

1 Supplementary Information

Novel Fredericamycin Variant Overproduced by a Streptomycin-Resistant Streptomyces albus subsp.

4 chlorinus Strain

Marta Rodríguez Estévez ¹, Maksym Myronovskyi ¹, Birgit Rosenkränzer, Thomas Paululat ², Lutz Petzke ³, Jeanette Ristau ³, Andriy Luzhetskyy ^{1,4,*}

- Pharmazeutische Biotechnologie, Universität des Saarlandes, 66123 Saarbrücken, Germany;
 marta.rodriguezestevez@uni-saarland.de (M.R.E.); maksym.myronovskyi@uni-saarland.de (M.M.)
- 9 ² Organische Chemie II, Universität Siegen, 57068 Siegen, Germany; paululat@chemie.uni-siegen.de
- 10 ³ BASF SE, 67056 Ludwigshafen, Germany
- 11 ⁴ Helmholtz-Institut für Pharmazeutische Forschung Saarland, 66123 Saarbrücken, Germany
- 12 * Correspondence: a.luzhetskyy@mx.uni-saarland.de; Tel.: +49-0681-70223
- 13

14 Tables

15

 Table S1. Streptomycin MICs for S. albus subsp. chlorinus and S. albus subsp. chlorinus JR1.

Strain	MIC (µg/ml)
Streptomyces albus subsp. chlorinus NRRL B-24108	< 50
Streptomyces albus subsp. chlorinus JR1	200

- 17 Table S2. Quantification of fredericamycin C₂ produced by *S. albus* subsp. *chlorinus* JR1 and the parental strain
- 18 *S. albus* subsp. *chlorinus* NRRL B-24108.

	Strain	Peak area (AU)ª	Fredericamycin C ₂ concentration $(\mu M)^{a b}$
	Streptomyces albus subsp. chlorinus JR1	571,003,904	773.25 (0.1)
	Streptomyces albus subsp. chlorinus NRRL B-24108	10,157,194	14.08 (0.0)
19	^a Values indicate the average of	three independent me	easurements
20	^b Standard deviation values are	shown in parentheses	
21			
22			

Strain

WT

mutant

WT

Position (bp)

30077

636229

Sequence (5' \rightarrow 3')	Type of mutation	
30068-CGGGGGGGGGGA-30079		
30068-CGGGGGGGGGG <mark>G</mark> A-30080	Ginsertion	
363224-CCCTCCTCGA-636233	C deletion	
363224-CCCTCTCGA-636232	C deletion	
685893-GGCGGGGGGGG-685902		
685893-GGCGGGG <mark>G</mark> CGG-685903	Ginsertion	
1120943-GGCCTG <mark>G</mark> TAC-1120952		
1120943-GGCCTGTAC-1120951	G deletion	
1922746-CCCGCG <mark>A</mark> GCG-1922755	A deletion	
1922746-CCCGCGGCG-1922754	A deletion	
2222890-GCCCCCC <mark>C</mark> GG-2222899	Chhr	
	Caeletion	

Table S3. Type and location

	mutant	363224-CCCTCTCGA-636232	
685900	WT	685893-GGCGGGGGGG-685902	
	mutant	685893-GGCGGGG <mark>G</mark> CGG-685903	Ginsertion
1120949	WT	1120943-GGCCTGGTAC-1120952	C deletion
	mutant	1120943-GGCCTGTAC-1120951	Guccion
1922752	WT	1922746-CCCGCGAGCG-1922755	A deletion
	mutant	1922746-CCCGCGGCG-1922754	A detenoir
2222897	WT	2222890-GCCCCCCCGG-2222899	C deletion
	mutant	2222890-GCCCCCGG-2222898	e detenon
2548236	WT	2548230-CTCCGC <mark>G</mark> AGC-2548239	C deletion
	mutant	2548230-CTCCGCAGC-2548238	Guccion
3714884	WT	3714886-CGACCGTGCC-3714877	Cinsertion
	mutant	3714886-CGA <mark>C</mark> CCGTGCC-3714876	Children
5766153	WT	5766149-GAGT <mark>G</mark> CGCGC-5766158	$G \rightarrow C$ substitution
	mutant	5766149-GAGT <mark>C</mark> CGCGC-5766158	
5766154	WT	5766149-GAGTG <mark>C</mark> GCGC-5766158	$C \rightarrow G$ substitution
	mutant	5766149-GAGTC <mark>G</mark> GCGC-5766158	
5766161	WT	5766156-CGCCG <mark>G</mark> CCGG-5766165	G deletion
	mutant	5766156-CGCCGCCGG-5766164	Cucleuon
5790341	WT	5790331-CGGGGGGGGGGT-5790342	Ginsertion
	mutant	5790331-CGGGGGGGGGGG <mark>G</mark> T-5790343	Ginbertion
6179245	WT	6179240-GGGCC <mark>G</mark> CACC-6179249	$G \rightarrow C$ substitution
	mutant	6179240-GGGCCCCACC-6179249	
6213269	WT	6213264-TCCGCCGCTG-6213273	C deletion

4	of	16
4	of	16

	mutant	6213264-TCCGCGCTG-6213272	
7015221	WT	7015216-CCTTC <mark>C</mark> ACCC-7015225	C deletion
	mutant	7015216-CCTTCACCC-7015224	C deletion

Bacterial strain	Features	Reference/Source
<i>Streptomyces albus</i> subsp. <i>chlorinus</i> NRRL B-24108	Strain harboring fredericamycin biosynthetic gene cluster	[2]
Streptomyces albus subsp. chlorinus JR1	Streptomycin-resistant mutant strain overproducing fredericamycin C2	This work
Streptomyces albus Del14	Streptomyces albus Del14 Heterologous expression host	
Streptomyces albus 2P5	S. albus Del14 strain harboring BAC 2P5	This work
Escherichia coli ET12567 pUB307	Donor strain for intergeneric conjugation	[4]
Escherichia coli DH10β	General cloning strain	[5]
BACs		
pSMART	AmR; BAC vector	Lucigen (USA)
2P5	BAC containing fredericamycin gene cluster	Intact Genomics (USA)

Table S4. Bacterial strains and BACs used in this work.

AU x10⁶ 2.5 € 2.0 1.5 1.0 0.5 0.0 2.5 0.0 0.5 1.0 1.5 2.0 3.0 3.5 Concentration (μ M)

29

- **30** Figure S1. Calibration curve for fredericamycin C₂ quantification. Peak area is represented against
- $\label{eq:concentration} 31 \qquad \mbox{fredericamycin C_2 concentration (μM)$. The values represent the average of three independent measurements.}$
- 32 The black line shows the trendline that leads to the equation: $y = 7.38 * 10^5 x 2.49 * 10^5$.

35

36

Figure S2. Important 2D NMR correlations in fredericamycin C2.

39 Figure S3. HPLC-MS chromatograms of crude extracts from *S. albus* subsp. *chlorinus* JR1, *S. albus* 2P5, and its

- 40 parental strain *S. albus* Del14. (A) Extracted ion chromatograms (521.12 ± 0.1 Da). (B) Mass spectrum
- 41 corresponding to $t_{R} = 12.7$ min from *S. albus* 2P5 chromatogram displayed in A.

44 Figure S4. Antibacterial evaluation of fredericamycin C2. Disk diffusion tests against *Pseudomonas putida*,

- 45 *Escherichia coli,* and *Bacillus subtilis* are shown. Fredericamycin C₂ solved in methanol was loaded onto paper
- 46 disks at concentrations of 10 mg/ml, 5, 2.5, 0.5, and 0.25 mg/ml. NAL: nalidixic acid; Ap: ampicillin; Cm:
- 47 chloramphenicol; (-): negative control (methanol).

59

58

Figure S8. HSQC NMR (600 MHz, DMSO-d6/Pyridine-d5 95:5, 35 °C).

Figure S10. ROESY NMR (600 MHz, DMSO-d6/Pyridine-d5 95:5, 35 °C).

67 References

68	1.	Sontag, B.; Muller, J.G.; Hansske, F.G. Fredericamycin B and C from Streptomyces griseus:
69		structure elucidation after 23 years. J. Antibiot. 2004, 57, 823-828.
70	2.	Hahn, D.R.; Graupner, P.R.; Chapin, E.; Gray, J.; Heim, D.; Gilbert, J.R.; Gerwick, B.C.
71		Albucidin: a novel bleaching herbicide from <i>Streptomyces albus</i> subsp. <i>chlorinus</i> NRRL
72		B-24108. The Journal of antibiotics 2009 , 62, 191-194, doi:10.1038/ja.2009.11.
73	3.	Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A.
74		Generation of a cluster-free <i>Streptomyces albus</i> chassis strains for improved heterologous
75		expression of secondary metabolite clusters. Metab. Eng. 2018, 10.1016/j.ymben.2018.09.004,
76		doi:10.1016/j.ymben.2018.09.004.
77	4.	Flett, F.; Mersinias, V.; Smith, C.P. High efficiency intergeneric conjugal transfer of plasmid
78		DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett.
79		1997 , 155, 223-229.
80	5.	Grant, S.G.; Jessee, J.; Bloom, F.R.; Hanahan, D. Differential plasmid rescue from transgenic
81		mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA
82		1990 , <i>87</i> , 4645-4649.