Supplementary File

for

Antibacterial Alkaloids and Polyketide Derivatives from the Deep Sea-Derived Fungus *Penicillium cyclopium* SD-413

Yan-He Li ^{1,2,3}, Xiao-Ming Li ^{1,2,4}, Xin Li ^{1,2,4}, Sui-Qun Yang ^{1,2,4}, Xiao-Shan Shi ^{1,2,4}, and Hong-Lei Li ^{1,2,4,*} and Bin-Gui Wang ^{1,2,3,4,*}

- ¹ Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; E-Mails: liyanhe@qdio.ac.cn (Y.-H.L.); lixmqd@qdio.ac.cn (X.-M.L.); yangsuiqun@qdio.ac.cn (S.-Q.Y.); Shixs@qdio.ac.cn (X.-S.S.); lixin@qdio.ac.cn (X.L.)
- ² Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China
- ³ College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- ⁴ Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- * Correspondence lihonglei@qdio.ac.cn (H.-L.L.); wangbg@ms.qdio.ac.cn (B.-G.W.); Tel.: +86-532-8289-8553 (B.-G.W.)

Content

- Figure S1. HRESIMS spectrum of compound 1.
- Figure S2. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **1**.
- Figure S3. ¹³C NMR (125 MHz, DMSO-*d*₆) and DEPT spectra of compound **1**.
- Figure S4. COSY spectrum of compound 1.
- Figure S5. HSQC spectrum of compound 1.
- Figure S6. HMBC spectrum of compound 1.
- Figure S7. NOESY spectrum of compound 1.
- Figure S8. HRESIMS spectrum of compound 2.
- Figure S9. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **2**.
- Figure S10. ¹³C NMR (125 MHz, DMSO- d_6) and DEPT spectra of compound **2**.
- Figure S11. NOESY spectrum of compound 2.
- Table S1. ¹H and ¹³C NMR data of compounds **1** and **2**.
- Figure S12. HRESIMS spectrum of compound 4.
- Figure S13. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **4**.
- Figure S14. ¹³C NMR (125 MHz, DMSO- d_6) and DEPT spectra of compound 4.
- Figure S15. COSY spectrum of compound 4.
- Figure S16. HSQC spectrum of compound 4.
- Figure S17. HMBC spectrum of compound 4.
- Figure S18. NOESY spectrum of compound 4.
- Figure S19. HRESIMS spectrum of compound 5.
- Figure S20. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5**.
- Figure S21. ¹³C NMR (125 MHz, DMSO- d_6) and DEPT spectra of compound 5.
- Figure S22. COSY spectrum of compound 5.
- Figure S23. HSQC spectrum of compound 5.
- Figure S24. HMBC spectrum of compound 5.
- Figure S25. NOESY spectrum of compound 5.

Figure S1. HRESIMS spectrum of compound 1.

Figure S2. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **1**.

Figure S3. ¹³C NMR (125 MHz, DMSO-*d*₆) and DEPT spectra of compound **1**.

Figure S4. COSY spectrum of compound 1.

Figure S5. HSQC spectrum of compound **1**.

Figure S6. HMBC spectrum of compound 1.

Figure S7. NOESY spectrum of compound **1**.

Figure S8. HRESIMS spectrum of compound 2.

Figure S9. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **2**.

Figure S10. ¹³C NMR (125 MHz, DMSO- d_6) and DEPT spectra of compound **2**.

Table S1. ¹H and ¹³C NMR data of compounds **1** and **2**.

No. —	1		2	
	δ н (J in Hz) a	δc, Type ^ь	$\delta_{ m H}$ (J in Hz) a	δc, Type ^ь
1		165.3, C		165.5, C
2-NH	10.51, s		10.49, s	
3		125.5, C		124.8, C
4		145.6, C		144.8, C
6		147.1, C		146.8, C
7	7.68, d (8.1)	127.2, CH	7.65, dd (8.0, 1.3)	127.5, CH
8	7.83, t (7.5)	134.8, CH	7.85, ddd (8.4, 7.2, 1.5)	134.8, CH
9	7.52, t (7.5)	126.7, CH	7.57, ddd (8.4, 7.2, 1.5)	127.3, CH
10	8.12, d (8.1)	126.3, CH	8.15, dd (8.0, 1.3)	126.3, CH
11		119.7, C		119.8, C
12		160.0, C		159.7, C
14	5.18, t (6.5)	54.3, CH	5.11, t (6.6)	54.7, CH
15a	2.04, dt (14.0, 6.9)	27.2 CH	2.01	280 CH
15b	2.13, dt (14.0, 6.9)	27.3, CH2	2.01, III	20.0, CH ₂
16	2.36, m	29.2, CH ₂	2.12, m	30.9, CH ₂
17		171.9, C		172.5, C
18	6.20, d (10.3)	126.7, CH	5.54, d (9.8)	131.0, CH
19	2.98, m	25.0, CH	3.76, m	26.5, CH
20	1.04, d (6.6)	22.1, CH ₃	1.01, d (6.6)	22.4, CH ₃
21	1.07, d (6.6)	22.4, CH ₃	1.20, d (6.6)	23.2, CH ₃
17-OMe	3.42, s	51.3, CH ₃		
17-NH ₂			6.73, s; 7.27, s	
^a Measured at 500 MHz in DMSO- d_{6} ; ^b Measured at 125 MHz in DMSO- d_{6} .				

Figure S14. ¹³C NMR (125 MHz, DMSO-*d*₆) and DEPT spectra of compound **4**.

Figure S15. COSY spectrum of compound **4**.

Figure S16. HSQC spectrum of compound 4.

Figure S17. HMBC spectrum of compound **4**.

Figure S19. HRESIMS spectrum of compound 5.

Figure S20. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound **5**.

Figure S21. ¹³C NMR (125 MHz, DMSO- d_6) and DEPT spectra of compound **5**.

Figure S22. COSY spectrum of compound **5**.

Figure S23. HSQC spectrum of compound **5**.

Figure S24. HMBC spectrum of compound **5**.

Figure S25. NOESY spectrum of compound **5**.

