Supporting Information

Cytotoxic Scalarane Sesterterpenes from the Sponge Hyrtios erectus

Oh-Seok Kwon¹, Donghwa Kim¹, Chang-Kwon Kim¹, Jeongyoon Sun², Chung J. Sim³, Dong-Chan Oh¹, Sang Kook Lee¹, Ki-Bong Oh^{2,*}, and Jongheon Shin^{1,*}

¹ Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea

² Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea

³ Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea

shinj@snu.ac.kr

Contents

Table S1. ¹³ C NMR (ppm, type) Assignments for Compounds 3-8, 10, and 11 at 150 MHz	S5
Table S2. ¹ H NMR (δ , mult (<i>J</i> in Hz)) Assignments for Compounds 3-8 , 10 , and 11 at 600 MHz	S 6
Table S3. Results of Antibacterial Tests	S 7
Table S4. Isolated amount of each compounds	S 7
Figure S1. Key correlations of COSY (bold), and HMBC (arrows) experiments for compounds 2-8	S 8
Figure S2. Key correlations of NOESY (blue arrows) experiments for compounds 2-8	S9
Figure S3. The ¹ H NMR (600 MHz, MeOH- d_3) spectrum of 1	S10
Figure S4. The 13 C NMR (150 MHz, MeOH- d_3) spectrum of 1	S11
Figure S5. The COSY (600 MHz, MeOH- d_3) spectrum of 1	S12
Figure S6. The eHSQC (600 MHz, MeOH- d_3) spectrum of 1	S13
Figure S7. The HMBC (600 MHz, MeOH- d_3) spectrum of 1	S14
Figure S8. The LR-HSQMBC (600 MHz, MeOH- d_3) spectrum of 1	S15
Figure S9. The NOESY (600 MHz, MeOH- d_3) spectrum of 1	S16
Figure S10. ESI/MS isotopic cluster patterns of compound 1 in positive and negative ion modes	S17
Figure S11. The ¹ H NMR (600 MHz, MeOH- d_4) spectrum of 2	S18
Figure S12. The ¹³ C NMR (150 MHz, MeOH- d_4) spectrum of 2	S19
Figure S13. The COSY (600 MHz, MeOH- d_4) spectrum of 2	S20
Figure S14. The eHSQC (600 MHz, MeOH- d_4) spectrum of 2	S21
Figure S15. The HMBC (600 MHz, MeOH- d_4) spectrum of 2	S22
Figure S16. The NOESY (600 MHz, MeOH-d4) spectrum of 2	S23
Figure S17. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 3	S24
Figure S18. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 3	S25
Figure S19. The COSY (600 MHz, CDCl ₃) spectrum of 3	S26
Figure S20. The eHSQC (600 MHz, CDCl ₃) spectrum of 3	S27
Figure S21. The HMBC (600 MHz, CDCl ₃) spectrum of 3	S28
Figure S22. The NOESY (600 MHz, CDCl ₃) spectrum of 3	S29
Figure S23. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 4	S30
Figure S24. The 13 C NMR (150 MHz, CDCl ₃) spectrum of 4	S31
Figure S25. The COSY (600 MHz, CDCl ₃) spectrum of 4	S32
Figure S26. The eHSQC (600 MHz, CDCl ₃) spectrum of 4	S33

Figure S27. The HMBC (600 MHz, CDCl ₃) spectrum of 4	S34
Figure S28. The NOESY (600 MHz, CDCl ₃) spectrum of 4	S35
Figure S29. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 5	S36
Figure S30. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 5	S37
Figure S31. The COSY (600 MHz, CDCl ₃) spectrum of 5	S38
Figure S32. The eHSQC (600 MHz, CDCl ₃) spectrum of 5	S39
Figure S33. The HMBC (600 MHz, CDCl ₃) spectrum of 5	S40
Figure S34. The NOESY (600 MHz, CDCl ₃) spectrum of 5	S41
Figure S35. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 6	S42
Figure S36. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 6	S43
Figure S37. The COSY (600 MHz, CDCl ₃) spectrum of 6	S44
Figure S38. The eHSQC (600 MHz, CDCl ₃) spectrum of 6	S45
Figure S39. The HMBC (600 MHz, CDCl ₃) spectrum of 6	S46
Figure S40. The NOESY (600 MHz, CDCl ₃) spectrum of 6	S47
Figure S41. The ¹ H NMR (600 MHz, MeOH- d_4) spectrum of 7	S48
Figure S42. The 13 C NMR (150 MHz, MeOH- d_4) spectrum of 7	S49
Figure S43. The COSY (600 MHz, MeOH- d_4) spectrum of 7	S50
Figure S44. The eHSQC (600 MHz, MeOH-d4) spectrum of 7	S51
Figure S45. The HMBC (600 MHz, MeOH-d ₄) spectrum of 7	S52
Figure S46. The NOESY (600 MHz, MeOH-d ₄) spectrum of 7	S53
Figure S47. The ¹ H NMR (600 MHz, MeOH- d_4) spectrum of 8	S54
Figure S48. The 13 C NMR (150 MHz, MeOH- d_4) spectrum of 8	S55
Figure S49. The COSY (600 MHz, MeOH-d4) spectrum of 8	S56
Figure S50. The eHSQC (600 MHz, MeOH-d4) spectrum of 8	S57
Figure S51. The HMBC (600 MHz, MeOH- d_4) spectrum of 8	S58
Figure S52. The NOESY (600 MHz, MeOH- d_4) spectrum of 8	S59
Figure S53. The ¹ H NMR (600 MHz, MeOH- d_4) spectrum of 9	S60
Figure S54. The 13 C NMR (150 MHz, MeOH- d_4) spectrum of 9	S61
Figure S55. The COSY (600 MHz, MeOH-d4) spectrum of 9	S62
Figure S56. The HSQC (600 MHz, MeOH-d4) spectrum of 9	S63
Figure S57. The HMBC (600 MHz, MeOH- d_4) spectrum of 9	S64
Figure S58. The NOESY (600 MHz, MeOH- d_4) spectrum of 9	S65
Figure S59. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 10	S66
Figure S60. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 10	S67

Figure S61. The COSY (600 MHz, CDCl ₃) spectrum of 10	S68
Figure S62. The HSQC (600 MHz, CDCl ₃) spectrum of 10	S69
Figure S63. The HMBC (600 MHz, CDCl ₃) spectrum of 10	S70
Figure S64. The NOESY (600 MHz, CDCl ₃) spectrum of 10	S71
Figure S65. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 11	S72
Figure S66. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 11	S73
Figure S67. The COSY (600 MHz, CDCl ₃) spectrum of 11	S74
Figure S68. The HSQC (600 MHz, CDCl ₃) spectrum of 11	S75
Figure S69. The HMBC (600 MHz, CDCl ₃) spectrum of 11	S76
Figure S70. The NOESY (600 MHz, CDCl ₃) spectrum of 11	S77
Figure S71. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of 12	S78
Figure S72. The ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 12	S79
Figure S73. The COSY (600 MHz, CDCl ₃) spectrum of 12	S80
Figure S74. The HSQC (600 MHz, CDCl ₃) spectrum of 12	S81
Figure S75. The HMBC (600 MHz, CDCl ₃) spectrum of 12	S82
Figure S76. The NOESY (600 MHz, CDCl ₃) spectrum of 12	S83
Figure S77. The results of DP4 analyses of 12	S84
Figure S78. Isolated known compounds from Hyrtios erectus	S85
Figure S79. Calculated and experimental ECD spectra of 4, 8 and 13	S87

position	3 <i>a</i>	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 <i>a</i>	7 ^b	8 ^b	10 <i>a</i>	11 <i>a</i>
1	39.6, CH ₂	39.6, CH ₂	39.8, CH ₂	39.8, CH ₂	41.4, CH ₂	41.4, CH ₂	39.7, CH ₂	39.8, CH ₂
2	$18.5, CH_2$	18.5, CH ₂	18.6, CH ₂	18.2, CH ₂	$20.1, CH_2$	$20.1, CH_2$	18.5, CH ₂	18.5, CH ₂
3	42.0, CH ₂	42.0, CH ₂	42.0, CH ₂	$42.1, CH_2$	43.7, CH ₂	43.7, CH ₂	42.0, CH ₂	42.0, CH ₂
4	33.2, C	33.2, C	33.2, C	33.3, C	34.7, C	34.7, C	33.2, C	33.3, C
5	56.6, CH	56.3, CH	56.6, CH	56.5, CH	58.5, CH	58.4, CH	56.3, CH	56.4, CH
6	18.1, CH ₂	$18.1, CH_2$	18.1, CH ₂	18.6, CH ₂	19.8, CH ₂	19.8, CH ₂	18.2, CH ₂	18.2, CH ₂
7	41.5, CH ₂	41.1, CH ₂	41.5, CH ₂	41.2, CH ₂	43.0, CH ₂	43.1, CH ₂	41.8, CH ₂	41.8, CH ₂
8	37.2, C	36.7, C	37.5, C	37.0, C	38.7, C	38.5, C	37.7, C	37.9, C
9	57.7, CH	57.5, CH	58.7, CH	58.6, CH	59.8, CH	59.9, CH	57.6, CH	57.9, CH
10	37.4, C	37.3, C	37.4, C	37.4, C	39.1, C	39.0, C	37.2, C	37.3, C
11	25.4, CH ₂	25.3, CH ₂	25.5, CH ₂	25.6, CH ₂	24.5, CH ₂	$27.0, CH_2$	$27.2, CH_2$	$27.4, CH_2$
12	74.4, CH	74.1, CH	75.0, CH	79.4, CH	79.0, CH	77.1, CH	74.4, CH	75.0, CH
13	44.1, C	44.3, C	44.7, C	45.3, C	43.9, C	45.1, C	45.4, C	46.1, C
14	53.5, CH	48.9, CH	53.0, CH	48.6, CH	51.4, CH	51.2, CH	49.4, CH	50.0, CH
15	24.3, CH ₂	22.6, CH ₂	24.4, CH ₂	22.6, CH ₂	23.7, CH ₂	23.0, CH ₂	24.9, CH ₂	$28.0, CH_2$
16	73.6, CH	68.4, CH	73.9, CH	68.7, CH	70.8, CH	71.9, CH	74.2, CH	76.6, CH
17	140.4, C	138.7, C	133.9, C	133.6, C	131.7, C	151.8, C	81.0, C	81.8, C
18	152.4, C	152.8, C	160.3, C	160.6, C	165.1, C	147.4, C	83.1, C	82.2, C
19	171.8, C	172.0, C	84.8, CH	84.5, CH	83.0, C	173.3, C	106.1, CH	106.0, CH
20	167.9, C	168.7, C	169.0, C	169.6, C	171.3, C	88.4, C	103.2, CH	110.7, CH
21	33.2, CH ₃	33.2, CH ₃	33.2, CH ₃	33.3, CH ₃	34.2, CH ₃	34.2, CH ₃	33.2, CH ₃	33.3, CH ₃
22	21.3, CH ₃	21.2, CH ₃	21.2, CH ₃	21.2, CH ₃	22.2, CH ₃	22.3, CH ₃	21.2, CH ₃	21.2, CH ₃
23	15.9, CH ₃	15.9, CH ₃	16.2, CH ₃	16.1, CH ₃	17.2, CH ₃	17.1, CH ₃	16.3, CH ₃	16.4, CH ₃
24	17.1, CH ₃	17.3, CH ₃	17.4, CH ₃	17.7, CH ₃	18.4, CH ₃	18.3, CH ₃	18.2, CH ₃	18.0, CH ₃
25	16.4, CH ₃	15.1, CH ₃	17.4, CH ₃	16.1, CH ₃	17.9, CH ₃	16.0, CH ₃	11.1, CH ₃	10.4, CH ₃
1'	38.5, CH ₂	38.6, CH ₂	40.3, CH ₂	40.3, CH ₂	41.5, CH ₂	$42.4, CH_2$		
2'	170.1, C	170.3, C	171.1, C	171.4, C	173.6, C	172.2, C		
12-OAc					173.4, C 22.2, CH ₃			
16-OMe	58.1, CH ₃	57.8, CH ₃	57.3, CH ₃	57.3, CH ₃	57.9, CH ₃	58.0, CH ₃		
19-OMe	, ,	, ,	50.3, CH ₃	50.1, CH ₃	, ,	, ,	55.6, CH ₃	56.9, CH ₃
20-OMe			, U	, 3		51.7, CH ₃	56.0, CH ₃	55.6, CH ₃

Table S1. ¹³C NMR (ppm, type) Assignments for Compounds 3-8, 10, and 11 at 150 MHz

^{*a*, *b*}Data were measured at CDCl₃, and MeOH-*d*₄, respectively.

position	3 <i>a</i>	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 ^{<i>a</i>}
1α	0.76, m	0.78, m	0.81, m	0.81, m
1β	1.71, br d (12.7)	1.71, br d (12.5)	1.71, br d (12.8)	1.69, br d (12.5)
2α	1.41, m	1.45, m	1.44, m	1.39, m
2β	1.58, m	1.57, m	1.63, m	1.62, m
3α	1.12, m	1.12, m	1.11, m	1.10, m
3β	1.37, br d (12.8)	1.36, br d (13.0)	1.37, br d (13.1)	1.37, br d (13.0)
5	0.78, m	0.81, m	0.80, m	0.82, m
6α	1.60, m	1.61, m	1.58, m	1.57, m
6β	1.42, m	1.41, m	1.39, m	1.43, m
7α	0.88, m	0.96, m	0.90, m	0.96, m
76	1.82, m	1.76, br d (11.5)	1.84, ddd (12.8, 2.8, 2.8)	1.78, m
9	0.86, m	0.95, m	0.86, m	0.96, m
11α	1.86. m	1.89. br d (11.9)	1.80. dd (12.8, 2.3)	1.80. m
116	1.52. m	1.52. m	1.55. m	1.54. m
12	3.70 dd (10.5.3.8)	3.74 br d (9.3)	3.58 dd (11.0, 4.0)	3.64 dd (11.2, 4.1)
14	1.13. m	1.50. m	1.13. m	1.55. m
150	2 32 dd (12 7 7 3)	2 12 br d(12.5)	2.25 dd (12.4 6.8)	2.04 br d(12.0)
150	1.65 m	1.60 m	1.65 m	1.52 m
15p 16	1.05, III 4.18, 44 (0.2, 6.7)	1.00, III	1.03, III	1.35, 111
10	4.18, dd (9.2, 0.7)	4.10, 61 d (2.5)	4.21, dd (9.5, 7.2)	5.99, 01 d (1.7)
21	0.84 s	0.84 s	0.84 s	0.82 c
∠1 22	0.04, 8	0.04, 8	0.04, 8	0.02, 8
22	0.81,8	0.81, 8	0.81, 8	0.79, 8
23 24	0.04, 8	0.04, 8	0.03, 8	0.04, 8
24 25	0.71, 8	0.07, S	0.91, 8 1 21 s	0.00, S
23	1.22, 8 4.26, hr -	1.11, S 4.27 hr a	1.21, 8	1.09, 8
1	4.20, Dr S	4.27, br s	4.50, 0(17.9)	4.32, 0(17.9)
16.014-	2.55 -	2.45	3.63, d (17.9)	3.09, d (17.9)
16-OMe 19-OMe	3.33, s	3.43, s	3.52, s 3.09, s	3.42, s 3.12, s
position	7 ^b	8 ^b	10 ^{<i>a</i>}	11 ^{<i>a</i>}
1α	0.88, m	0.86, m	0.82, m	0.82, m
16	1.65. m	1.72, m	1.67. m	1.66. m
20	1.44 m	1 44. m	1.43. m	1.44 m
28	1 66 m	1 67 m	1.60 m	1.60 m
2p 3a	1.18 ddd (13.8 13.6 3.9)	1.17 ddd (13.5 13.3 4.2)	1.12 m	1.12 m
38	1.10, uuu (13.0, 15.0, 5.7)	1.17, ddd (15.5, 15.5, 4.2)	1.12, m 1.24 br d (12.4)	1.12, III 1.23 br d (12.4)
5p	0.87 m	0.87 m	0.82 m	0.80 m
5	1.62 m	1.62 m	1.52 m	1.52 m
60	1.02, 111	1.02, 111	1.33, 111	1.35, 111
бр	1.48, m	1.49, m	1.58, m	1.38, m
/α	0.96, m	0.93, m	0.92, br d (12.3)	0.91, br d (12.3)
7β	1.89, ddd (12.6, 3.2, 3.2)	1.87, br d (12.8)	1.78, m	1.77, m
9	1.00, dd (12.6, 1.5)	0.94, m	0.93, m	0.92, m
11α	2.02, dd (4.6, 1.9)	1.78, ddd (13.3, 4.1, 1.9)	1.60, m	1.61, m
11β	1.50, m	1.50, m	1.50, m	1.50, m
12	4.83, dd (11.3, 4.5)	3.62, dd (10.9, 4.3)	4.34, m	4.34, m
14	1.58, dd (12.7, 1.3)	1.37, m	1.32, m	1.26, m
15α	2.09, br d (14.3)	2.16, br d (14.7)	1.79, m	1.74, m
15β	1.71, m	1.71, m	1.44, m	1.65, m
16	3.98, dd (2.7, 1.3)	3.93, dd (4.2, 1.0)	3.72, dd (12.0, 5.7)	3.57, dd (11.5, 6.0)
19	5.40, s	- · · · ·	5.22, s	5.40, s
20		5.49, s	4.99, s	5.10, s
21	0.87, s	0.87, s	0.83, s	0.83, s
22	0.84, s	0.84, s	0.79, s	0.80, s
23	0.88, s	0.89, s	0.82, s	0.83, s
24	0.97, s	0.93, s	0.88, s	0.87, s
25	1.22, s	1.09, s	1.00, s	1.12, s
1'	4.27, d (18.0)	4.32, d (18.0)		
	3.88, d (18.0)	3.87, d (18.0)		
12-OAc	2.03, s	/		
16-OMe	3.41, s	3.41, s		
16-OH	-	-	2.32, br s	2.57, br d (10.3)
17-OH			3.47, br s	3.13, br s
18-OH			3.87, br s	3.68, br s
19-OMe			3.40, s	3.49, s
20-OMe		3.09, s	3.56, s	3.46, s
20-OMe		3.09, s	5.56, s	3.46, s

Table S2. ¹H NMR (δ , mult (J in Hz)) Assignments for Compounds 3-8, 10, and 11 at 600 MHz

 $^{a,\ b}\textsc{Data}$ were measured at CDCl3, and MeOH- d_4 , respectively.

	MIC (µg/mL)						
	Gram (+) bacteria			Gram (–) bacteria			
Compound	А	В	С	D	Е	F	
1	>64	8	>64	>64	2	>64	
2	>64	>64	>64	>64	>64	>64	
3	>64	>64	>64	64	>64	>64	
4	>64	>64	>64	64	>64	>64	
5	>64	>64	>64	>64	>64	>64	
6	>64	>64	>64	64	>64	>64	
7	64	>64	>64	64	>64	>64	
8	64	64	16	32	>64	>64	
9	>64	>64	>64	64	>64	>64	
10	>64	>64	>64	>64	>64	>64	
11	>64	>64	>64	64	>64	>64	
12	8	8	>64	4	>64	>64	
13	>64	>64	>64	2	>64	>64	
ampicillin	0.13	0.50	0.50		0.13	4	
tetracyclin				0.25			

Table S3. Results of Antibacterial Tests ^a

^aA: *Staphylococcus arueus* (ATCC6538p), B: *Enterococcus faecalis* (ATCC19433), C: *Enterococcus faecium* (ATCC 19434), D: *Klebsiella pneumoniae* (ATCC10031), E: *Salmonella enterica* (ATCC14028), F: *Escherichia coli* (ATCC25922)

Compound	overall yields (mg)	percent yields (%)	retention time (min)
1	2.8	0.0012	44.2^{a}
2	6.1	0.0027	23.0 ^b
3	7.0	0.0031	20.5 ^b
4	2.2	0.00097	21.9 ^b
5	4.6	0.0020	10.1 ^b
6	1.9	0.00084	16.7 ^b
7	1.8	0.00079	12.5 ^b
8	3.0	0.0013	20.0 ^b
9	0.8	0.00035	8.2 ^b
10	5.2	0.0023	35.1 ^b
11	3.7	0.0016	38.7 ^b
12	2.3	0.0010	19.7 ^b
13	110	0.048	23.0^{d}
14	1.8	0.00079	44.1 ^c
15	9.8	0.0043	28.6 ^c
16	0.9	0.00039	18.0 ^c
17	1.2	0.00053	46.9 ^c
18	1.6	0.00070	22.8^{c}
19	4.7	0.0020	50.4 ^c
20	2.2	0.00097	38.3 ^c

Table S4. Isolated amount of each compound

semipreparative reversed-phase HPLC (YMC-ODS column, 10 × 250 mm; 2.0 mL/min)

^a (H₂O-MeOH, 65:35)

^b (H₂O-MeOH, 30:70 with 0.1% TFA)

^{*c*} (H₂O-MeOH, 25:65)

^{*d*} (H₂O-MeOH, 10:65)

Extract = 225.8 g

Figure S1. Key correlations of COSY (bold), and HMBC (arrows) experiments for compounds 2-8

~

Figure S2. Key correlations of NOESY (blue arrows) experiments for compounds 2-8

Figure S3. The ¹H NMR (600 MHz, MeOH- d_3) spectrum of 1

Figure S4. The 13 C NMR (150 MHz, MeOH- d_3) spectrum of 1

Figure S5. The COSY (600 MHz, MeOH-d₃) spectrum of 1

Figure S6. The eHSQC (600 MHz, MeOH-*d*₃) spectrum of 1

Figure S7. The HMBC (600 MHz, MeOH-*d*₃) spectrum of 1

Figure S8. The LR-HSQMBC (600 MHz, MeOH-d₃) spectrum of 1

Figure S9. The NOESY (600 MHz, MeOH- d_3) spectrum of 1

Figure S10. ESI/MS isotopic cluster patterns of compound 1 in positive and negative ion modes

Figure S11. The ¹H NMR (600 MHz, MeOH- d_4) spectrum of 2

Figure S12. The ¹³C NMR (150 MHz, MeOH-*d*₄) spectrum of 2

Figure S13. The COSY (600 MHz, MeOH-*d*₄) spectrum of 2

Figure S14. The eHSQC (600 MHz, MeOH-d₄) spectrum of 2

Figure S15. The HMBC (600 MHz, MeOH-d₄) spectrum of 2

Figure S16. The NOESY (600 MHz, MeOH-d₄) spectrum of 2

Figure S17. The ¹H NMR (600 MHz, CDCl₃) spectrum of **3**

Figure S18. The ¹³C NMR (150 MHz, CDCl₃) spectrum of **3**

Figure S19. The COSY (600 MHz, CDCl₃) spectrum of ${\bf 3}$

Figure S20. The eHSQC (600 MHz, CDCl₃) spectrum of 3

Figure S21. The HMBC (600 MHz, CDCl₃) spectrum of 3

Figure S22. The NOESY (600 MHz, CDCl₃) spectrum of 3

Figure S23. The ¹H NMR (600 MHz, CDCl₃) spectrum of 4

Figure S24. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 4

Figure S25. The COSY (600 MHz, CDCl₃) spectrum of 4

Figure S26. The eHSQC (600 MHz, CDCl₃) spectrum of 4

Figure S27. The HMBC (600 MHz, CDCl₃) spectrum of 4

Figure S28. The NOESY (600 MHz, CDCl₃) spectrum of 4

Figure S29. The ¹H NMR (600 MHz, CDCl₃) spectrum of 5

Figure S30. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 5

Figure S31. The COSY (600 MHz, CDCl₃) spectrum of 5

Figure S32. The eHSQC (600 MHz, CDCl₃) spectrum of 5

Figure S33. The HMBC (600 MHz, CDCl₃) spectrum of 5

Figure S34. The NOESY (600 MHz, CDCl₃) spectrum of 5

Figure S35. The ¹H NMR (600 MHz, CDCl₃) spectrum of 6

Figure S36. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 6

Figure S37. The COSY (600 MHz, $CDCl_3$) spectrum of 6

Figure S38. The eHSQC (600 MHz, CDCl₃) spectrum of 6

Figure S39. The HMBC (600 MHz, CDCl₃) spectrum of 6

Figure S40. The NOESY (600 MHz, CDCl₃) spectrum of 6

Figure S41. The ¹H NMR (600 MHz, MeOH-*d*₄) spectrum of 7

Figure S42. The ¹³C NMR (150 MHz, MeOH-*d*₄) spectrum of 7

Figure S43. The COSY (600 MHz, MeOH-d₄) spectrum of 7

Figure S44. The eHSQC (600 MHz, MeOH-d₄) spectrum of 7

Figure S45. The HMBC (600 MHz, MeOH-*d*₄) spectrum of 7

Figure S46. The NOESY (600 MHz, MeOH-d₄) spectrum of 7

Figure S47. The ¹H NMR (600 MHz, MeOH- d_4) spectrum of 8

Figure S48. The 13 C NMR (150 MHz, MeOH- d_4) spectrum of 8

Figure S49. The COSY (600 MHz, MeOH-d₄) spectrum of 8

Figure S50. The eHSQC (600 MHz, MeOH-d₄) spectrum of 8

Figure S51. The HMBC (600 MHz, MeOH-d₄) spectrum of 8

Figure S52. The NOESY (600 MHz, MeOH-d₄) spectrum of 8

Figure S53. The ¹H NMR (600 MHz, MeOH- d_4) spectrum of 9

Figure S54. The ¹³C NMR (150 MHz, MeOH-*d*₄) spectrum of 9

Figure S55. The COSY (600 MHz, MeOH-d₄) spectrum of 9

Figure S56. The HSQC (600 MHz, MeOH-d₄) spectrum of 9

Figure S57. The HMBC (600 MHz, MeOH-d₄) spectrum of 9

Figure S58. The NOESY (600 MHz, MeOH-d₄) spectrum of 9

Figure S59. The ¹H NMR (600 MHz, CDCl₃) spectrum of 10

Figure S60. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 10

Figure S61. The COSY (600 MHz, CDCl₃) spectrum of 10

Figure S62. The HSQC (600 MHz, CDCl₃) spectrum of 10

Figure S63. The HMBC (600 MHz, CDCl₃) spectrum of 10

Figure S64. The NOESY (600 MHz, CDCl₃) spectrum of 10

Figure S65. The ¹H NMR (600 MHz, CDCl₃) spectrum of 11

Figure S66. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 11

Figure S67. The COSY (600 MHz, CDCl₃) spectrum of 11

Figure S68. The HSQC (600 MHz, CDCl₃) spectrum of 11

Figure S69. The HMBC (600 MHz, CDCl₃) spectrum of 11

Figure S70. The NOESY (600 MHz, CDCl₃) spectrum of 11

Figure S71. The ¹H NMR (600 MHz, CDCl₃) spectrum of 12

Figure S72. The ¹³C NMR (150 MHz, CDCl₃) spectrum of 12

Figure S73. The COSY (600 MHz, CDCl₃) spectrum of 12

Figure S74. The HSQC (600 MHz, CDCl₃) spectrum of 12

Figure S75. The HMBC (600 MHz, CDCl₃) spectrum of 12

Figure S76. The NOESY (600 MHz, CDCl₃) spectrum of 12

Assignment o	f stereoc	hemistry	and s	tructure	using	NMR	and	DP4	1
--------------	-----------	----------	-------	----------	-------	-----	-----	-----	---

4-original	1	t distribution (recommended)
4-database2		
		O normal distribution
13C Calc:		1H Calc:
C1,C2,C3,C4,C5,C	6,C7,C8,C9,C10,C11,C12,C	3, H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H
154.5,137.2,126.5	112.3,78.2,72.2,64.3,60.2,53.	5,4 7.1,6.7,4.8,4.6,2.5,2.0,2.0,1.8,1.7,1.7,1.7,1.6,1.5
153.8,136.3,126.7	113.0,78.6,72.2,64.2,60.4,59.	3,4 7.2,6.8,4.5,4.5,2.3,2.0,1.8,1.7,1.7,1.6,1.6,1.5,1.4
158.1,136.3,124.9	113.6,78.9,67.4,64.1,60.5,55.	6,4 7.1,6.4,4.8,4.7,2.4,2.2,1.9,1.7,1.7,1.7,1.6,1.6,1.6
157.1,137.4,125.1	115.3,77.8,67.2,64.7,60.3,50.	5,4 7.0,6.5,4.6,4.5,2.7,2.0,2.0,1.8,1.8,1.7,1.7,1.7,1.6
•		• •
10-11 		
13C Expt:		
		1H Expt:
150.2(C1), 141.4(0	C2), 124.2(C3), 111.5(C4), 76	1H Expt: 1(4 7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1
150.2(C1), 141.4(0	C2), 124.2(C3), 111.5(C4), 76	1H Expt: 1(d 7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1
150.2(C1), 141.4(C2), 124.2(C3), 111.5(C4), 76.	1H Expt: 1(\$\frac{7}.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear
150.2(C1), 141.4(0	C2), 124.2(C3), 111.5(C4), 76 Show Assignments	1H Expt: 1(\$\$\frac{1}{7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1}\$ Calculate Clear
150.2(C1), 141.4(C	C2), 124.2(C3), 111.5(C4), 76 Show Assignments	Clear Clear
Read Data	Show Assignments	Calculate Clear sion of the database and the t distribution.
Read Data This calculation wi (To change these	Show Assignments	1H Expt: 1(d 7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the
150.2(C1), 141.4(C Read Data This calculation wi (To change these top of the applet ar	Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the
150.2(C1), 141.4(C Read Data This calculation wi (To change these top of the applet ar	Show Assignments Il use the DP4-database2 ver options select the desired data id then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the
150.2(C1), 141.4(C Read Data This calculation wi (To change these top of the applet ar Results of DP4 us	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(C Read Data This calculation wi (To change these top of the applet ar Results of DP4 us Isomer 1: 97.5%	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation wit (To change these top of the applet ar Results of DP4 us Isomer 1: 97.5% Isomer 2: 2.4%	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(C Read Data This calculation wit (To change these top of the applet ar Results of DP4 us Isomer 1: 97.5% Isomer 2: 2.4% Isomer 3: 0.0%	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton da	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(0 Read Data This calculation wit (To change these top of the applet and top of the applet applet and top of the applet and top of the applet applet and top of the applet a	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat d then click Calculate).	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(C Read Data This calculation wi (To change these top of the applet ar Results of DP4 us Isomer 1: 97.5% Isomer 2: 2.4% Isomer 3: 0.0% Isomer 4: 0.0%	S2), 124.2(C3), 111.5(C4), 76. Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(0 Read Data This calculation wit (To change these top of the applet and top of the applet applet applet and top of the applet appl	S2), 124.2(C3), 111.5(C4), 76. Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(0 Read Data This calculation wit (To change these top of the applet and top of the applet applet applet and top of the applet appl	S2), 124.2(C3), 111.5(C4), 76. Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ing the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation wit (To change these top of the applet and top of the applet applet applet and top of the applet appl	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation wi (To change these is top of the applet ar Results of DP4 us Isomer 1: 97.5% Isomer 2: 2.4% Isomer 4: 0.0% Results of DP4 usi Isomer 1: 95.5% Isomer 2: 3.8% Isomer 3: 0.0%	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" The cols	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" The cols	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" The cols	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ing the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(C Read Data This calculation wi (To change these of top of the applet ar Results of DP4 us Isomer 1: 97.5% Isomer 2: 2.4% Isomer 2: 0.0% Isomer 4: 0.0% Results of DP4 usi Isomer 1: 95.5% Isomer 2: 3.8% Isomer 3: 0.0% Isomer 4: 0.6% Results of DP4 usi Isomer 4: 0.6%	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ing the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the tta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" to point the colspan="2" to the colspa=	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ing the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" to point the colspan="2" to the colspa=	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ng the carbon data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:
150.2(C1), 141.4(0 Read Data This calculation with the colspan="2">This calculation with the colspan="2" The colspan="2" The colspan="2" The colspan="2" The colspan="2" This calculation with the colspan="2" The cols	Show Assignments Show Assignments If use the DP4-database2 ver options select the desired dat id then click Calculate). Ing both carbon and proton dat ing the carbon data only: If the proton data only:	1H Expt: 1((7.3(H1), 6.5(H2), 4.66(H3), 4.46(H4), 1.9(H5), 1 Calculate Clear sion of the database and the t distribution. abase and distribution from the menus at the ta:

Figure S77. The results of DP4 analyses of 12.

 R_{2}

20

18 R₁=H, R₂=H, R₃=OH (*R*) **19** R₁=OCOCH₃, R₂=COCH₃, R₃=H

Figure S78. Isolated known compounds from *Hyrtios erectus*

Figure S79. Calculated and experimental ECD spectra of 4, 8 and 13