50 values ranging from 4.5 µM to 22.9 µM (Table 3). The antimicrobial activity of
1–7 was also evaluated and 1, 3–4, and 6−7 showed promising antibacterial activity, with MIC values
ranging from 12.5 µM to 200 µM. (Table 4).

Table 3. Cytotoxic effect of 1 and 3 against eleven human cancer cell lines.

Comp. IC50 (µM)

HL-60 Hela HCT-116 MGC-803 HO8910 MDA-MB-231 SH-SY5Y PC-3 BEL-7402 K562 L-02

1 7.5 >50.0 14.5 21.8 >50.0 19.1 22.9 21.9 16.6 >50.0 >50.0
3 4.5 10.7 7.8 17.7 18.7 10.1 17.2 20.0 21.3 16.5 22.2

Dox a 0.1 0.6 0.2 0.2 0.4 0.2 0.1 1.0 0.4 0.3 0.4
a Dox stands for doxorubicin hydrochloride, which was used as a positive control.

Table 4. Antimicrobial effect of 1–7 on seven microorganisms.

Comp.
MIC (µM)

Mycobacterium
Phlei

Proteus
Species

Bacillus
subtilis

Candida
albicans

Vibrio
Parahemolyticus

Escherichia
coli

Pseudomonas
aeruginosa

1 25.0 50.0 100 >200 50.0 100 50.0
2 >200 >200 >200 >200 >200 >200 >200
3 200 200 200 >200 >200 >200 200
4 50.0 25.0 25.0 200 100 >200 100
5 >200 >200 >200 >200 >200 >200 >200
6 25.0 50.0 25.0 >200 25.0 >200 25.0
7 25.0 100 25.0 >200 25.0 >200 12.5

Positive
Control 3.12 a 1.56 a 0.781 a 1.56 b 0.781 a 0.391 a 1.56 a

a Ciprofloxacin used as a positive control for bacteria; b Nystatin used as a positive control for Candida albicans.

Moreover, all the compounds were investigated for their anticoagulant activity using argatroban
as a positive control (inhibition ratio: 65.0%). Compounds 4 and 6 displayed a moderate effect with an
inhibition ratio of 47.8% and 51.5%, respectively (Table 5). In addition, all the compounds were tested
for antitubercular activity, but only 7 displayed a weak antitubercular effect, with an MIC value of
20.0 µg/mL (Table 6).

Table 5. Anticoagulant activity of 1–7.

Comp. 1 2 3 4 5 6 7 Argatroban b

Inhibition ratio a 12.5 19.9 14.4 47.8 27.3 51.5 19.3 65.0
a Data are expressed as inhibition ratio values (%); b Argatroban was used as a positive control.

Table 6. Antitubercular activity of 1–7 against AlRa.

Comp. 1 2 3 4 5 6 7 Rifampin b

MIC a >20.0 >20.0 >20.0 >20.0 >20.0 >20.0 20.0 1.0
a Data are expressed as MIC values (µg/mL); b Rifampin was used as a positive control.

3. Materials and Methods

3.1. General Experimental Procedures

UV spectra were recorded on Waters 2487. IR spectra were recorded on a Nicolet NEXUS 470
spectrophotometer in KBr discs (Thermo Scientific, Beijing, China). Optical rotations were measured
on a JASCO P-1020 digital polarimeter (JASCO Corporation, Tokyo, Japan). HRESIMS and ESIMS
data were obtained on a Thermo Scientific LTQ Orbitrap XL mass spectrometer. ECD spectra were
measured on a JASCO J-715 spectra polarimeter (JASCO Corporation, Tokyo, Japan). NMR spectra
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were recorded on an Agilent 500 MHz DD2 spectrometer using TMS as the internal standard, and the
chemical shifts were recorded as δ values. Semi-preparative HPLC was performed on an ODS column
(HPLC (YMC-Pack ODS-A, 10 × 250 mm, 5 µm, 3 mL/min)). MPLC was performed on a Bona-Agela
CHEETAHTM HP100 (Beijing Agela Technologies Co., Ltd., Beijing, China). Column chromatography
(CC) was performed with silica gel (200–300 mesh, Qingdao Marine Chemical Inc. Qingdao, China)
and Sephadex LH-20 (Amersham Biosciences, San Francisco, CA, USA), respectively.

3.2. Fungal Material

The fungal strain HDN16-802 was isolated from the sediment sample of Zhangzi Island, collected
from Dalian, Liaoning Province, China. The strain was identified as Sporendonema casei based on
sequencing of the ITS region (GenBank: MK578184). A voucher specimen strain was prepared on
potato dextrose agar slants and deposited at −20 ◦C in the Key Laboratory of Marine Drugs, Chinese
Ministry of Education.

3.3. Fermentation and Extraction

S. casei HDN16-802 was cultured on slants with PDA at 28 ◦C for 7 days. Further fermentation
was carried out under static conditions at room temperature for 30 days in Erlenmeyer flasks (1000 mL),
with each containing 53 g of oatmeal and naturally collected seawater (125 mL per flask) from Huiquan
Bay, Qingdao, China. The pooled fermentation broth, together with mycelium (total of 45 L), were
macerated and extracted with an equal volume of EtOAc three times. The organic layers were combined
together and concentrated under reduced pressure to yield the extract (10 g).

3.4. Isolation

The extract (10 g) was fractionated by VLC column chromatography on silica gel using stepwise
gradient elution with petroleum ether-CH2Cl2-MeOH (from PE only to PE with DCM in different
ratios and DCM only later, and then from DCM only to DCM with MeOH in different ratios and MeOH
only, depending on the polarity from small to large) to give six fractions (fraction 1 to fraction 6).
Fraction 5 (eluted with 92:8 DCM-MeOH) was further separated by MPLC and then HPLC, eluting
with MeOH/H2O (35:65) to obtain 1 (tR 28 min; 10.0 mg). Fraction 2 (eluted with 98:2 DCM-MeOH)
was applied on a Sephadex LH-20 column and eluted with MeOH to provide six fractions (fraction
2-1 to fraction 2-6). Fraction 2-4 was separated by HPLC eluting with MeCN/H2O (23:77) to obtain 4
(tR 40 min; 5.0 mg) and 7 (tR 35 min; 5.0 mg). Fraction 3 (eluted with 94:6 DCM-MeOH) was further
separated by a C-18 ODS column with a step gradient elution of MeOH-H2O (15:85-80:20), resulting
in four fractions (fraction 3-1 to fraction 3-4). Fraction 3-1 was separated by HPLC eluting with
MeCN/H2O (gradient 15:85-25:75) to provide 2 (tR 23 min; 2.1 mg), 3 (tR 25 min; 5.1 mg), 5 (tR 45 min;
4.5 mg), and 6 (tR 50 min; 10.1 mg) and Fraction 3-1-3 was further purified by HPLC using MeOH/H2O
(24:76) as an eluent to obtain 5 (tR 25 min; 7.9 mg).

Auxarthrol D (1): Pale yellow crystal; [α]25
D −20.45 (c 0.03, MeOH); UV (MeOH) λmax (log ε) 248

(2.4), 295 (1.2), 350 (1.2) nm; CD (2.5 mM, MeOH) λmax (∆ε) 218 (+0.74), 240 (−1.78) nm, 260 (+3.13)nm,
333 (−3.68) nm; IR (KBr) νmax 3366, 2940, 2360, 1700, 1636, 1615, 1385, 1305, 1204, 1164, 1102, 1032,
910 cm−1; for 1H and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 339.1076 [M+H]+ (calculated
for C16H19O8, 339.1074)

Auxarthrol E (2): Pale yellow powder; [α]25
D −19.0 (c 0.04, MeOH); UV (MeOH) λmax (log ε) 290

(2.4), 330 (1.6) nm; CD (2.5 mM, MeOH) λmax (∆ε) 218 (−1.74), 240 (+0.58) nm, 300 (+3.78) nm; IR (KBr)
νmax 3356, 2934, 2361, 1717, 1625, 1577, 1376, 1291, 1204, 1158, 1074, 851 cm−1; for 1H and 13C NMR
data, see Tables 1 and 2; HRESIMS m/z 357.1187 [M+H]+ (calculated for C16H21O9, 357.1180).

Auxarthrol F (3): Pale yellow powder; [α]25
D −65.0 (c 0.2, MeOH); UV (MeOH) λmax (log ε) 280

(2.4), 340 (1.0) nm; CD (2.5 mM, MeOH) λmax (∆ε) 218 (−1.54) nm, 240 (+0.78) nm, 300 (+3.12) nm; IR
(KBr) νmax 3379, 2925, 2362, 1626, 1375, 1296, 1204, 1160, 1084, 1032, 849, 780 cm−1; for 1H and 13C
NMR data, see Tables 1 and 2; HRESIMS m/z 341.1237 [M+H]+ (calculated for C16H21O8, 347.1231).
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Auxarthrol G (4): Pale yellow powder; [α]25
D +5.38 (c 0.08, MeOH); UV (MeOH) λmax (log ε) 245

(2.4), 300 (1.0), 350 (1.2) nm; CD (2.5 mM, MeOH) λmax (∆ε) 210 (+3.74), 267 (−1.78), 333 (2.73) nm;
IR(KBr) νmax 3375, 2924, 2359, 1636, 1615, 1385, 1296, 1205, 1162, 1030, 771 cm−1; for 1H and 13C NMR
data, see Tables 1 and 2; HRESIMS m/z 373.0685 [M+H]+ (calculated for C16H16O8Cl, 373.0685).

Auxarthrol H (5): Pale yellow powder; [α]25
D +12.17 (c 0.2, MeOH); UV (MeOH) λmax (log ε)274

(2.4), 315 (1.4) nm; CD (2.5 mM, MeOH) λmax (∆ε) 218 (−1.74), 242 (+0.78) nm, 290 (+2.56) nm, 315
(−1.24) nm, 356 (+0.54) nm; IR (KBr) νmax 3356, 2933, 2361, 1627, 1376, 1298, 1205, 1159, 1103, 1024, 950,
601 cm−1; for 1H and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 339.1080 [M+H]+ (calculated
for C16H19O8, 339.1074).

3.5. Assay of Cytotoxic Activity

Cytotoxic activity was evaluated as previously reported [25].

3.6. Assay of Antimicrobial Activity

Antimicrobial activity was evaluated as previously reported [26].

3.7. Assay of Anticoagulant Activity

Anticoagulant activity was evaluated as previously reported [27].

3.8. Assay of Antitubercular Activity

Antitubercular activity was evaluated as previously reported [28].

4. Conclusions

In conclusion, we reported the isolation and structural elucidation of five new bioactive
anthraquinone derivatives (1–5), together with two known analogues (6–7), from Sporendonema
casei. Compound 4 is the second anthraquinone derivative with a chlorine atom. Compounds 1–7 were
evaluated for their cytotoxic, antimicrobial, anticoagulant, and antitubercular activity. Compounds 1
and 3 showed cytotoxic activities against eleven human cancer cell lines, with IC50 values ranging
from 4.5 µM to 22.9 µM, while 1, 3–4, and 6–7 showed promising antibacterial activity, with MIC
values ranging from 12.5 µM to 200 µM. Compounds 4 and 6 displayed a moderate anticoagulant
effect, which are the first anthraquinone derivatives with this activity. In addition, 7 was found to
display potential antitubercular activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/6/334/s1, 1D
and 2D NMR and HRESIMS spectra of 1–7. Figures S1–S8: 1D and 2D NMR and HRESIMS spectra of Auxarthrol
D (1); Figures S9–S17: 1D and 2D NMR and HRESIMS spectra of Auxarthrol E (2); Figures S18–S25: 1D and 2D
NMR and HRESIMS spectra of Auxarthrol F (3); Figures S26–S33: 1D and 2D NMR and HRESIMS spectra of
Auxarthrol G (4); Figures S34–S41: 1D and 2D NMR and HRESIMS spectra of Auxarthrol H (5).
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