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Abstract: Thirty-four new benzo[d]thiazol derivatives 2a–2i, 3a–3r, and 4a–4g were synthesized and
investigated for their potential antidepressant and anticonvulsant effects. In a forced swimming
test, 2c and 2d showed the highest antidepressant and anticonvulsant effects. 2c and 2d displayed
a higher percentage decrease in immobility duration (89.96% and 89.62%, respectively) than that
of fluoxetine (83.62%). In the maximal electroshock seizure test, 3n and 3q showed the highest
anticonvulsant effect, with ED50 values of 46.1 and 64.3 mg kg−1, and protective indices of 6.34 and
4.11, respectively, which were similar to those of phenobarbital or valproate. We also found that the
mechanism for the antidepressant activity of 2c and 2d may be via increasing the concentrations of
serotonin and norepinephrine.
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1. Introduction

During selective evolution, microorganisms in the polar region are distinct from other microorganisms
with respect to genomic composition and have unique molecular–biological mechanisms, including
metabolic regulation. Tan et al. reported very rich microbial resources in the Arctic and Antarctic [1].
In addition to extremely high species diversity [2], the structures of secondary metabolites of polar
microbes also show diversity. Therefore, the Arctic and Antarctic regions are considered to be valuable
natural products pools.

In an investigation of the secondary metabolites of the Antarctic-derived fungus Penicillium sp.
44.42 ◦W, 60.54 ◦S, 239 m underwater, water temperature of−1.16 ◦C), Jiao et al. reported the isolation of
nine compounds from the fermentation broth of Penicillium sp. [3], including benzo[d]thiazol-2(3H)-one
(Figure 1). Benzothiazoles are heterocyclic aromatic hydrocarbons containing phenyl and thiazole
rings, as well as sulfur and nitrogen atoms in their structures. Benzothiazole derivatives display a
wide spectrum of pharmacologic effects, including anti-inflammatory [4], antibacterial [5], antiviral [6],
antioxidant [7], and immunomodulatory properties [8]. In addition to the central nervous system
(CNS)-related pharmacologic effects, benzothiazole compounds have been reported to display
selective inhibitory effects against monoamine oxidase [9–12], as well as anti-Alzheimer’s disease [13]
and convulsions [14]. The antidepressant effect of a series of benzothiazole derivatives has been
demonstrated through animal models such as the tail suspension test (TST) and forced swimming test
(FST) [15,16].

Several reports have described the antidepressant and anticonvulsant activities of benzothiazole
derivatives [15,16]. For this reason, we synthesized thirty-four new benzo[d]thiazole derivatives 2a–2i,
3a–3r and 4a–4g (Schemes 1 and 2) and investigated their potential antidepressant activity using the FST
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and their potential anticonvulsant effect using the maximal electroshock seizure (MES) test as well as
their toxicity.Mar. Drugs 2019, 17, x FOR PEER REVIEW 2 of 10 
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Figure-1. Structures of the lead compounds and derivatives 2a–2i, 3a–3r, and 4a–4g. 
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Figure 1. Structures of the lead compounds and derivatives 2a–2i, 3a–3r, and 4a–4g.
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2. Results

2.1. Synthesis

Target compounds 2a–2i, 3a–3r, and 4a–4g were prepared as shown in Schemes 1 and 2.
Commercially available benzo[d]thiazol-2-ol was the starting material; the derivatives 2a–2i and
3a–3r were obtained through the introduction of an alkyl group or benzyl group by a one-step
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nucleophilic substitution reaction. Compounds 4a–4g were obtained through a two-step reaction.
The intermediate 2-(2-bromoethoxy)benzo[d]thiazole was synthesized and underwent a nucleophilic
substitution reaction with 1,2-dibromoethane, then the 2-(2-bromoethoxy) benzo[d] thiazole formed
was reacted with substituted phenols. The structures of 2a–2i, 3a–3r, and 4a–4g were determined by
infrared spectrophotometry, 1H and 13C NMR spectroscopy, as well as mass spectrometry.

2.2. Antidepressant Activity of 2a–2i, 3a–3r, and 4a–4g in the FST

The antidepressant activity of fluoxetine, 2a–2i, 3a–3r, and 4a–4g, as indicated by the immobility
time in the FST, is displayed in Table 1. Most of the compounds, except for 3h, 3k, 3l, 3r, 4c, and
4e, induced a significant decrease in the immobility time at 30 mg kg−1 and showed a marked
antidepressant effect (Table 1). In particular, 2b–2d, 2f, and 3q possessed the highest antidepressant
effect and induced a significant decrease in the immobility time compared with that of the control
group (p < 0.001).

Table 1. Antidepressant effect of 2a–2i, 3a–3r, and 4a–4g.

Antidepressant Effect

Compounds Duration of Immobility (s) TID a (%)

2a 122.5 ± 9.2 * 31.64
2b 59.3 ± 8.8 *** 66.91
2c 18.0 ± 2.4 *** 89.96
2d 18.6 ± 6.8 *** 89.62
2e 104.2 ± 9.7 * 46.32
2f 26.7 ± 7.4 *** 85.10
2g 67.7 ± 10.7 ** 62.22
2h 76.0 ± 13.2 ** 57.59
2i 93.0 ± 9.0 ** 48.10
3a 81.2 ± 9.4 ** 54.69
3b 84.8 ± 5.6 ** 52.68
3c 61.5 ± 3.3 ** 65.68
3d 75.2 ± 8.2 ** 58.04
3e 132.2 ± 8.5 * 26.23
3f 68.2 ± 11.5 ** 61.94
3g 80.3 ± 11.9 ** 55.19
3h 141.3 ± 8.5 21.15
3i 66.0 ± 8.1 ** 63.17
3j 99.3 ± 8.7 ** 44.59
3k 153.8 ± 11.0 14.17
3l 172.5 ± 5.4 3.74

3m 125.8 ± 13.6 * 29.80
3n 124.5 ± 14.3 * 30.52
3o 130.6 ± 5.4 * 27.12
3p 71.2 ± 7.0 ** 60.27
3q 26.3 ± 10.3 *** 85.32
3r 143.2 ± 11.4 20.09
4a 67.5 ± 7.3 ** 62.33
4b 130.5 ± 7.9 * 37.56
4c 141.7 ± 9.1 32.20
4d 116.2 ± 7.0 * 44.40
4e 151.7 ± 14.1 27.42
4f 129.5 ± 5.4 * 38.04
4g 124.2 ± 8.1 * 40.57

control 194.1 ± 11.1 -
fluoxetine 31.8 ± 7.7 *** 83.62

a TID: percentage decrease in immobility duration. Significant differences versus control values. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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To better understand the antidepressant effect of 2a–2i, 3a–3r, and 4a–4g, the percentage reduction
in the time of immobility (% TID) was calculated using the formula

% TID = [(X − Y)/X] × 100

where X is the immobility time (s) for the control group and Y is the immobility time (s) for the test
group. 2c, 2d, 2f, and 3q reduced the immobility time and showed higher TID values than the other
tested compounds (Table 1). The % TID values for 2f (85.10%) and 3q (85.32%) were similar to that of
fluoxetine at a concentration of 30 mg kg−1 in the FST. However, 2c and 2d showed higher % TID values
(89.96% and 89.62%, respectively) than that of fluoxetine (83.62%), suggesting that these compounds
may have superior antidepressant effects compared with that of fluoxetine (duration of immobility (s):
2c = 18.0 ± 2.4; 2d = 18.6 ± 6.8; fluoxetine = 31.8 ± 7.7).

2.3. Anticonvulsant Activity of 2a–2i, 3a–3r, and 4a–4g in the MSE Test

The phase-I test study comprised two parts: MES and toxicity. The toxicity was measured
by the rotorod toxicity experiment. Compounds 2a–2i, 3a–3r, and 4a–4g were assessed for their
anticonvulsant activity. The phase-I test was a qualitative analysis, with three doses of the test
compounds administered (30, 100, and 300 mg kg−1). A protective effect was observed in mice through
intraperitoneal administration of 2a–2i, 3a–3r, and 4a–4g in the MES test (Table 2). Except for 2f–2i, 3h,
3j, 3k, 4a and 4f, other derivatives displayed an anticonvulsant effect. Compounds 2a, 3a, 3l, 3n–3q,
and 4b displayed the highest anticonvulsant effect at 30 mg kg−1 in an MES test. Compounds 2c–2e,
3b, 3e–3g, 3i, 3m, 3r, 4d, 4e and 4g were active at 100 mg kg−1. While 2b, 3c, 3d, and 4c showed the
anticonvulsant activity at 300 mg kg−1. The rotorod toxicity experiment indicated that 2a–2i, 3a–3r,
and 4a–4g did not display toxicity at the test doses. In addition, all compounds were excreted or
metabolized in ~4 h.

Table 2. Anticonvulsant activity of 2a–2i, 3a–3r, and 4a–4g in a phase-I study.

Compounds Dosage (mg·kg−1)
MES a Rotorod b

0.5 h 4 h 0.5 h 4 h

2a 30 1/3 0/3 0/3 0/3
2b 300 1/3 0/3 0/3 0/3
2c 100 1/3 0/3 0/3 0/3
2d 100 1/3 0/3 0/3 0/3
2e 100 1/3 0/3 0/3 0/3
2f 300 0/3 0/3 0/3 0/3
2g 300 0/3 0/3 0/3 0/3
2h 300 0/3 0/3 0/3 0/3
2i 300 0/3 0/3 0/3 0/3
3a 30 1/3 0/3 0/3 0/3
3b 100 3/3 0/3 0/3 0/3
3c 300 1/3 0/3 0/3 0/3
3d 300 1/3 0/3 0/3 0/3
3e 100 3/3 0/3 0/3 0/3
3f 100 1/3 0/3 0/3 0/3
3g 100 1/3 0/3 0/3 0/3
3h 300 0/3 0/3 0/3 0/3
3i 100 1/3 0/3 0/3 0/3
3j 300 0/3 0/3 0/3 0/3
3k 300 0/3 0/3 0/3 0/3
3l 30 2/3 0/3 0/3 0/3

3m 100 2/3 0/3 0/3 0/3
3n 30 3/3 0/3 0/3 0/3
3o 30 1/3 0/3 0/3 0/3
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Table 2. Cont.

Compounds Dosage (mg·kg−1)
MES a Rotorod b

0.5 h 4 h 0.5 h 4 h

3p 30 2/3 0/3 0/3 0/3
3q 30 3/3 0/3 0/3 0/3
3r 100 2/3 0/3 0/3 0/3
4a 300 0/3 0/3 0/3 0/3
4b 30 1/3 0/3 0/3 0/3
4c 300 1/3 0/3 0/3 0/3
4d 100 1/3 0/3 0/3 0/3
4e 100 1/3 0/3 0/3 0/3
4f 300 0/3 0/3 0/3 0/3
4g 100 1/3 0/3 0/3 0/3

Valproate 100 3/3 0/3 0/3 0/3
a MES test (numbers of mice defended/numbers of mice detected); b Toxicity: rotorod test (numbers of mice showing
toxicity/numbers of mice detected).

Next, the effect of 2a, 3a, 3b, 3e, 3l, 3n–3q, and 4b were evaluated quantitatively for their
anticonvulsant activity median effective dose (ED50) and neurotoxicity median toxicity dose (TD50)
(Table 3) in a phase-II experiment. 3n and 3q showed the greatest effect, with ED50 values of 46.1 and
64.3 mg kg−1, and protective index (PI) of 6.34 and 4.11, respectively, which were higher than those of
phenobarbital and valproate.

Table 3. Anticonvulsant activity of 2a, 3a, 3b, 3e, 3l, 3n–3q and 4b in a phase-II study.

Compounds ED50
a (mg/kg) TD50

b (mg/kg) PI (TD50/ED50)

2a 90.8 >200 3.20
3a 105.9 >200 2.89
3b >300 >200 1.89
3e 147.2 >200 2.36
3l >300 >200 2.04
3n 46.1 >200 6.34
3o 84.3 >200 3.37
3p >300 >200 1.13
3q 64.3 >200 4.11
4b 74.5 >200 3.69

Phenobarbital c 21.8 69.0 3.2
Valproate 247 >200 1.6

a ED50: Median effective dose affording anticonvulsant defense for 50% animals; b TD50: Median toxic dose eliciting
minimal neurological toxicity for 50% animals; c data from Krall et al. 1978 [17].

2.4. Effects of 2c and 2d on Monoamine Levels

Monoamine concentrations in the mouse brain are shown in Table 4. The concentration of 2c,
2d, and fluoxetine was 30 mg kg−1. The neurotransmitter concentration was calculated as ng g per
brain region wet weight. 2c and 2d did not alter the dopamine concentration, but increased the
concentrations of serotonin and norepinephrine in mouse brain significantly in the FST, and these
effects were similar to those of the positive control fluoxetine.
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Table 4. Effect of 2c and 2d on monoamine concentrations in mouse brain.

Groups Serotonin Norepinephrine Dopamine

Normal Vehicle 325.1 ± 28.3 298.4 ± 22.4 357.4 ± 29.8
Stress Vehicle 202.4 ± 38.4 c 207.3 ± 25.7 c 218.7 ± 20.0

2c 334.5 ± 31.9 b,c 309.5 ± 20.6 a,c 201.5 ± 19.2
2d 329.0 ± 27.8 b,c 310.7 ± 24.9 a,c 206.0 ± 18.7

Fluoxetine 340.3 ± 32.5 b,c 321.8 ± 29.1 a,c 202.6 ± 17.8

Values are given as mean ± SEM (n = 8). a P < 0.05, b P < 0.01 vs. stress vehicle; c P < 0.05 vs. normal vehicle.

3. Discussion

The FST is a model of depression. It mimics the condition of hopelessness and has a good
predictive validity in mice. In this model, mice are limited in movement and cannot abscond, which
results in motionlessness [18]. The immobility displayed in this model has been assumed to correspond
to a behavioral response to hopelessness which, in turn, might correspond to a depressive disorder in
humans [19].

Nine benzo[d]thiazole derivatives (2a–2i) containing an alkyl group with 2–10 carbons displayed
antidepressant activity. Among them, 2c (n-butyl group) and 2d (n-pentyl group) exhibited the highest
antidepressant activity. Although alkyl groups are not a functional group, they can play an important
role in the binding interactions of a drug with its target. Alkyl chains are hydrophobic and can interact
with the hydrophobic region of a receptor through Van der Waals interaction in the binding site.
Varying the size of the group allows exploration of the hydrophobic region [20].

Among 18 benzyloxybenzo[d]thiazole derivatives 3a–3r, most of the compounds, except for
3h, 3k, 3l and 3r, induced a significant decrease in the immobility time at 30 mg kg−1 and showed
marked antidepressant effect. Interestingly, 3q, which has two methyl substituents on the phenyl ring,
displayed the highest antidepressant effect.

However, the reduction conditions needed would be quite harsh and might not be feasible without
causing drug degradation [20]. The position of halogen atoms affects antidepressant activity on the
phenyl ring.

Comparing the F-substituted compounds 3b, 3c and 3d at different positions on the phenyl ring,
the sequence of effect was 3-F > 4-F > 2-F, and the sequence of effect for Cl-substituted compounds 3e,
3f, and 3g was 3-Cl > 4-Cl > 2-Cl. The sequence of effect for different Br-substituted compounds 3h, 3i,
and 3j was 3-Br > 4-Br > 2-Br. In addition, among the compounds with electron-withdrawing groups
(i.e., 3k, 3l, 3m, and 3n), only 3m and 3n (with a –CF3 group) exhibited the antidepressant activities.
For compounds with electron-donating groups, 3o–3r, the sequence of activity was 3,5-(CH3)2 >

4-OCH3 > 4-CH3 > 3,5-(OCH3)2. Of seven phenoxylethoxylbenzo[d]thiazole compounds 4a–4g, except
for 4c and 4e, the remaining five compounds 4a, 4b, 4d, 4f, and 4g induced a significant decrease in the
immobility time at 30 mg kg−1 and exhibited antidepressant effects. Among them, 4a displayed the
highest antidepressant activity.

Nervous stress can cause impressionable individuals to develop epilepsy, and depressive illness
is a general comorbidity related to epilepsy [21]. Nevertheless, understanding the heterogeneity
of depression and epilepsy is difficult [22] Antiepileptic drugs might ameliorate the symptoms of
depression, as indicated in clinical studies. Curing depression will have positive effects on epilepsy
and quality of life.

The anticonvulsant effects of 2a–2i, 3a–3r, and 4a–4g were evaluated using the MES test. The most
efficacious compounds, 3n and 3q, exhibited ED50 values of 46.1 and 64.3 mg kg−1 and had PI values
of 6.34 and 4.11, respectively, which were greater than those of phenobarbital or valproate. Therefore,
3n and 3q might be useful candidates as antidepressant drugs for curing depression in patients
with epilepsy.

A disruption in the release of neurotransmitters in the CNS, such as serotonin, norepinephrine,
and dopamine, has been proposed to be a characteristic of depression. The metabolic imbalance of
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monoamine transmitters is considered to be a fundamental neurochemical feature in patients with
depression. Hence, patients could be treated by increasing monoamine concentrations in the CNS [23].
We found that 2c and 2d increased concentrations of serotonin and norepinephrine markedly without
altering dopamine concentrations in mouse brains, in a similar manner to that seen with the positive
control fluoxetine in the FST. A cure for patients with major depression is deemed to include an increase
in levels of serotonin or norepinephrine [24,25]. Thus, the antidepressant activities of 2c and 2d could
be reflected by measuring levels of serotonin and norepinephrine in the CNS.

4. Method and Material

4.1. Reagents and Instruments

Positive drug: fluoxetine (purity > 99%) was purchased from Sigma. Melting points were measured
by the melting point apparatus (WRS-1B, Shanghai, China). Infrared spectra (IR in KBr) were recorded
using FT-IR1730 (Bruker, Switzerland). 1H and 13C NMR spectra were recorded on an AV-300 (Bruker,
Switzerland), and the chemical shift values are in ppm relative to the TMS or solvent peaks. Mass spectra
were recorded on MALDI-TOF/TOF mass spectrometer (Bruker Daltonik, Bremen, Germany). Main
reagents were purchased from Aldrich Chemical Corporation (Shanghai, China).

4.2. Synthesis of Benzo[d]thiazol and Benzyloxybenzo[d]thiazole Derivatives 2a–2i, 3a–3r

A solution of benzo[d]thiazol-2-ol (3.0 mmol), anhydrous K2CO3 (3.0 mmol) and 5 mL DMF was
stirred in a round-bottomed flask for 1 h at 60 ◦C, then, 1.2 mmol of alkyl bromide or substituted
brominated benzyl compound was added slowly to the reaction solution. The reaction solution was
refluxed for 5 h, the reaction was monitored by TLC. DMF was evaporated under reduced pressure,
the residue was washed with water, filtered, dried and the crude product was crystallized from MeOH.
The yield, melting point, and spectral data of each compound are given below.

4.3. Synthesis of Ethoxylbenzo[d]thiazole Derivatives 4a–4g

A mixture of benzo[d]thiazol-2-ol (3.0 mmol, 0.5 g), 1,2-dibromoethane (3.0 mmol, 0.6 g) and
anhydrous K2CO3 (3.0 mmol, 0.4 g) was refluxed in DMF for 1 h, after the completion of the reaction
(as monitored by TLC), DMF was evaporated and the precipitated product was washed with deionized
water, dried. Then, 2-(2-bromoethoxy)benzo[d]thiazole (3.0 mmol, 0.8 g), 10 mL of a mixture of NaOH
and substituted phenol was refluxed in EtOH for 2–5 h. After the completion of the reaction (as
monitored by TLC), the solution was filtered and washed with 10% HCl and water. The crude product
was recrystallized from MeOH. The melting points, yields, and spectral data of 4a–4g are given below.

4.4. Experimental Animal and Compounds Treatment

Male ICR mice (20± 2 g) were purchased from the laboratory of animal study of Zhejiang Academy
of medical sciences. Before the experiment started, mice were tamed for 1 week. During and before the
test, mice were kept at 23 ± 2 ◦C for 12 h, at day and night circle, and tap water and standard food
granules were provided. The procedures were adopted according to the National Institute of Health
Guide for the Care and Use of Laboratory Animals and approved by the Ethics Committee of our
Institution in this study. All the test compounds were dissolved in PEG-400 (polyethylene glycol-400).
Other drugs were dissolved in 0.9% NaCl (isotonic saline solution). Fluoxetine, phenobarbital, and
valproate were used as positive controls and the vehicle as the negative control. All the test compounds
and other drugs were administered intraperitoneally for 30 min in the FST, the volume of the drug
solution and vehicle was 0.1 mL/20 g of mice.

4.5. In the FST

Male ICR mice were randomized into groups. On the day of the experiment, mice were placed
one at a time into a Perspex barrel (elevation 20 cm, 10 cm diameter) including 10 cm water about
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22 ◦C. Mice were arranged into different groups (n = 8). Next, a mouse was placed independently into
the perspex barrel and kept in the water for six minutes. After two minutes of fierce struggle, the mice
were immobile. The duration of immobility was recorded during the last four min of the six min test.
The immobility course was treated as the time that the mice floating on the water without struggle and
maintained only the movements necessary to provide their head above the water [26,27].

4.6. In the MES Experiment

Convulsions were initiated in mice with a 60 Hz alternating current for 50 mA. The electric
current was implemented via corneal electrodes for 0.3 s. Protection against the spread of the maximal
electroshock seizure-induced seizures was defined as the abolition of the hind leg and tonic maximal
extension component of the seizure. At 30 min after the administration of the compounds, the activity
was evaluated in the maximal electroshock seizure test [28].

4.7. Experiment of Neurotoxicity

The neurotoxicity experiment of the compounds and drugs was evaluated through the rotorod
experiment in mice. The mice were trained to stay on an accelerating rotorod of diameter 3.2 cm that
rotated at 10 rpm. Trained animals were given an intraperitoneal injection of the test compounds.
Neurotoxicity was indicated by the inability of the animal to maintain equilibrium on the rod for at
least 1 min in each of the trials. The MES and rotorod tests were carried out according to the standard
procedure described in the Antiepileptic Drug Development Program (ADD) of the National Institutes
of Health (USA) [29].

4.8. HPLC conditions and Sample Preparation

The dosage of 30 mg kg−1 of 2b, 2c and fluoxetine was used for testing the action on MOA
neurochemical levels in rat brain. Mice were randomly divided into five groups (n = 10). 2b, 2c and
fluoxetine, normal vehicle, stress vehicle oral gavage once a day for seven days. After the end of the test,
the mouse was immediately sacrificed by cervical dislocation, then the brain tissue was immediately
removed, and quickly frozen and at −80 ◦C until used for neurochemical analysis. The brain tissues
were sonicated in 0.1 M NaH2PO4 aqueous solution including 0.85 mM OSA, 0.5 mM Na2·EDTA
(ethylenediamine tetraacetic acid disodium), centrifuged at 13,000× g at 4 ◦C for 15 minutes. Then
serotonin, norepinephrine and dopamine were analyzed by High-Performance Liquid chromatography
coupled with an electron capture detector. The mobile phase was made up of 0.1 mol L-1 anhydrous
sodium dihydrogen phosphate containing 0.5 mM EDTA and 0.85 mM osanetant (OSA) and 11% MeOH
and regulated to pH 3.4 using phosphate acid buffer solution and filtered by the pore size ultrafiltration
membrane of 0.45 µM. The external standard curves were used to quantify the amounts of serotonin,
noradrenaline, and dopamine in each sample calculated by area under the curve. The injection volume
dose was 20 µL. The detection limit of the analysis was 20 pg·g−1 sample.

4.9. Statistic Analysis

All analyses were performed using the GraphPad Prism program (GraphPad software, Inc.,
San Diego, CA, USA). The statistical analysis of the behavioral tests was performed by analysis of
variance (ANOVA), which was followed by Tukey’s post hoc comparison test. All experimental
results are presented as mean (s) ± standard error of the mean (SEM), with a p-value smaller than 0.05
considered statistically significant.

5. Conclusions

Thirty-four previously unreported benzo[d]thiazol derivatives 2a–2i, 3a–3r, and 4a–4g were prepared
and assessed for their potential antidepressant and anticonvulsant effects. 2c and 2d decreased the
immobility time markedly and displayed the highest antidepressant effects in the FST, and also showed
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anticonvulsant activity. 2c and 2d did not change the dopamine concentration but increased the
concentrations of serotonin and norepinephrine significantly in the mouse brain in the FST, similar
to that observed with the positive control fluoxetine. These results suggest that 2c and 2d may be potential
leads for the development of therapeutic agents for the treatment of depression and epilepsy.
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