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Abstract: µ-Conotoxin PIIIA, in the sub-picomolar, range inhibits the archetypal bacterial sodium
channel NaChBac (NavBh) in a voltage- and use-dependent manner. Peptide µ-conotoxins were first
recognized as potent components of the venoms of fish-hunting cone snails that selectively inhibit
voltage-gated skeletal muscle sodium channels, thus preventing muscle contraction. Intriguingly,
computer simulations predicted that PIIIA binds to prokaryotic channel NavAb with much higher
affinity than to fish (and other vertebrates) skeletal muscle sodium channel (Nav 1.4). Here, using
whole-cell voltage clamp, we demonstrate that PIIIA inhibits NavBac mediated currents even more
potently than predicted. From concentration-response data, with [PIIIA] varying more than 6 orders
of magnitude (10−12 to 10−5 M), we estimated an IC50 = ~5 pM, maximal block of 0.95 and a Hill
coefficient of 0.81 for the inhibition of peak currents. Inhibition was stronger at depolarized holding
potentials and was modulated by the frequency and duration of the stimulation pulses. An important
feature of the PIIIA action was acceleration of macroscopic inactivation. Docking of PIIIA in a
NaChBac (NavBh) model revealed two interconvertible binding modes. In one mode, PIIIA sterically
and electrostatically blocks the permeation pathway. In a second mode, apparent stabilization of
the inactivated state was achieved by PIIIA binding between P2 helices and trans-membrane S5s
from adjacent channel subunits, partially occluding the outer pore. Together, our experimental
and computational results suggest that, besides blocking the channel-mediated currents by directly
occluding the conducting pathway, PIIIA may also change the relative populations of conducting
(activated) and non-conducting (inactivated) states.

Keywords: µ-conotoxin PIIIA; voltage-gated sodium channels; bacterial sodium channels, prokaryotic
sodium channels (NavBacs); eukaryotic sodium channels (Nav1s); voltage- and use-dependent block

1. Introduction

µ-Conotoxins (µCTXs) are toxic peptides from venoms of fish-hunting cone snails. After injection
of the venom, µCTXs ultimately cause flaccid paralysis by blocking skeletal muscle voltage-gated
sodium channels (Navs). These Navs initiate the muscle action potentials that in turn trigger contraction,
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enabling cone snails to ingest paralysed prey fish. Accidental envenomation of humans can cause fatal
respiratory arrest. Molecular targeting of eukaryotic vertebrate Navs by µCTXs was shown in the
1980s by Olivera and collaborators [1,2]. Actions of µCTXs and various other Conus peptides have
been reviewed extensively, e.g. [3–5]. µCTXs from different Conus species interact with the pore region
of vertebrate Navs and show remarkable ability to discriminate among closely related eukaryotic Nav
channel isoforms (Nav1.1–Nav1.9), and for that reason have been explored, highlighting their potential
as potential analgesics [6–8].

Vertebrate Nav1.x α-subunits are formed by a single chain of approximately 2000 amino acids that
folds around a 4-fold axis in which the 4 unique functional domains (I–IV) retain structural homology
(4-domain-Nav). That is, each domain is composed by six transmembrane helices (S1–6) where S1-4
comprise the voltage-sensing domain (VSD), and the S5-pore loop-S6 conform the pore domain (PD)
(Figure 1a, right). Bacterial Navs, in turn, are assembled from four copies of a shorter polypeptide
α-subunit, homologous to one vertebrate domain with four individual α-subunits arranged as a
tetramer to form a functional ion channel (homotetrameric-Nav, Figure 1a, left) [9–12].

Mar. Drugs 2019, 17, x FOR PEER REVIEW 2 of 17 

 

can cause fatal respiratory arrest. Molecular targeting of eukaryotic vertebrate Navs by µCTXs was 

shown in the 1980s by Olivera and collaborators [1,2]. Actions of µCTXs and various other Conus 

peptides have been reviewed extensively, e.g. [3–5]. µCTXs from different Conus species interact with 

the pore region of vertebrate Navs and show remarkable ability to discriminate among closely related 

eukaryotic Nav channel isoforms (Nav1.1–Nav1.9), and for that reason have been explored, 

highlighting their potential as potential analgesics [6–8].  

Vertebrate Nav1.x α-subunits are formed by a single chain of approximately 2000 amino acids 

that folds around a 4-fold axis in which the 4 unique functional domains (I–IV) retain structural 

homology (4-domain-Nav). That is, each domain is composed by six transmembrane helices (S1–6) 

where S1-4 comprise the voltage-sensing domain (VSD), and the S5-pore loop-S6 conform the pore 

domain (PD) (Figure 1a, right). Bacterial Navs, in turn, are assembled from four copies of a shorter 

polypeptide -subunit, homologous to one vertebrate domain with four individual -subunits 

arranged as a tetramer to form a functional ion channel (homotetrameric-Nav, Figure 1a, left) [9–12]. 

 

Figure 1. Topology and sequences of voltage-gated sodium channels. (a) Topology of bacterial  

(NavBac) and mammalian (Nav) channels. (b) Aligned sequences of the P-loops in prokaryotic and 

eukaryotic (Nav1.4) voltage-gated sodium channels (pore helix 1, P1; selectivity filter, SF; and pore 

helix 2, P2). Also shown are % identity, in comparison to NaChBac (NB), and Qnet, the net charge at 

the selectivity filter including the inner and outer rings. In Nav1.x, the selectivity filter is formed by 

the DEKA ring. Notably, not all published alignments of pro- and eukaryotic sequences show the 

EEEE ring of NavBacs and DEKA ring of Nav1.x channels in matching positions. 

The PD of vertebrate 4-domain-Navs forms the Na+ selectivity filter (SF), which is comprised of 

the asymmetric “DEKA” motif from domains I-IV. Distinctively, bacterial homotetrameric-Navs have 

a SF symmetrically contributed by glutamates, “EEEE” motif, from each of the four monomeric α-

subunits (Figure 1b) [13]. Our study of µCTX interactions with bacterial Navs were initially motivated 

by docking simulations by Chung and collaborators [14,15]. Despite remarkable functional 

homology, the fundamental structural differences between vertebrate 4-domain channels and 

bacterial homotetrameric-Navs, pose questions as to how a µCTX, presumably evolved to target 

selectively the asymmetric 4-domain- channel Nav1.4, is able to inhibit symmetric homotetrameric- 

bacterial Navs with orders of magnitude higher potency, as suggested by computational studies. 

Figure 1. Topology and sequences of voltage-gated sodium channels. (a) Topology of bacterial (NavBac)
and mammalian (Nav) channels. (b) Aligned sequences of the P-loops in prokaryotic and eukaryotic
(Nav1.4) voltage-gated sodium channels (pore helix 1, P1; selectivity filter, SF; and pore helix 2, P2).
Also shown are % identity, in comparison to NaChBac (NB), and Qnet, the net charge at the selectivity
filter including the inner and outer rings. In Nav1.x, the selectivity filter is formed by the DEKA ring.
Notably, not all published alignments of pro- and eukaryotic sequences show the EEEE ring of NavBacs
and DEKA ring of Nav1.x channels in matching positions.

The PD of vertebrate 4-domain-Navs forms the Na+ selectivity filter (SF), which is comprised
of the asymmetric “DEKA” motif from domains I-IV. Distinctively, bacterial homotetrameric-Navs
have a SF symmetrically contributed by glutamates, “EEEE” motif, from each of the four monomeric
α-subunits (Figure 1b) [13]. Our study of µCTX interactions with bacterial Navs were initially
motivated by docking simulations by Chung and collaborators [14,15]. Despite remarkable functional
homology, the fundamental structural differences between vertebrate 4-domain channels and bacterial
homotetrameric-Navs, pose questions as to how a µCTX, presumably evolved to target selectively the
asymmetric 4-domain- channel Nav1.4, is able to inhibit symmetric homotetrameric- bacterial Navs
with orders of magnitude higher potency, as suggested by computational studies.
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Our study demonstrates sub-picomolar µCTX PIIIA inhibition of two different bacterial sodium
channels, NaChBac and NavSp1. Electrophysiological measurements, sequence analysis, and
computational predictions suggest a rationale for the potent µCTX PIIIA effect on bacterial sodium
channels supported on (a) the combination of a fairly homogenous distribution of excess positive charge
on the PIIIA surface, and (b) a complementary excess of acidic residues on the pores of homotetrameric-
NavBacs. We present two molecular models of PIIIA-bound channels, one illustrating direct pore
occlusion by µCTX’s key arginine, and the other, a possible mechanism by which PIIIA appears to
induce and/or stabilize an inactivated, non-conducting channel.

2. Results

In the Results, we first describe several experimental observations that outline the similarities and
differences of µCTX action on bacterial Nav channels, as compared with the better-studied effects on
vertebrate Nav1.x channels.

2.1. Extremely High Affinity Block of NaChBac by µ-Conotoxin PIIIA

At saturating concentrations PIIIA blocks ~95% of NaChBac’s peak current, consistent with nearly
complete block of single channels by this conotoxin. Although most µCTXs probably cause all-or-none
block of their biological targets, there are a number of precedents for incomplete block of unitary
currents following replacement of a key basic residues (arginine or lysine), e.g. GIIIA-R13Q and other
homologous substitutions including Q, N, A, K, E, D, W, H [16–18]. Even for potential biological
targets, channel occlusion may be less than complete, e.g. µCTX KIIIA block of neuronal Nav1.2 [6].
PIIIA block of NaChBac (Figure 2b) shows a Hill coefficient that is slightly less than 1 (0.81 ± 0.12); this
is consistent with a minority fraction of the channels being bound, but not blocked, by PIIIA (this point
will be expanded in the Results, Section 2.7. Possible Binding Orientations of PIIIA in NaChBac).
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Figure 2. µ-CTX PIIIA blocks NaChBac in the picomolar range. (a) NaChBac-mediated currents
in control (black) and 3 different PIIIA concentrations (red). Test pulse: −10 mV, 300 ms,
from Vh = −100 mV at 0.1 Hz. Scale bars: 0.5 nA, 100 ms. (b) Dose-response curve for PIIIA
inhibition of peak currents over 8 orders of magnitude of PIIIA concentrations (Vh = −100 mV, 35 mM
Nai,105 mM Csi/142.5 mM Nao; n = 3–6 per concentration).
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2.2. Replacement of a Key “Blocking” Residue (PIIIA-R14A) Abolishes the Speeding of Inactivation and
Reduces Apparent Affinity by ~100-Fold, but Does Not Prevent Reduction of Current

To illustrate a complexity of PIIIA interaction with NaChBac that is not seen in experiments with
mammalian Nav1.x channels we assessed the effects of PIIIA-R14A on NaChBac mediated currents
(Figure 3). Substitution R14A decreases the affinity of PIIIA for mammalian channels and produces
incomplete block at the single-channel level [19,20].
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Figure 3. Inhibitory and kinetic effects of PIIIA, and of weakly blocking mutant, PIIIA-R14A. (a) Current
traces elicited by pulses to −10 mV, from Vh = −100 mV at 0.1 Hz stimulation. Black: control, red: PIIIA,
orange: PIIIA-R14A, grey: scaled currents in presence of peptide. Scale bar: 1 nA, 100 ms. (b) Relative
time constants for inactivation decay normalized to the value at the beginning of the experiment for
NaChBac currents inhibited by PIIIA wt (
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2.3. PIIIA Inhibits Navbacs from B. Halodurans and S.pomeroy: Inactivation Is Shifted toward More Negative
Voltages, without a Measurable Shift in Activation

In Figure 4 and Table 1, we show that, without any significant shift in activation, prepulse-induced
inactivation (or steady state inactivation, SSI) is shifted toward more negative voltages in the presence of
PIIIA, for both NaChBac and NavSp1. Whole-cell voltage clamp records measuring unblocked currents
in the presence of PIIIA in Figure 4a show a substantial negative shift of about 25 mV in the voltage
dependence of prepulse-induced inactivation, for these two NavBacs, which have quite different
activation and inactivation kinetics (Figure 4a,c). It is possible that currents during the relatively
brief depolarizing test pulses reflect sodium influx through toxin-unbound channels. On the other
hand, it is conceivable that are more conformations of toxin-bound NavBacs, e.g., bound-unblocked,
bound-slow-inactivated, and bound-blocked, with the first two representing intermediate states on
a path to the maximally blocked species (Figures 2 and 3). Thus, the observed voltage shifts of
inactivation appear to reflect a direct effect of PIIIA on the inactivation process, rather than resulting
indirectly from modulation of the activation process by PIIIA.
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Figure 4. µ-CTX PIIIA inhibits both NB (NaChBac) and Sp1 channels with high potency. (a) NB
(left) and Sp1 (right) mediated currents in response to IV protocol (Vh= -120 mV, no p/n correction;
concentrations in mM 142.5 Nao; NB: 35 Nai, 105 Csi; Sp1: 140 Csi). Scale bars are 1 nA, 20 ms.
Top: control, bottom PIIIA. Currents at -10 mV (NB red) and +30 mV (Sp1 magenta) are highlighted
in black (control), red and magenta (PIIIA). (b) Peak I-V relationship in control (
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Table 1. Parameter values for Figure 4c fits to voltage-dependent activation (G/Gmax vs V), and
dependence of channel availability (SSI) to open on holding potential (I/Imax vs Vh).

NaChBac Sp1

Control PIIIA Control PIIIA
mean ± sem mean ± sem mean = ± sem mean ± sem

Activation
Gmax 38.8±3.6 22.9 ± 4.4 * 29.7 ± 4.8 12.9 ± 2.20 *

Vhalf, mV −39.9±2.2 −39.3 ± 3.4 5.6 ± 1.8 5.3 ± 1.44
Slope factor, mV/e-fold 6.7±0.6 8.5 ± 0.7 11.0 ± 1.8 13.3 ± 1.75

SSI
Vhalf, mV −73.4 ± 4.5 −94 ± 6.7 * −44.3±2.9 −76.1 ± 5.7 **

Slope factor, mV/e-fold −7.9 ± 0.9 −5.9 ± 1.4 −11.8±1.1 −10.8 ± 1.2
n 4 4 4 4

* p < 0.05; ** p < 0.005.

2.4. Activity- or State- Dependence of µ-Conotoxin PIIIA Inhibition of NaChBac and NavSp1, two NavBac
Channels with Substantially Different Kinetics

A novel way in which PIIIA and other µCTXs could reduce NavBac whole-cell conductance
is by stabilization of non-conducting (e.g., de-activated or slow inactivated) states during different
voltage-activation protocols. Figure 5 illustrates the differential effects of µCTX PIIIA on NaChBac and
NavSp1. The traces shown are representative of 4–6 experiments per channel/condition. The slower
inactivating current traces from NaChBac in control conditions quickly (washin onsetInact 24.8 ± 12.8 sec,
n = 5) become ~35-fold faster in the presence of 0.5 pM PIIIA (τinact Ctr: 177.6 ± 25.9 ms vs τinact

PIIIA: 4.9 ± 1.3 ms, n = 4, p = 0.0006) and it is followed by a pronounced decrease in peak currents
(washin onset 52.4 ± 17.1 sec, n = 5). The diary plots shown in Figure 5b display the relative change
in inactivation time constant (assessed by exponential fits to the current decay during the stimulus
pulse) and the relative change in peak current from control conditions to PIIIA modified currents.
The speeding of inactivation effect caused by PIIIA can be partially reversed (30.5 ± 6.9%) by several
minute long washouts, whereas the peak current effect could often be reversed almost completely
(79 ± 14%) within 5 minutes of bath exchange (Figure 5a,b). The faster inactivating channel NavSp1
reacts to PIIIA exposure similarly than NaChBac, however, the inactivation time constant is only
~2-fold faster in PIIIA (τinact Ctr: 9.8 ± 1.9 ms vs τinact PIIIA: 4.5 ± 1.8 ms, n = 4, p= 0.0893) and the
kinetics of onset of speeding of inactivation and peak current inhibition are the same (onsetInact: 201.4
± 27.1 vs onsetPeak: 174.7 ± 33.3 sec, n = 4, p = 0.5513) (Figure 5c,d). This observation suggests a
saturating effect on the speeding of inactivation caused by PIIIA on bacterial sodium channels whereby
the slower inactivating NaChBac is more evidently affected than the faster NavSp1.
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Figure 5. Repeated depolarizations enhance PIIIA block and speed inactivation in NavBacs.
(a) Representative NaChBac-mediated currents during wash-in and wash-out of 0.5 pM PIIIA (test
pulse, Vt = -10 mV; Vh = -120 mV; red trace represents the last point of the wash-in and the beginning
of the wash-out). (b) Diary plots of the above experiment, showing relative peak currents, and relative
inactivation time constants “τ” (normalized to the maximum value for each case); red traces provide
the last point of the wash-in, and beginning point of the wash-out. (c) Similar plots to those in part (a),
but from a cell expressing NavSp1 (Vt = 30 mV; Vh= −120 mV; magenta traces represent last point of
the wash-in, and beginning of the wash-out). (d) Diary plots for NavSp1, as for part (b). Data presented
here, are representative of 4 experiments per condition.

2.5. Holding Potential and Ionic Conditions Affect PIIIA Inhibition of NavBacs. Possible Effects of PIIIA
Interactions with Ions in The Pore?

Other experiments show that the fraction of steady-state block at the end of a train of depolarizing
pulses increases as the holding potential (Vh) is hyperpolarized in the range −110, −120, −140 mV,
presumably because the more negative voltages remove the slow inactivation that accumulates at more
positive values of Vh (see Appendix A Figure A1). In addition, reversing the Na+ gradient, which
would alter the relative probabilities of the different ions occupying the channel and thus modify
PIIIA binding in the pore, also changes the fractional block of the current by PIIIA (see Appendix A
Figure A2).

Thus, Appendix A, Figures A1 and A2, provide further information relevant to conditions that
influence use dependence, and effects of ion-toxin interactions within the pore on PIIIA activity.
These data also suggest emerging hypotheses, to be tested in more detail in future experiments.
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2.6. The Slowly Inactivating Mutant NaChBac-G219V is Less Vulnerable to PIIIA Peak Current Block than the
Wild Type NaChBac Channel

Functional and computational work from various labs support the hypothesis that glycine residue
219 confers flexibility and acts as a hinge point in the S6 segment of NaChBac channels [21–23]. Overall,
these studies support the idea that S6-segment mutations at position 219 that enhance kinking of
this α-helix stabilize the open conformation [23]. We performed complementary experiments to
examine PIIIA action on the NaChBac mutant G219V, which does not display measurable single-pulse
inactivation during 10 seconds pulses (data not shown). Figure 6a presents representative traces
of NaChBac-G219V mediated currents exposed to 50nM PIIIA. It can be inferred that PIIIA shows
about 10,000-fold weaker block (42.6 ± 7.1% block, n = 4) compared to wt NaChBac mediated currents
(Figure 2). As for the wild type channel, the block of G219V mutant was reversible, with cumulative
reduction of peak current (
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Figure 6. Slowly inactivating NaChBac mutant, NB-G219V, shows enhanced inactivation and decreasing
peak current in the presence of µCTX PIIIA. (a) NB-G219V-mediated currents during wash-in (left) and
wash-out (right) of 50 nM PIIIA (Vt = −10 mV; Vh = −140 mV; 140 mM Csi/142.5 mM Nao). Scale bars
are 0.5 nA, 100 ms. Purple traces represent the last point of the wash-in and the beginning of the
wash-out. (b) Diary plot of the experiment shown above including the relative decrease on peak
currents and the relative change in inactivation time constant. Data are representative of 3 experiments
per condition. Inset shows position of G219 mutation (purple) within the pore domain of the NavMs
crystal structure (PDB ID 5HVX; [24]). Peak current for successive pulses decreases with a slower time
course than the decrease in τinact. In contrast, on removal of PIIIA, recovery of both τinact and peak
current amplitude followed nearly the same time course.

Together, these observations and the data presented in Figure 3, show conclusively that mutations
in either toxin or channel can decrease the potency of block, but can also modulate the ability of the
toxin to accelerate inactivation.

2.7. Possible Binding Orientations of PIIIA in NaChBac

Structural aspects of the interactions of PIIIA with mammalian sodium channels are subject of
several experimental [19,20] and theoretical [15,18,25,26] studies. However, much less is known about
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PIIIA interactions with prokaryotic channels. Significant difference in structures of eukaryotic and
prokaryotic channels on one hand, and in the electrophysiological characteristics of PIIIA action on
these channels on the other hand, necessitate development of specific models, which may or may not
be similar to the published structures. For example, Chen and Chung [14] docked PIIIA in NavAb
and predicted extra high blocking potency due to toxin interactions with multiple negatively charged
residues, c.f. [15]. Here, we studied NavBac channels that, in particular, lack the R62 residue (Figure 1),
whose homolog is predicted to contribute to the PIIIA binding site in NavAb [14]. Furthermore,
the observed effects of PIIIA and PIIIA-R14A on NavBac inactivation (Figure 3) would benefit from
structural rationalization.

Homology modeling was performed as previously described [27]. Docking of PIIIA in the outer
NaChBac pore from different starting positions yielded a model (Figure 7a,b), which is conceptually
similar to that proposed for PIIIA-bound NavAb [14]. In our model, the side chain of R14 penetrates
into the outer pore and interacts with all of the four selectivity filter glutamates. R12 forms a salt
bridge with an aspartate in the loop between S5 and P1 helices. In this binding mode, PIIIA covers the
entire outer pore and therefore corresponds to the steric and electrostatic pore-blocking mechanism of
current inhibition.
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Figure 7. Models of PIIIA docked in NaChBac. Carbon atoms in PIIIA and the channel are green and
gray, respectively. Top (a) and side (b) views of the model with PIIIA blocking the current. Long side
chain of R14 penetrates into the outer pore and interacts with the four selectivity-filter glutamates
(NB_E191; NavAb_E177), providing both steric and electrostatic block. Other charged residues of PIIIA
interact with the P-loops stabilizing the toxin within the channel. PIIIA was docked from different
starting positions above the channel. Due to the channel symmetry, very similar toxin orientations
were obtained. Top (c) and side (d) views of the model with PIIIA stabilizing the inactivated channel.
The toxin binds between two subunits. R12 and R20 forming salt bridges with the P-loop and S5. R14
interacts with two selectivity filter glutamates, which turn away from the pore axis. This may lead to
perturbation of the P1 and P2 helices and stabilization of the inactivated state. Such a binding model is
impossible in mammalian sodium channels that have large extracellular loops.

Inactivation of bacterial sodium channels, which resembles slow inactivation in mammalian
Navs [28], C-type inactivation of potassium channels [29–31] and calcium-dependent inactivation
of calcium channels [32], all involve gating at the level of the outer pore and the selectivity filter.
A recent study demonstrated movement of P1 and P2 helices upon inactivation of a prokaryotic
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sodium channel [28]. However, the precise, channel-specific conformational changes associated
with inactivation are incompletely understood. To illustrate how PIIIA could induce or stabilize an
impermeable channel state without completely occluding the pore, we computationally forced the toxin
to shift from the pore axis, while preserving R14 contact with one of the selectivity filter glutamates.
Under these forces the toxin-filled the groove between adjacent P2 helices and caused reorientation
of the selectivity-filter glutamate (E191, cf. Figure 7b,d)). In this binding position, the toxin-channel
interactions can cause rearrangements of the P2 helices. Thus, the two binding modes are distinguished
by the toxin orientations and various toxin-channel contacts. Furthermore, transition between such
modes seems possible without toxin unbinding from the channel. Lacking confirmed experimental
data on the structures of inactivated channels, we did not attempt to model such rearrangements.

3. Discussion

Recent structural analysis, simulation/modeling, and experimental studies of both eukaryotic and
prokaryotic Nav channels provide a rich background for interpretation of our data (see [9]), and for
guided speculation about underlying molecular bases of our observations. Molecular simulations have
been reviewed in a variety of functional and evolutionary issues [33–38]. Other discussions deal with
modulation, and potential roles of tissue- or organ-specific Nav channel gating [39–44].

Landmark studies by Nieng Yan and collaborators on eukaryotic and prokaryotic Navs [45–50]
point to the feasibility of more detailed, specific studies to come, including visualization of channels
bound to various ligands, such as highly specific toxins and conventional pharmacological modulators,
and may include more detailed evaluation of the functional roles of auxiliary subunits.

3.1. Does Extremely High Affinity of PIIIA Result from Complementary Charge Arrays on PIIIA and NaChBac?

This follows intuitively from a relatively large net positive charge calculated at physiological
pH [51] and the approximately symmetric distribution of basic residues on the surface of PIIIA, which
would complement the near symmetric distribution of acidic residues on the S5-P1 loops of NaChBac
and NavSp1, hence providing a strong electrostatic component to their interaction.

Our main experimental observations illustrate exceptionally high affinity block of NaChBac by
PIIIA, and outline changes in voltage dependence and kinetics of gating, associated with PIIIA’s
presence. The slow onset of PIIIA actions at low concentrations required a train of depolarizing
pulses to monitor NaChBac inhibition, while avoiding cumulative inactivation that would result from
prolonged inactivation. Qualitatively similar results were observed for a second prokaryotic channel,
NavSp1, which shows faster kinetics of activation and inactivation.

PIIIA action changes following alanine substitution of its key residue R14, which reduces
both the affinity and the fractional block of single-channel current for mammalian channels [19,20].
Mutation R14A reduced PIIIA inhibitory affinity for NaChBac, and its action to speed single-pulse
inactivation decay.

3.2. Gating Modulation (e.g., Enhanced Inactivation) vs. Physical Pore Block

Do simultaneous PIIIA interactions with pore domains from 2 separate subunits underlie the
complexities of gating changes for certain NavBacs in the presence of PIIIA? The complex interaction
of ligands with channels in different functional states (open, closed, and inactivated by various
mechanisms) has been a matter of intensive debates for several decades, stimulated by Hille’s
“modulated receptor” hypothesis [52], and developed in parallel by Hondeghem and Katzung for
antiarrhythmic drugs [53]. The mechanisms of use-dependent drug action are of fundamental
importance for general physiology and drug design.

Although currently the prokaryotic channels are not actual drug targets, studies of these more
simple proteins can help us to understand basic mechanisms of state-dependent actions of different
drugs and toxins. The relative simplicity of these channels, i.e. structural symmetry and lack of “fast”



Mar. Drugs 2019, 17, 510 11 of 17

inactivation, makes them attractive models to address such questions. Importantly, it is the lack of a
fast inactivation (“ball and chain” or “hinged lid mechanism”), which allowed us to reveal interesting
peculiarities of PIIIA action on NaChBac, including stabilization/induction of the inactivated state,
which is a likely functional analog of the slow-inactivated state in eukaryotic channels. In turn,
experimental separation of the pore block and modulation of inactivation has allowed us to suggest
novel ideas on the mechanisms of toxin action and visualize them in structural models (Figure 7).

Analogous to our observation of the PIIIA effects on prokaryotic Nav channels, the anesthetic
propofol inhibits peak currents and promotes activation-linked inactivation in NaChBac [54].
Complementary chemical and computational analyses suggest that propofol allosterically modulates
NaChBac gating by binding to multiple channel sites [55]. However, critical differences in the chemical
nature of the modulators (small molecule, propofol vs. peptide, PIIIA), and the extent of the effects on
NaChBac inactivation-deficient mutant T220A (explored in the propofol studies) and NaChBac-G219V
(assessed in our µCTX work) does not allow a detailed mechanistic comparison of these studies.

It is worth remembering that a cogent argument was made, by Moczydlowski and collaborators
that classic guanidinium toxins were unlikely to be inhibiting eukaryotic Navs by direct, physical pore
occlusion [56,57]. Although the accumulated data set more than 30 years later, is more complex and
extensiove, high affinity pore block remains a cornerstone in understanding inhibition by tetrodotoxin,
saxitoxin, and the µCTXs.

3.3. Broadening the Scope of µCTX Pharmacology: Homotetramers vs. 4-Domain Channels

Recent studies [58,59] have shown thatµCTXs can block mammalian homotetrameric voltage-gated
potassium channels (Kvs), but assays were performed with a standard 10 µM test concentration.
Although promiscuous action extending to Kv channels was verified, the effective concentrations
required were about 107-fold higher than those we have explored for homotetrameric NavBacs. A recent
report in Marine Drugs from the same group extends the discussion to fifteen new 3-disulphide-bonded
isomers, plus 3 PIIIA mutants in which one of the disulphide bonds was omitted [60]. Much painstaking
chemistry and testing will presumably be required to attain the potency close to that observed for
NaChBac. Nevertheless, it seems that many interesting mechanistic insights are likely to emerge from
further exploration of µCTX targeting promiscuity.

3.4. µCTX Pharmacology of Invertebrate Homotetrameric-NavBacs

The study of bacterial ion channels has provided fundamental insights into the structural basis
of neuronal signaling; however, the native roles of ion channels in bacteria, in many cases, remain
unknown. Prokaryotic, homotetrameric NavBacs are believed to drive flagellar movement in some
marine and alkali-philic bacteria [11]. Bacterial Nav channels could provide a source of Na+ ions that
drives the stators and maintains ion homeostasis, but direct evidence is not currently available [61].

Electrical signaling is commonly viewed as a property of eukaryotic cells, even though cation
channels are found in all organisms. Recent findings suggest that bacteria use synchronized
oscillations in membrane potential, mediated by K+ channels, to coordinate metabolism within
biofilms, demonstrating a function for prokaryotic ion channels in active, long-range electrical
signaling within cellular communities [62].

Single celled organisms like diatoms exhibit spontaneous action potentials resembling those
produced by eukaryotic 4-domain-Navs [63,64]. However, only a few diatom species have
4-domain-Nav-like sequences, while all diatom genomes, identified to date, report on a vast collection of
homotetrameric-Nav like sequences akin to the bacterial, homotetrameric-Nav, NaChBac. Even though
recombinant NaChBac activates and inactivates significantly slower than mammalian 4-domain-Navs,
homotetrameric-Navs found in marine bacteria such as NaSp1 (Figures 4 and 5), have considerably
faster kinetics. Helliwell and collaborators have proposed that strongly voltage-gated, fast activating
and inactivating, single-domain channels identified in diatom genomes could contribute to membrane
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excitability and signaling [65]. Thus, NavBac functions in bacterial electrical signaling, and their
amenability to modulation by µCTXs, may be a worthwhile avenue for future research.

4. Materials and Methods

General electrophysiological methods and approaches to molecular model building and
simulations, as well as kinetic modeling are described in our recent paper of batrachotoxin modulation
of bacterial sodium channels [27]. Tikhonov and Zhorov [66] provide additional details of structure
prediction based on animal toxin studies. Specific details of application of the µ-conotoxin PIIIA and
PIIIA-R14A are provided in the appropriate figures, legends and accompanying text.

4.1. Constructs and Mutagenesis

The bacterial sodium channel constructs, NaChBac (Bacillus halodurans), and SP1 (Silicibacter
pomeroyi) were previously described in [27] and provided by D. Clapham (Howard Hughes Medical
Institute, Children’s Hospital, and Harvard University, Boston, MA, USA) and D. Minor (Cardiovascular
Research Institute, University of California, San Francisco, San Francisco, CA, USA) respectively.
The G219V was introduced into the NaChBac plasmid using overlapping primer PCR amplification
with the desired nucleotide changes, and completely sequenced.

4.2. µ-Conotoxin Synthesis

Synthesis of both native PIIIA and PIIIA-R14A were performed by D. McMaster (Peptide services,
University of Calgary) as described previously [19,20]. Briefly, the linear peptide was generated
through solid phase peptide synthesis using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry on an
Applied Biosystems 431A synthesizer (HBTU/HOBT/DIPEA method). Linear peptide was purified
via analytical HPLC followed by oxidative folding under equilibrating conditions (air oxidation in
the presence of mercaptoethanol (10 µl in 150 ml) to promote formation of stable disulfide bonding,
at 4 ◦C over 2 to 4 days. Peptides formed a single major peak identifed using analytical HPLC,
matching previously determined elution times for both PIIIA and PIIIA-R14A. The crude peptide
was then isolated from the acidified reaction mixture using reverse-phase extraction and purified
to near homogeneity by HPLC. Identity of the purified peptide was confirmed using quantitative
amino acid analysis and my matrix-assisted laser desporption ionization mass spectrometric molecular
weight determination. Purified peptide was then lyophilized and dissolved in MilliQ water to a stock
concentration of 100 mM.

4.3. Electrophysiology

Mammalian TSA201-cells [67] were transiently transfected with the channel cDNA using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Whole-cell patch-clamp was performed at
room temperature (20–22 ◦C) 18-24 hours post-transfection, using an Axopatch 200B amplifier and
digitalized with a Digidata 1322A (Molecular Devices, Sunnyvale, CA, USA). Patch pipettes (Corning
8161 glass, Harvard Apparatus, Cambridge, MA, USA) were pulled using a model P-97 Puller (Sutter
Instruments, Novato, CA, USA), fire-polished to a final resistance of 1.5-3 MΩ and filled with an
intracellular solution (mM): 105 CsF, 35 CsCl or NaCl, 10 EGTA, 10 HEPES, pH 7.4 with CsOH. External
solution contained (mM): 142.5 NaCl, 2 CaCl2, 2 MgCl2, 10 Glucose, 10 HEPES, pH 7.4 with NaOH.
µ-Conotoxins were diluted using external solution to their final desired concentrations. Experiments
were performed with 50–60% series compensation on cells containing between 1 to 5 nA of whole-cell
currents to maintain adequate voltage control.

4.4. Computational Modeling

Methodology of our homology modeling approach and ligand docking is described, e.g., in [18,27].
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4.5. Data Analysis

Data analysis was performed using standard software including Clampfit (10.7, Molecular
Devices, San Jose, CA, USA) and Igor (6.37, WaveMetrics, Portland, OR, USA) Activation, steady-state
inactivation and IV curves were fit as described previously [27]. All summary data is presented as mean
± SEM (n), where n is the number of experimental replicates. Statistical significance was determined
using Students t test with a p-value < 0.05.
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