Supporting Information

Polyhydroxy *p*-Terphenyls from a Mangrove Endophytic Fungus *Aspergillus candidus* LDJ-5

Guoliang Zhou,¹ Xiaomin Zhang,¹ Mudassir Shah, ¹ Qian Che,¹ Guojian Zhang,^{1,2}

Qianqun Gu,¹ Tianjiao Zhu,^{*,1} and Dehai Li^{*,1,2,3}

¹ Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

² Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China

³ Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China

* Corresponding authors: Tel: 0086-532-82031619. E-mail: dehaili@ouc.edu.cn (D. Li); zhutj@ouc.edu.cn (T. Zhu).

List of supporting information

Figure S1. ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 1	S5
Figure S2 . ¹³ C NMR (125 MHz, DMSO- d_6) spectrum of 1	S5
Figure S3 . DEPT (125 MHz, DMSO- d_6) spectrum of 1	S6
Figure S4 . HSQC spectrum of 1 in DMSO- d_6	S6
Figure S5 . ¹ H- ¹ H COSY spectrum of 1 in DMSO- d_6	S7
Figure S6. HMBC spectrum of 1 in DMSO- <i>d</i> ₆	S7
Figure S7 . NOESY spectrum of 1 in DMSO- d_6	S8
Figure S8. HRESIMS spectrum of 1	S8
Figure S9 . ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 2	S9
Figure S10 . ¹³ C NMR (125 MHz, DMSO- d_6) spectrum of 2	S9
Figure S11 . DEPT (125 MHz, DMSO- <i>d</i> ₆) spectrum of 2	S10
Figure S12 . HSQC spectrum of 2 in DMSO- d_6	S10
Figure S13 . ¹ H- ¹ H COSY spectrum of 2 in DMSO- d_6	S11
Figure S14 . HMBC spectrum of 2 in DMSO- d_6	S11
Figure S15. HRESIMS spectrum of 2	S12
Figure S16 . ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 3	S12
Figure S17 . ¹³ C NMR (125 MHz, DMSO- d_6) spectrum of 3	S13
Figure S18 . DEPT (125 MHz, DMSO- <i>d</i> ₆) spectrum of 3	S13
Figure S19 . HSQC spectrum of 3 in DMSO- d_6	S14
Figure S20 . ¹ H- ¹ H COSY spectrum of 3 in DMSO- d_6	S14
Figure S21 . HMBC spectrum of 3 in DMSO- d_6	S15
Figure S22. HRESIMS spectrum of 3	S15
Figure S23 . ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 4	S16
Figure S24 . ¹³ C NMR (125 MHz, DMSO- d_6) spectrum of 4	S16
Figure S25 . DEPT (125 MHz, DMSO- <i>d</i> ₆) spectrum of 4	S17
Figure S26 . HSQC spectrum of 4 in DMSO- d_6	S17
Figure S27 . ¹ H- ¹ H COSY spectrum of 4 in DMSO- d_6 .	S18

Figure S28	HMBC spectrum of 4 in DMSO- <i>d</i> ₆	S18
Figure S29	HRESIMS spectrum of 4	S 19
Figure S30	¹ H NMR (500 MHz, DMSO- d_6) spectrum of 5	S19
Figure S31	13 C NMR (125 MHz, DMSO- d_6) spectrum of 5	S20
Figure S32	DEPT (125 MHz, DMSO- d_6) spectrum of 5	S20
Figure S33	HSQC spectrum of 5 in DMSO- d_6	S21
Figure S34	¹ H- ¹ H COSY spectrum of 5 in DMSO- d_6 .	S21
Figure S35.	HMBC spectrum of 5 in DMSO- d_6	S22
Figure S36	HRESIMS spectrum of 5	S22
Figure S37.	¹ H NMR (500 MHz, DMSO- d_6) spectrum of 6	S23
Figure S38	13 C NMR (125 MHz, DMSO- d_6) spectrum of 6	S23
Figure S39	DEPT (125 MHz, DMSO- d_6) spectrum of 6	S24
Figure S40	HSQC spectrum of 6 in DMSO- d_6	S24
Figure S41	¹ H- ¹ H COSY spectrum of 6 in DMSO- d_6 .	S25
Figure S42	HMBC spectrum of 6 in DMSO- d_6	S25
Figure S43	HRESIMS spectrum of 6	S26
Figure S44	¹ H NMR (500 MHz, DMSO- d_6) spectrum of 7	S26
Figure S45	13 C NMR (125 MHz, DMSO- d_6) spectrum of 7	S27
Figure S46	DEPT (125 MHz, DMSO- d_6) spectrum of 7	S27
Figure S47	HSQC spectrum of 7 in DMSO- d_6	S28
Figure S48	¹ H- ¹ H COSY spectrum of 7 in DMSO- d_6 .	S28
Figure S49	HMBC spectrum of 7 in DMSO- d_6	S29
Figure S50	NOESY spectrum of 7 in DMSO- d_6 .	S29
Figure S51	HRESIMS spectrum of 7	S 30
Figure S52	HPLC of LDJ-5 crude extract	S 30
Figure S53	Chiral HPLC analysis of 1	S 31
Figure S54	IR spectrum of 1	S 31
Figure S55	IR spectrum of 2	S 31
Figure S56	IR spectrum of 3	S32
Figure S57	IR spectrum of 4	\$32

Figure S58. IR spectrum of 5.	S32
Figure S59. IR spectrum of 6.	\$33
Figure S60. IR spectrum of 7.	\$33
Table S1. Antimicrobial activity of 1-7	S33

Figure S1. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 1.

Figure S2. ¹³C NMR (125 MHz, DMSO- d_6) spectrum of 1.

Figure S3. DEPT (125 MHz, DMSO- d_6) spectrum of 1.

Figure S4. HSQC spectrum of 1 in DMSO- d_6 .

Figure S5. 1 H- 1 H COSY spectrum of **1** in DMSO- d_{6} .

Figure S6. HMBC spectrum of 1 in DMSO- d_6 .

Figure S7. NOESY spectrum of 1 in DMSO- d_6 .

Figure S8. HRESIMS spectrum of 1.

Figure S9. ¹H NMR (500 MHz, DMSO- d_6) spectrum of **2**.

Figure S10. ¹³C NMR (125 MHz, DMSO- d_6) spectrum of 2.

Figure S11. DEPT (125 MHz, DMSO- d_6) spectrum of 2.

Figure S12. HSQC spectrum of 2 in DMSO- d_6 .

Figure S13. ¹H-¹H COSY spectrum of 2 in DMSO- d_6 .

Figure S14. HMBC spectrum of 2 in DMSO- d_6 .

Figure S15. HRESIMS spectrum of 2.

Figure S16. ¹H NMR (500 MHz, DMSO- d_6) spectrum of 3.

Figure S18. DEPT (125 MHz, DMSO- d_6) spectrum of 3.

Figure S19. HSQC spectrum of 3 in DMSO- d_6 .

Figure S20. 1 H- 1 H COSY spectrum of **3** in DMSO- d_{6} .

Figure S21. HMBC spectrum of 3 in DMSO- d_6 .

Figure S22. HRESIMS spectrum of 3.

Figure S24. ¹³C NMR (125 MHz, DMSO- d_6) spectrum of 4.

Figure S25. DEPT (125 MHz, DMSO- d_6) spectrum of 4.

Figure S26. HSQC spectrum of 4 in DMSO- d_6 .

Figure S27. ¹H-¹H COSY spectrum of **4** in DMSO- d_6 .

Figure S28. HMBC spectrum of 4 in DMSO- d_6 .

Figure S29. HRESIMS spectrum of 4.

Figure S30. ¹H NMR (500 MHz, DMSO- d_6) spectrum of 5.

Figure S31. 13 C NMR (125 MHz, DMSO- d_6) spectrum of 5.

Figure S32. DEPT (125 MHz, DMSO-*d*₆) spectrum of 5.

Figure S33. HSQC spectrum of 5 in DMSO- d_6 .

Figure S34. ¹H-¹H COSY spectrum of **5** in DMSO- d_6 .

Figure S35. HMBC spectrum of 5 in DMSO- d_6 .

Figure S36. HRESIMS spectrum of 5.

Figure S38. ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of **6**.

Figure S39. DEPT (125 MHz, DMSO- d_6) spectrum of 6.

Figure S40. HSQC spectrum of 6 in DMSO- d_6 .

Figure S41. ¹H-¹H COSY spectrum of **6** in DMSO- d_6 .

Figure S42. HMBC spectrum of 6 in DMSO-*d*₆.

Figure S43. HRESIMS spectrum of 6.

Figure S44. ¹H NMR (500 MHz, DMSO- d_6) spectrum of **7**.

Figure S45. ¹³C NMR (125 MHz, DMSO-d₆) spectrum of 7.

Figure S46. DEPT (125 MHz, DMSO-d₆) spectrum of 7.

Figure S47. HSQC spectrum of 7 in DMSO- d_6 .

Figure S48. ¹H-¹H COSY spectrum of **7** in DMSO- d_6 .

Figure S49. HMBC spectrum of 7 in DMSO- d_6 .

Figure S50. NOESY spectrum of 7 in DMSO- d_6 .

Figure S52. HPLC of LDJ-5 crude extract.

Figure S53. Chiral HPLC analysis of 1.

200 1000		di ntori como					and the second second					
200				1000								
250-												
E												
300-				_								
350												
330												
400												
450-												
500-												
550												
600-												
650-												
700												
100												
750-												
E												
800	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0
1.31.11.1.4												

Figure S54. IR spectrum of 1.

Figure S56. IR spectrum of 3.

Figure S57. IR spectrum of 4.

Figure S60. IR spectrum of 7.

 Table S1. Antimicrobial activity of 1-7.

	MIC (µg/mL)								
Compound	Proteus	Pseudomonas	Bacillus	Bacillus	Mycobacterium				
	species	aeruginosa	subtilis	cereus	phlei				
1	>200	>200	>200	>200	>200				
2	>200	40	>200	>200	79				
3	19	>200	38	>200	38				
4	>200	>200	>200	70	>200				
5	35	70	70	70	70				
6	>200	>200	>200	>200	>200				
7	>200	>200	>200	87	>200				
Positive drug ^a	0.26	0.52	4.14	2.07	0.52				

^{a:} Ciprofloxacin = positive control for *P*. species, *P. aeruginosa*, *B. subtilis*, *Bacillus cereus* and *Mycobacterium phlei*.